SIEMENS

SIMATIC

Manual del sistema de automatización S7-200

Número de referencia del manual: 6ES7298-8FA24-8DH0

Edición 06/2004 A5E00307989-01

Prólogo, contenido	
Gama de productos S7-200	1
Guía de iniciación	2
Montar el S7-200	3
Generalidades del S7-200	4
Conceptos de programación, convenciones y funciones	5
Juego de operaciones del S7-200	6
Comunicación en redes	7
Eliminar errores de hardware y comprobar el software	8
Controlar el movimiento en lazo abierto con el S7-200	9
Crear un programa para el módulo Módem	10
Utilizar la librería del protocolo USS para controlar un accionamiento MicroMaster	11
Utilizar la librería del protocolo Modbus	12
Utilizar recetas	13
Utilizar registros de datos	14
Autosintonizar el PID y Panel de sintonización PID	15
Anexos	

Índice alfabético

Consignas de seguridad para el usuario

Este manual contiene las informaciones necesarias para la seguridad personal, así como para la prevención de daños materiales. Las señales están puestas de relieve mediante señales de peligro, representando distintos grados de peligro:

Peligro

Significa que, si no se adoptan las medidas preventivas adecuadas, se producirá la muerte, o bien lesiones corporales graves o daños materiales considerables.

Precaución

Significa que, si no se adoptan las medidas preventivas adecuadas, puede producirse la muerte, o bien lesiones corporales graves o daños materiales considerables.

Cuidado

Junto con el símbolo de aviso, significa que, si no se adoptan las medidas preventivas adecuadas, pueden producirse lesiones corporales leves o moderadas.

Cuidado

Sin el símbolo de aviso, significa que, si no se adoptan medidas preventivas adecuadas, pueden producirse daños materiales.

Nota

Significa que, si no se adoptan las medidas preventivas adecuadas, pueden presentarse resultados o estados impredecibles.

Personal cualificado

Sólo está autorizado a intervenir en este equipo el **personal cualificado**. En el sentido del manual se trata de personas que disponen de los conocimientos técnicos necesarios para poner en funcionamiento, conectar a tierra y marcar los aparatos, sistemas y circuitos de acuerdo con las normas estándar de seguridad.

Uso correcto

Considere lo siguiente:

Precaución

El equipo y los componentes del sistema sólo se podrán utilizar para los casos de aplicación previstos en el catálogo y en las descripciones técnicas, y sólo con los equipos y componentes de proveniencia tercera recomendados y homologados por Siemens.

El funcionamiento correcto y seguro del producto presupone un transporte, un almacenamiento, una instalación y un montaje conforme a las prácticas de la buena ingeniería, así como un manejo y un mantenimiento rigurosos.

Marcas registradas

SIMATIC®, SIMATIC HMI® y SIMATIC NET® son marcas registradas de SIEMENS AG. Algunas de las designaciones utilizadas en estos documentos también son marcas registradas que, si son utilizadas por terceros para fines propios, pueden violar los derechos de sus propietarios.

Copyright Siemens AG 2004 All rights reserved

La divulgación y reproducción de este documento o de su contenido no está autorizada, a menos que se obtenga el consentimiento expreso para ello. Los infractores quedan obligados a la indemnización de los daños. Se reservan todos los derechos, en particular para el caso de concesión de patentes o de modelos de utilidad.

Siemens AG Bereich Automation and Drives

Geschaeftsgebiet Industrial Automation Systems Postfach 4848, D- 90327 Nuremberg

Exención de responsabilidad

Hemos probado el contenido de esta publicación con la concordancia descrita para el hardware y el software. Sin embargo, es posible que se den algunas desviaciones que nos impiden tomar garantía completa de esta concordancia. El contenido de esta publicación está sometido a revisiones regularmente y en caso necesario se incluyen las correcciones en la siguiente edición. Agradecemos sugerencias.

© Siemens AG 2004 Sujeto a cambios sin previo aviso.

Siemens Aktiengesellschaft

Prólogo

Objetivo del manual

La gama S7-200 comprende diversos sistemas de automatización pequeños (Micro-PLCs) que se pueden utilizar para numerosas tareas. Gracias a su diseño compacto, su bajo costo y su amplio juego de operaciones, los sistemas de automatización S7-200 son idóneos para controlar tareas sencillas. La gran variedad de modelos S7-200 y el software de programación basado en Windows ofrecen la flexibilidad necesaria para solucionar las tareas de automatización.

Este manual contiene informaciones sobre cómo instalar y programar los Micro-PLCs S7-200 y va dirigido a ingenieros, programadores, técnicos de instalación y electricistas que dispongan de conocimientos básicos sobre los sistemas de automatización.

Nociones básicas

Se requieren conocimientos básicos en el campo de la automatización y de los autómatas programables.

Objeto del manual

Este manual es aplicable al software STEP 7-Micro/WIN, versión 4.0 y a la gama de CPUs S7-200. El anexo A contiene una lista completa de los productos S7-200 y sus respectivos números de referencia.

Cambios frente a la versión anterior

Este manual se ha complementado como se indica a continuación:

Las CPUs S7-200 221, 222, 224, 224XP y 226 incluyen:

Nuevo soporte de hardware de las CPUs: opción para desactivar la edición en modo RUN con objeto de incrementar la memoria del programa. La CPU 224XP soporta entradas y salidas analógicas integradas y dos puertos de comunicación. La CPU 226 incorpora filtros de entradas y captura de impulsos.

- Nuevo soporte del cartucho de memoria: Explorador S7-200, transferencias al cartucho de memoria, comparaciones y selecciones de programación.
- STEP 7-Micro/WIN (versión 4.0) es un paquete de software de programación de 32 bits para el S7-200 que incluye:

Nuevas herramientas que soportan las últimas mejoras de las CPUs: Panel de autosintonía PID, asistente de control de posición integrado en los PLCs, asistente de registros de datos y asistente de recetas.

Nueva herramienta de diagnóstico: configuración del LED de diagnóstico

Nuevas operaciones: Horario de verano (READ_RTCX y SET_RTCX), Temporizadores de intervalos (BITIM, CITIM), Borrar evento de interrupción (CLR_EVNT) y LED de diagnóstico (DIAG_LED).

Unidades de organización del programa y librerías mejoradas: nuevas constantes de cadena, direccionamiento indirecto soportado en más tipos de memoria, soporte mejorado de la parametrización de lectura y escritura de la librería USS para los accionamientos maestros de Siemens.

Bloque de datos mejorado: páginas del bloque de datos, incremento automático del bloque de datos.

Mejoras de uso de STEP 7-Micro/WIN

Homologaciones

Los productos SIMATIC S7-200 tienen las homologaciones siguientes:

- Underwriters Laboratories, Inc. UL 508 Listed (Industrial Control Equipment), nº de registro: E75310
- Canadian Standards Association: CSA C22.2 nº 142 (Process Control Equipment)
- □ Factory Mutual Research: nº de clase 3600, nº de clase 3611, clase FM I, categoría 2, grupos A, B, C y D "Hazardous Locations", T4A y clase I, zona 2, IIC, T4

Consejo

La gama SIMATIC S7-200 cumple la norma CSA.

El logotipo cULus indica que Underwriters Laboratories (UL) ha examinado y certificado el S7-200 conforme a las normas UL 508 y CSA 22.2 No. 142.

Marcado CE

Los productos SIMATIC S7-200 cumplen las normas y las reglas de protección de las siguientes directivas de la Unión Europea:

- Directiva de Baja Tensión de la Comunidad Europea 73/23/CEE
- Directiva EMC de la Comunidad Europea (CE) 89/336/CEE

C-Tick

Los productos SIMATIC S7-200 cumplen los requisitos de la norma australiana AS/NZS 2064.

Normas:

Los productos SIMATIC S7-200 cumplen los requisitos y criterios de la norma IEC 61131-2, Autómatas programables - Especificaciones y ensayos de los equipos.

Para más información sobre el cumplimiento de normas, consulte el anexo A.

Catalogación en el conjunto de la documentación

Gama de productos	Documentación	Nº de referencia
S7-200	TP070 Touch Panel User Manual (inglés)	6AV6591-1DC01-0AB0
	TP170 micro Operating Manual (inglés)	6AV6 691-1DB01-0AB0
	S7-200 Point-to-Point Interface Communication Manual (inglés/alemán)	6ES7 298-8GA00-8XH0
	Manual CP 243-2 SIMATIC NET AS-Interface Master (inglés)	6GK7 243-2AX00-8BA0
	Módulo Internet CP 243-1 IT (con documentación electrónica en CD)	6GK7 243-1GX00-0XE0
	Módulo Ethernet CP 243-1 (con documentación electrónica en CD)	6GK7 243-1GX00-0XE0
	Manual del sistema de automatización S7-200	6ES7 298-8FA24-8BH0

Guía a través de la documentación

Si es la primera vez que trabaja con Micro-PLCs S7-200, es recomendable que lea todo el *Manual del sistema de automatización S7-200*. Si ya dispone de los conocimientos necesarios, consulte el contenido o el índice alfabético del manual para encontrar la información que precise.

El Manual del sistema de automatización S7-200 comprende los capítulos siguientes:

- El capítulo 1 ("Gama de productos S7-200") ofrece una panorámica de algunas de las funciones de la gama de productos S7-200.
- El capítulo 2 ("Guía de iniciación") incluye un tutorial para crear y cargar un programa de ejemplo en el S7-200.
- El capítulo 3 ("Montar el S7-200") informa acerca de los procedimientos, dimensiones y reglas básicas para montar las CPUs S7-200 y los módulos de ampliación.
- El capítulo 4 ("Generalidades del S7-200") proporciona información general sobre el funcionamiento del S7-200.
- El capítulo 5 ("Conceptos de programación, convenciones y funciones") describe las funciones de STEP 7-Micro/WIN, los editores de programas y los tipos de operaciones (IEC 1131-3 y SIMATIC), los tipos de datos del S7-200 y las reglas para crear programas.
- El capítulo 6 ("Juego de operaciones del S7-200") incluye descripciones y ejemplos de las operaciones de programación que soporta el S7-200.
- El capítulo 7 ("Comunicación en redes") explica cómo configurar las diferentes redes que soporta el S7-200.
- El capítulo 8 ("Eliminar errores de hardware y comprobar el software") contiene información sobre cómo eliminar errores en relación con el hardware del S7-200, así como acerca de las funciones de STEP 7-Micro/WIN para comprobar el programa.
- El capítulo 9 ("Controlar el movimiento en lazo abierto con el S7-200") contiene información sobre tres métodos para controlar el movimiento en lazo abierto, a saber: modulación por ancho de impulsos, tren de impulsos y el módulo de posicionamiento EM 253.
- El capítulo 10 ("Crear un programa para el módulo Módem") contiene información sobre las operaciones y el asistente utilizados para crear un programa para el módulo Módem EM 241.
- El capítulo 11 ("Utilizar la librería del protocolo USS para controlar un accionamiento MicroMaster") contiene información sobre las operaciones utilizadas para crear un programa de control para un accionamiento MicroMaster. Asimismo, se describe cómo configurar los accionamientos MicroMaster 3 y MicroMaster 4.
- El capítulo 12 ("Utilizar la librería del protocolo Modbus") contiene información sobre las operaciones utilizadas para crear un programa que utiliza el protocolo Modbus para la comunicación.
- El capítulo 13 ("Utilizar recetas") contiene información sobre cómo organizar y cargar recetas del programa de automatización en el cartucho de memoria.
- El capítulo 14 ("Utilizar registros de datos") contiene información sobre cómo almacenar en el cartucho de memoria los datos de medición del proceso.
- El capítulo 15 ("Autosintonizar el PID y Panel de sintonía PID") contiene información sobre cómo utilizar estas funciones para aprovechar al máximo la utilidad y facilitar el uso de la operación PID del S7-200.
- El Anexo A ("Datos técnicos") incluye las informaciones técnicas y las hojas de datos del hardware S7-200.

Los demás anexos proporcionan informaciones adicionales, tales como descripciones de los códigos de error y de las marcas especiales (SM), los números de referencia de los equipos S7-200 y los tiempos de ejecución de las operaciones AWL.

Además del presente manual, STEP 7-Micro/WIN incorpora una completa Ayuda en pantalla que contiene información detallada sobre la programación del S7-200. Junto con el software de STEP 7-Micro/WIN se suministra un CD de documentación gratuito. El CD contiene ejemplos de aplicación, una versión electrónica del presente manual y otras informaciones.

Ayuda en pantalla

Para acceder a la Ayuda en pantalla de STEP 7-Micro/WIN basta con pulsar la tecla F1. La Ayuda en pantalla contiene información detallada sobre la programación del S7-200, así como acerca de muchos temas más.

Manual electrónico

El CD de documentación contiene una versión electrónica del presente Manual del sistema de automatización S7-200. El manual electrónico se puede copiar al disco duro del PC, con objeto de poder acceder fácilmente a la información del manual durante el trabajo con STEP 7-Micro/WIN.

Consejos de programación

El CD de documentación contiene también consejos de programación que incluyen aplicaciones y programas de ejemplo. Revisando o modificando estos ejemplos podrá encontrar soluciones eficientes e innovadoras para su propia aplicación. La versión más actual de los consejos de programación del S7-200 se puede descargar también del sitio web indicado a continuación.

Reciclaje y evacuación de desechos

Contacte con una empresa especializada en la evacuación de desechos informáticos para garantizar el reciclaje ecológico de sus dispositivos.

Asistencia complementaria

Representante de Siemens más próximo

Si tiene preguntas técnicas, si necesita información sobre los cursillos de entrenamiento en relación con los productos S7-200, o para efectuar pedidos, diríjase por favor a su representante de Siemens más próximo. Puesto que los representantes de Siemens han sido entrenados para el soporte técnico y dado que tienen conocimientos detallados acerca de sus actividades, sus procesos y su industria, así como sobre los productos de Siemens que Ud. utiliza, pueden ayudarle a solucionar cualquier problema de forma rápida y eficiente.

Servicio y soporte en Internet

Además de nuestra documentación, en Internet le ponemos a su disposición todo nuestro know-how:

http://www.siemens.com/automation/service&support

En esta página encontrará:

www.siemens.com/S7-200 (información sobre los productos S7-200)

Este sitio web incluye respuestas a las preguntas más frecuentes (FAQs), consejos de programación (aplicaciones y programas de ejemplo), información acerca de nuevos productos, así como actualizaciones de productos y archivos descargables.

- Los "Newsletter" le mantendrán siempre al día ofreciéndole informaciones de última hora sobre nuestros productos.
- Los documentos que busca en "Service & Support".
- En el Foro podrá intercambiar sus experiencias con usuarios y expertos en todo el mundo.
- El representante de Automation & Drives en su región.
- Encontrará información sobre el servicio más próximo, sobre reparaciones, repuestos, etc. bajo la rúbrica "Servicios".

Servicios técnicos

El personal altamente cualificado del centro de servicios técnicos S7-200 también se encuentra a su entera disposición. para ayudarle a solucionar cualquier problema que pudiera surgir.

A&D Technical Support

Estamos a su disposición en todo el mundo y a cualquier hora del día:

Contenido

1	Gama de productos S7-200	1
	Novedades	2
	CPU S7-200	2
	Módulos de ampliación S7-200	4
	Paquete de programación STEP 7-Micro/WIN	4
	Opciones de comunicación	5
	Paneles de operador	6
2	Guía de iniciación	7
	Conectar el S7-200	8
	Crear un programa de ejemplo	10
	Cargar el programa de ejemplo	15
	Poner el S7-200 en modo RUN	15
3	Montar el S7-200	17
	Reglas para montar el S7-200	18
	Montar v desmontar el S7-200	20
	Reglas de puesta a tierra y cableado	_• 24
		07
4	Generalidades del S7-200	27
	Ejecutar la lógica de control en el S7-200	28
	Acceder a los datos del S7-200	30
	Guardar y restablecer datos en el S7-200	40
	Seleccionar el modo de operación del S7-200	46
	Utilizar el Explorador S7-200	46
	Funciones del S7-200	47
5	Conceptos de programación, convenciones y funciones	59
	Crear una solución de automatización con un Micro-PLC	60
	Elementos básicos de un programa	61
	Utilizar STEP 7-Micro/WIN para crear programas	64
	Juegos de operaciones SIMATIC e IEC 1131-3	67
	Convenciones utilizadas en los editores de programas	68
	Utilizar asistentes para facilitar la creación del programa	70
	Eliminar errores en el S7-200	70
	Asignar direcciones y valores iniciales en el editor de bloque de datos	73
	Utilizar la tabla de símbolos para el direccionamiento simbólico de variables	74
	Utilizar variables locales	75
	Utilizar la tabla de estado para observar el programa	75
	Crear una librería de operaciones	76
	Funciones para comprobar el programa	76

6	Juego de operaciones del S7-200	77
	Convenciones utilizadas para describir las operaciones	79
	Áreas de memoria y funciones del S7-200	80
	Operaciones lógicas con bits	82
	Contactos	82
	Bobinas	85
	Operaciones lógicas de pilas	87
	Posicionar y rearmar dominante biestable	89
	Operaciones de reloj	90
	Operaciones de comunicación	93
	Leer de la red y Escribir en la red	93
	Transmitir mensaje y Recibir mensaje (Freeport)	98
	Leer dirección de puerto y Ajustar dirección de puerto	108
	Operaciones de comparación	109
	Comparar valores numéricos	109
	Comparar cadenas	111
	Operaciones de conversión	112
	Operaciones de conversión normalizadas	112
	Operaciones de conversión ASCII	116
	Operaciones de conversión de cadenas	120
	Codificar y Decodificar	125
	Operaciones de contaje	126
	Operaciones de contaje (SIMATIC)	126
	Operaciones de contaje (IEC)	129
	Operaciones con contadores rápidos	131
	Salida de impulsos	147
	Operaciones aritméticas	154
	Operaciones de sumar, restar, multiplicar y dividir	154
	Multiplicar enteros a enteros dobles y Dividir enteros con resto	156
	Operaciones con funciones numéricas	157
	Incrementar y decrementar	158
	Regulación PID proporcional/integral/derivativa	159
	Operaciones de interrupción	167
	Operaciones lógicas	175
	Operaciones de invertir	175
	Operaciones de combinación con Y, O y O-exclusiva	176
	Operaciones de transferencia	178
	Transferir bytes, palabras, palabras dobles y números reales	178
	Transferir bytes directamente (lectura y escritura)	179
	Operaciones de transferencia en bloque	180
	Operaciones de control del programa	181
	Fin condicionado	181
	STOP	181
	Borrar temporizador de vigilancia	181
	FOR y NEXT	183
	Operaciones de salto	185
	Operaciones del relé de control secuencial (SCR)	186
	LED de diagnóstico	192

	Operaciones de desplazamiento y rotación	193
	Desplazar a la derecha y Desplazar a la izquierda	193
	Rotar a la derecha y Rotar a la izquierda	193
	Registro de desplazamiento	195
	Invertir bytes de una palabra	197
	Operaciones con cadenas	198
	Operaciones de tabla	203
	Registrar valor en tabla	203
	Borrar primer registro de la tabla y Borrar último registro de la tabla	204
	Inicializar memoria	206
	Buscar valor en tabla	207
	Operaciones de temporización	210
	Operaciones de temporización (SIMATIC)	210
	Operaciones de temporización (IEC)	215
	Temporizadores de intervalos	217
	Operaciones con subrutinas	218
~	annumiensión en vedes	222
0		223
U	Principios básicos de la comunicación en redes S7-200	223
U	Principios básicos de la comunicación en redes S7-200	223 224 228
U	Principios básicos de la comunicación en redes S7-200 Seleccionar el protocolo para la comunicación en la red	224 228 234
	Principios básicos de la comunicación en redes S7-200 Seleccionar el protocolo para la comunicación en la red Agregar y quitar interfaces de comunicación Configurar la red	223 224 228 234 235
	Principios básicos de la comunicación en redes S7-200	224 228 234 235 240
U	Principios básicos de la comunicación en redes S7-200 Seleccionar el protocolo para la comunicación en la red Agregar y quitar interfaces de comunicación Configurar la red Crear protocolos personalizados en modo Freeport Utilizar módems y STEP 7-Micro/WIN en la red	223 224 228 234 235 240 243
U	Principios básicos de la comunicación en redes S7-200	2223 2224 228 234 235 240 243 249
	Principios básicos de la comunicación en redes S7-200	2224 228 234 235 240 243 249 255
	Principios básicos de la comunicación en redes S7-200	224 228 234 235 240 243 249 255
E	Principios básicos de la comunicación en redes S7-200	224 228 234 235 240 243 249 255 259
E	Principios básicos de la comunicación en redes S7-200	223 224 228 234 235 240 243 249 255 259 260
E	Principios básicos de la comunicación en redes S7-200	223 224 228 234 235 240 243 249 255 259 260 262
E	Principios básicos de la comunicación en redes S7-200	223 224 238 234 235 240 243 249 255 259 260 262 263
E	Principios básicos de la comunicación en redes S7-200	223 224 228 234 235 240 243 249 255 259 260 262 263 264
E	Principios básicos de la comunicación en redes S7-200 Seleccionar el protocolo para la comunicación en la red Agregar y quitar interfaces de comunicación Configurar la red Crear protocolos personalizados en modo Freeport Utilizar módems y STEP 7-Micro/WIN en la red Temas avanzados Configurar el cable multimaestro RS-232/PPI para el funcionamiento remoto Iminar errores de hardware y comprobar el software Funciones para comprobar el programa Visualizar el estado del programa Utilizar una tabla de estado para observar y modificar los datos en el S7-200 Forzar valores específicos Ejecutar el programa un número determinado de ciclos	223 224 228 234 235 240 243 249 255 259 260 262 263 264 264

7

8

9	Controlar el movimiento en lazo abierto con el S7-200	267
	Resumen breve	268
	Utilizar la salida PWM (Modulación por ancho de impulsos)	269
	Nociones básicas del control de posición en lazo abierto usando motores paso a paso o	
	servomotores	271
	Operaciones creadas con el asistente de control de posición	276
	Códigos de error de las operaciones PTO	280
		281
		283
	Operaciones creadas con el asistente de control de posicion para el módulo de posicionamiento	289
	Programas de ejemplo para el módulo de posicionamiento	301
	Observar el módulo de posicionamiento con el panel de control FM 253	306
	Códigos de error del módulo de posicionamiento y de las operaciones	308
	Temas avanzados	310
	Modos de búsqueda del RP soportados por el módulo de posicionamiento	320
		020
10	Crear un programa para el módulo Módem	325
	Funciones del módulo Módem	326
	Configurar el módulo Módem EM con el asistente de módems	332
	Operaciones y restricciones de los módems	336
	Operaciones del módulo Módem	337
	Programa de ejemplo para el módulo Módem	341
	CPUs S7-200 que soportan módulos inteligentes	341
	Marcas especiales del módulo Módem	341
	Temas avanzados	343
	Formato de los números de teléfono para mensajería	345
	Formato de los mensajes de texto	346
	Formato de los mensajes de transferencia de datos con la CPU	347
11	Utilizar la librería del protocolo USS para controlar un accionamiento	
	MicroMaster	349
	Requisitos para utilizar el protocolo USS	350
	Calcular el tiempo necesario para la comunicación	
	con los accionamientos	351
	Utilizar las operaciones USS	352
	Operaciones del protocolo USS	353
	Programa de ejemplo para el protocolo USS	360
	Códigos de error de las operaciones USS	361
	Conectar y configurar accionamientos MicroMaster 3	361
	Conectar y configurar accionamientos MicroMaster 4	364
12	Utilizar la librería del protocolo Modbus	367
	Requisitos para utilizar el protocolo Modbus	368
	Inicialización y tiempo de ejecución del protocolo Modbus	368
	Direccionamiento Modbus	369
	Utilizar las operaciones del protocolo para esclavos Modbus	370
	Operaciones del protocolo para esclavos Modbus	371

13	Utilizar recetas	375
	Resumen breve	376
	Definición y terminología de las recetas	377
	Utilizar el asistente de recetas	377
	Operaciones creadas con el asistente de recetas	381
14	Utilizar registros de datos	383
	Resumen breve	384
	Utilizar el asistente de registros de datos	385
	Operación creada con el asistente de registros de datos	391
15	Autosintonizar el PID y Panel de sintonía PID	393
	Nociones básicas de la autosintonía PID	394
	Tabla del lazo ampliada	394
	Requisitos previos	397
	Autohistéresis y autodesviación	397
	Secuencia de autosintonía	398
	Condiciones de advertencia	399
	Notas respecto a la variable del proceso fuera de rango (código de resultado 3)	399
	Panel de control de sintonía PID	400
Δ	Datos técnicos	403
	Datos técnicos generales	404
	Datos técnicos de las CPUs	407
	Datos técnicos de los módulos de ampliación digitales	416
	Datos técnicos de los módulos de ampliación analógicos	423
	Datos técnicos de los módulos de ampliación Termopar y RTD	434
	Datos técnicos del módulo de ampliación EM 277 PROFIBUS-DP	446
	Datos técnicos del módulo Módem EM 241	458
	Datos técnicos del módulo de posicionamiento EM 253	460
	Datos técnicos del módulo Ethernet (CP 243-1)	466
	Datos técnicos del módulo Internet (CP 243-1 IT)	468
	Datos técnicos del módulo AS-Interface (CP 243-2)	471
	Cartuchos opcionales	473
	Cable de módulo de ampliación	474
	Cable multimaestro RS-232/PPI y cable multimaestro USB/PPI	475
	Simuladores de entradas	479
В	Calcular la corriente necesaria	481
С	Códigos de error	485
	Códigos y mensajes de los errores fatales	486
	Errores de programación en el tiempo de ejecución	487
	Violación de reglas de compilación	488

D	Marcas especiales (SM)	489 490
	SMB1: Bits de estado	490
	SMB2: Recepción de caracteres en modo Freeport	491
	SMB3: Error de paridad en modo Freeport	491
	SMB4: Desbordamiento de la cola de espera	491
	SMB5: Estado de las entradas y salidas	492
	SMB6: Identificador de la CPU	492
	SMB7: Reservado	492
	SMB8 a SMB21: Identificadores y registros de errores de los módulos de ampliación	493
	SMW22 a SMW26: Tiempos de ciclo	494
	SMB28 y SMB29: Potenciómetros analógicos	494
	SMB30 y SMB130: Registros de control del modo Freeport	494
	SMB31 y SMW32: Control de escritura en la memoria no volátil (EEPROM)	495
	SMB34 y SMB35: Duración de las interrupciones temporizadas	495
	SMB36 a SMB65: Registros HSC0, HSC1 y HSC2	495
	SMB66 a SMB85: Registros PTO/PWM	497
	SMB86 a SMB94 y SMB186 a SMB194: Control de recepción de mensajes	499
	SMW98: Errores en el bus de ampliación	500
	SMB130: Registro de control del modo Freeport (véase SMB30)	500
	SMB130 a SMB165: Registros HSC3, HSC4 y HSC5	500
	SMB166 a SMB185: Tabla de definición de perfiles PTO0 y PTO1	501
	SMB186 a SMB194: Control de recepción de mensajes (véase SMB86 a SMB94)	501
	SMB200 a SMB549: Estado de los módulos inteligentes	502
Е	Números de referencia	503
F	Tiempos de ejecución de las operaciones AWL	507
G	Breviario del S7-200	513
Indic	e alfabético	519

Gama de productos S7-200

La gama S7-200 comprende diversos sistemas de automatización pequeños (Micro-PLCs) que se pueden utilizar para numerosas tareas.

El S7-200 vigila las entradas y cambia el estado de las salidas conforme al programa de usuario que puede incluir operaciones de lógica booleana, operaciones con contadores y temporizadores, operaciones aritméticas complejas, así como comunicación con otros aparatos inteligentes. Gracias a su diseño compacto, su configuración flexible y su amplio juego de operaciones, el S7-200 es especialmente apropiado para solucionar numerosas tareas de automatización.

Índice del capítulo

Novedades	2
CPU S7-200	2
Módulos de ampliación S7-200	4
Paquete de programación STEP 7-Micro/WIN	4
Opciones de comunicación	5
Paneles de operador	6

Novedades

A continuación se indican las nuevas funciones de los sistemas de automatización SIMATIC S7-200. Ver la table 1-1.

Las CPUs S7-200 221, 222, 224, 224XP y 226 incluyen:

Nuevo soporte de hardware de las CPUs: opción para desactivar la edición en modo RUN con objeto de incrementar la memoria del programa. La CPU 224XP soporta entradas y salidas analógicas integradas y dos puertos de comunicación. La CPU 226 incorpora filtros de entradas y captura de impulsos.

- Nuevo soporte del cartucho de memoria: Explorador S7-200, transferencias al cartucho de memoria, comparaciones y selecciones de programación.
- STEP 7-Micro/WIN (versión 4.0) es un paquete de software de programación de 32 bits para el S7-200 que incluye:

Nuevas herramientas que soportan las últimas mejoras de las CPUs: Panel de autosintonización PID, asistente de control de posición integrado en los PLCs, asistente de registros de datos y asistente de recetas.

Nueva herramienta de diagnóstico: configuración del LED de diagnóstico

Nuevas operaciones: Horario de verano (READ_RTCX y SET_RTCX), Temporizadores de intervalos (BITIM, CITIM), Borrar evento de interrupción (CLR_EVNT) y LED de diagnóstico (DIAG_LED).

Unidades de organización del programa y librerías mejoradas: nuevas constantes de cadena, direccionamiento indirecto soportado en más tipos de memoria, soporte mejorado de la parametrización de lectura y escritura de la librería USS para los accionamientos maestros de Siemens.

Bloque de datos mejorado: páginas del bloque de datos, incremento automático del bloque de datos.

Mejoras de uso de STEP 7-Micro/WIN

Tabla 1-1 S7-200 CPU

S7-200 CPU	Order Number
CPU 221 DC/DC/DC 6 entradas/4 salidas	6ES7 211-0AA23-0XB0
CPU 221 AC/DC/relé 6 entradas/4 salidas de relé	6ES7 211-0BA23-0XB0
CPU 222 DC/DC/DC 8 entradas/6 salidas	6ES7 212-1AB23-0XB0
CPU 222 AC/DC/relé 8 entradas/6 salidas de relé	6ES7 212-1BB23-0XB0
CPU 224 DC/DC/DC 14 entradas/10 salidas	6ES7 214-1AD23-0XB0
CPU 224 AC/DC/relé 14 entradas/10 salidas de relé	6ES7 214-1BD23-0XB0
CPU 224XP DC/DC/DC 14 entradas/10 salidas	6ES7 214-2AD23-0XB0
CPU 224XP AC/DC/relé 14 entradas/10 salidas de relé	6ES7 214-2BD23-0XB0

CPU S7-200

La CPU S7-200 incorpora en una carcasa compacta un microprocesador, una fuente de alimentación integrada, así como circuitos de entrada y de salida que conforman un potente Micro-PLC (v. fig. 1-1). Tras haber cargado el programa en el S7-200, éste contendrá la lógica necesaria para observar y controlar los aparatos de entrada y salida de la aplicación.

Figura 1-1 Micro-PLC S7-200

Siemens ofrece diferentes modelos de CPUs S7-200 que incorporan una gran variedad de funciones y prestaciones para crear soluciones efectivas de automatización destinadas a numerosas aplicaciones. En la tabla 1-2 se comparan de forma resumida algunas de las funciones de la CPU. Para más información sobre una CPU en particular, consulte el anexo A.

Función	CPU 221	CPU 222	CPU 224	CPU 224XP	CPU 226
Dimensiones físicas (mm)	90 x 80 x 62	90 x 80 x 62	120,5 x 80 x 62	140 x 80 x 62	190 x 80 x 62
Memoria del programa con edición en runtime sin edición en runtime	4096 bytes 4096 bytes	4096 bytes 4096 bytes	8192 bytes 12288 bytes	12288 bytes 16384 bytes	16384 bytes 24576 bytes
Memoria de datos	2048 bytes	2048 bytes	8192 bytes	10240 bytes	10240 bytes
Memoria de backup	50 horas (típ.)	50 horas (típ.)	100 horas (típ.)	100 horas (típ.)	100 horas (típ.)
E/S integradas Digitales Analógicas	6 E/4 S -	8 E/6 S -	14 E/10 S -	14 E/10 S 2 E/1 S	24 E/16 S -
Módulos de ampliación	0 módulos	2 módulos ¹	7 módulos ¹	7 módulos ¹	7 módulos ¹
Contadores rápidos Fase simple Dos fases	4 a 30 kHz 2 a 20 kHz	4 a 30 kHz 2 a 20 kHz	6 a 30 kHz 4 a 20 kHz	4 a 30 kHz 2 a 200 kHz 3 a 20 kHz 1 a 100 kHz	6 a 30 kHz 4 a 20 kHz
Salidas de impulsos (c.c.)	2 a 20 kHz	2 a 20 kHz	2 a 20 kHz	2 a 100 kHz	2 a 20 kHz
Potenciómetros analógicos	1	1	2	2	2
Reloj de tiempo real	Cartucho	Cartucho	Incorporado	Incorporado	Incorporado
Puertos de comunicación	1 RS-485	1 RS-485	1 RS-485	2 RS-485	2 RS-485
Aritmética en coma flotante	Sí				
Tamaño de la imagen de E/S digitales	256 (128 E / 12	8 S)			
Velocidad de ejecución booleana	0,22 microsegu	ndos/operación			

Tabla 1-2 Comparación de las CPUs S7-200

1 Es preciso calcular la corriente necesaria para determinar cuánta energía puede suministrar la CPU S7-200 a la configuración deseada. Si se excede la corriente necesaria para la CPU, es posible que no se pueda conectar el número máximo de módulos. Consulte el anexo A para obtener información acerca de los requisitos de alimentación de la CPU y de los módulos de ampliación, así como el anexo B para calcular la corriente necesaria.

Módulos de ampliación S7-200

La gama S7-200 incluye una gran variedad de módulos de ampliación para poder satisfacer aún mejor los requisitos de la aplicación. Estos módulos se pueden utilizar para agregar funciones a la CPU S7-200. En la tabla 1-3 figura una lista de los módulos de ampliación disponibles en la actualidad. Para más información sobre un módulo en particular, consulte el anexo A.

Tabla 1-3 Módulos de ampliación S7-200

Módulos de ampliación	Tipos		
Módulos digitales			
Entradas	8 entradas c.c	8 entradas a.c.	16 entradas c.c.
Salidas	4 entradas c.c. 8 salidas c.c.	4 salidas de relé 8 salidas a.c.	8 salidas de relé
Combinación	4 entradas c.c. / 4 salidas c.c.	8 entradas c.c. / 8 salidas c.c.	16 entradas c.c. / 16 salidas c.c.
	4 entradas c.c. / 4 salidas de relé	8 entradas c.c. / 8 salidas de relé	16 entradas c.c. / 16 salidas de relé
Módulos analógicos			
Entradas	4 entradas	4 entradas termopar	2 entradas RTD
Salidas	2 salidas		
Combinación	4 entradas / 1 salida		
Módulos inteligentes	Posicionamiento Ethernet	Módem Internet	PROFIBUS-DP
Otros módulos	AS-Interface		

Paquete de programación STEP 7-Micro/WIN

El paquete de programación STEP 7-Micro/WIN constituye un entorno de fácil manejo para desarrollar, editar y observar el programa necesario con objeto de controlar la aplicación. STEP 7-Micro/WIN comprende tres editores que permiten desarrollar de forma cómoda y eficiente el programa de control. Para encontrar fácilmente las informaciones necesarias, STEP 7-Micro/WIN incorpora una completa Ayuda en pantalla y un CD de documentación que incluye una versión electrónica del presente manual, ejemplos de aplicación y otras informaciones de gran utilidad.

Requisitos del sistema

STEP 7-Micro/WIN se puede ejecutar en un ordenador (PC), o bien en una unidad de programación de Siemens (por ejemplo, en una PG 760). El PC o la PG deberá cumplir los siguientes requisitos mínimos:

- Sistema operativo: Windows 2000, Windows XP (Professional o Home)
- 100 MB libres en el disco duro (como mínimo)
- Ratón (recomendado)

STEP 7-Micro/	WIN 32 - Proyecto1			
Archivo Edición V	fer CPU Test Herramientas Ventana	а Ар	da	
0008	B & ≥ € ∞ B S	* 2	🛯 💷 🚺 🕨 🛤 🕅 🖾 🖓 🕅	5 6 6 6 6 8
во во 🖂 🛱	₩ /4 % % % 閉空	ч.	± ← → ∃E-O 1	
Ver	Op Projecto1	E,	KOP (SIMATIC)	
	(2) Novedades	2 .	- 3 - 1 - 4 - 1 - 5 - 1 - 6 - 1 - 7 - 1 - 8 - 1 - 9 - 1 - 10 - 1	-11 - + -12 - + -13 - + -14 - + -15 - + -16 - + -17 - + -18 - + -
L C	E SB Blogue de mograma		Símbolo Tipo var. Tipo de datos	Comentario
Bloque de	E @ Tabla de simbolos		TEMP	
programa	Tabla de estado		TEMP	
	B Bloque de detos		TEMP	
4.2	E Bloque de sistema		1EMP	
Tabla de simbolos	E Convoicación		CONENTIANIOS DEC PROGRAMM	
	E S Asistentes		Network 1 Thus de segments	
	🕑 🎯 Hestamientas		Lomenfano de segmento	
Table de estado	Operaciones			
	 Pavoinos Concursiones Mais as are bits 			
	E GB Beloi			
1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	E g Comunicación			
Biodos de datos	🗉 💽 Comparación		Network 2	
	E 🖼 Conversión			
10-00	GR Admitian on come Estante			
Bloque de sistema	 E GB Attréfica en cona lia 		N	
	E ill Interrupción			
**	🛞 📺 Operaciones lógicas			
Referencias	E A Transferencia			
cruzadas	Gal Developmineto (otación		Network 3	
	E Will Cadena			
聖思	E m Tabla			
Comunicación	Temporizadores			
1.111	- 📶 Librerias			
	H-IEH Subtumes			
Henamientas		×	PRINCIPAL (SBR_0 (INT_0 /	×
		_		
010				Network 1 File 1. Col 1 INS

Figura 1-2 STEP 7-Micro/WIN

Instalar STEP 7-Micro/WIN

Inserte el CD de STEP 7-Micro/WIN en la unidad de CD-ROM. El asistente de instalación arrancará automáticamente y le conducirá por el proceso de instalación. Para más información sobre cómo instalar STEP 7-Micro/WIN, consulte el archivo LÉAME.

\bigcirc	
틨	

Consejo

Para instalar STEP 7-Micro/WIN en el sistema operativo Windows NT, Windows 2000 o Windows XP (Professional o Home), deberá iniciar la sesión con derechos de administrador.

Opciones de comunicación

Siemens ofrece dos opciones de programación para conectar el PC al S7-200, a saber: una conexión directa vía un cable PPI multimaestro, o bien un procesador de comunicaciones (CP) con un cable MPI.

El cable de programación PPI multimaestro es el método más usual y más económico de conectar el PC al S7-200. Este cable une el puerto de comunicación del S7-200 con el puerto serie del PC. El cable de programación PPI multimaestro también se puede utilizar para conectar otros dispositivos de comunicación al S7-200.

Paneles de operador

Visualizadores de textos (TD 200 y TD 200C)

El TD 200 y el TD 200C son visualizadores de textos de 2 líneas de 20 caracteres cada una que se pueden conectar al S7-200. El asistente del TD 200 sirve para programar el S7-200 de manera que se visualicen mensajes de texto y otros datos pertinentes a la aplicación.

El TD 200 y el TD 200C son aparatos de bajo coste que permiten visualizar, observar y cambiar las variables del proceso de la aplicación.

Para más información sobre los visualizadores de textos, consulte el Manual del visualizador de textos (TD) SIMATIC en el CD de documentación de STEP 7-Micro/WIN.

Figura 1-3 Visualizadores de textos (TD 200 y TD 200C)

El asistente de configuración del TD 200 incorporado en STEP 7-Micro/WIN le ayuda a configurar los mensajes del TD 200 de forma rápida y sencilla. Para iniciar el asistente, elija el comando de menú **Herramientas > Asistente del TD 200**.

Paneles táctiles TP070 y TP170 micro

El TP070 y el TP170 micro son panel táctiles que se pueden conectar al S7-200 y que permite personalizar la interfaz de usuario.

En estos equipos, de fácil manejo, se pueden visualizar gráficas personalizadas, barras deslizantes, variables de aplicación, botones personalizados, etc.

Consulte el anexo E para obtener más información acerca del software opcional disponible para programar los paneles táctiles TP070 y TP170 micro.

Figura 1-4 Panel táctil

Guía de iniciación

STEP 7-Micro/WIN permite programar fácilmente el S7-200. Utilizando un ejemplo sencillo, aprenderá rápidamente cómo conectar, programar y ejecutar el programa en el S7-200.

Lo único que necesita para este ejemplo es un cable PPI multimaestro, una CPU S7-200 y una unidad de programación con el software de programación STEP 7-Micro/WIN.

Índice del capítulo

Conectar el S7-200	8
Crear un programa de ejemplo	10
Cargar el programa de ejemplo	15
Poner el S7-200 en modo RUN	15
Poner el S7-200 en modo RUN	15

Conectar el S7-200

Es muy fácil conectar el S7-200. En el presente ejemplo, basta con conectar la alimentación del S7-200 y utilizar el cable de comunicación para unir la unidad de programación y el S7-200.

Conectar la alimentación del S7-200

Primero que todo es preciso conectar el S7-200 a una fuente de alimentación. La figura 2-1 muestra el cableado de una CPU S7-200 con alimentación c.c. (corriente continua) o c.a. (corriente alterna).

Antes de montar o desmontar cualquier aparato eléctrico, vigile que se haya desconectado la alimentación del mismo. Respete siempre las medidas de seguridad necesarias y verifique que la alimentación eléctrica del S7-200 se haya desconectado antes del montaje.

Precaución

Si intenta montar o cablear el S7-200 y/o los equipos conectados a los mismos estando conectada la alimentación, puede producirse un choque eléctrico o fallos en los equipos. Si antes del montaje o desmontaje no se ha desconectado por completo la alimentación eléctrica del S7-200 y de los equipos conectados a las mismas, ello podría causar la muerte o heridas graves al personal, y/o daños materiales.

Respete siempre las medidas de seguridad necesarias y vigile que la alimentación eléctrica del S7-200 y de los equipos conectados se haya desconectado antes del montaje o desmontaje.

Figura 2-1 Conectar la alimentación del S7-200

Conectar el cable multimaestro RS-232/PPI

La figura 2-2 muestra un cable multimaestro RS-232/PPI que conecta el S7-200 con la unidad de programación. Para conectar el cable:

- Una el conector RS-232 (identificado con "PC") del cable multimaestro RS-232/PPI al puerto de comunicación de la unidad de programación. (En el presente ejemplo, conectar a COM 1.)
- Una el conector RS-485 (identificado con "PPI") del cable multimaestro RS-232/PPI al puerto 0 ó 1 del S7-200.
- Vigile que los interruptores DIP del cable multimaestro RS-232/PPI estén configurados como muestra la figura 2-2.

Consejo

En los ejemplos del presente manual se utiliza el cable multimaestro RS-232/PPI. El cable multimaestro RS-232/PPI sustituye el cable PC/PPI que se empleaba anteriormente. El cable multimaestro USB/PPI también está disponible. Los números de referencia se indican en el anexo E.

Iniciar STEP 7-Micro/WIN

Haga clic en el icono de STEP 7-Micro/WIN para abrir un nuevo proyecto La figura 2-3 muestra un nuevo proyecto.

Aprecie la barra de navegación. Puede utilizar los iconos de la barra de navegación para abrir los elementos del proyecto de STEP 7-Micro/WIN.

En la barra de navegación, haga clic en el icono "Comunicación" para abrir el cuadro de diálogo correspondiente. Utilice este cuadro de diálogo para configurar la comunicación de STEP 7-Micro/WIN.

Figura 2-3 Nuevo proyecto de STEP 7-Micro/WIN

Verificar los parámetros de comunicación de STEP 7-Micro/WIN

En el proyecto de ejemplo se utilizan los ajustes estándar de STEP 7-Micro/WIN y del cable multimaestro RS-232/PPI. Para verificar los ajustes:

- Vigile que la dirección del cable PC/PPI esté ajustada a 0 en el cuadro de diálogo "Comunicación".
- Vigile que la interfaz del parámetro de red esté configurada para el cable PC/PPI (COM1).
- Vigile que la velocidad de transferencia esté ajustada a 9,6 kbit/s.

Consulte el capítulo 7 si necesita cambiar los parámetros de configuración.

Remota:		Dirección: 0
Tipo de CPU:		para actualizar.
🔽 Guardar ajustes	con el proyecto	
Parámetros de red		
Interfaz:	PC/PPI cable(COM 1)	
Protocolo:	PPI	
Modo:	11 bits	
Dirección más alta (I	HSA):	
🔽 Soporta varios r	naestros	
/elocidad de transfer	encia	
Velocidad de transfe	erencia: 9,6 kbit/s	
	las velocidades de transferencia	

Figura 2-4 Verificar los parámetros de comunicación

Establecer la comunicación con el S7-200

Utilice el cuadro de diálogo "Comunicación" para establecer la comunicación con el S7-200:

 En el cuadro de diálogo "Comunicación", haga doble clic en el icono "Actualizar". STEP 7-Micro/WIN buscará el

S7-200 y visualizará un icono "CPU" correspondiente a la CPU S7-200 conectada.

2. Seleccione el S7-200 y haga clic en "Aceptar".

Si STEP 7-Micro/WIN no encuentra el S7-200, verifique los parámetros de comunicación y repita los pasos descritos arriba.

Comunicación			×
Dirección Local: Remota: Tipo de CPU:	0	PC/PPI cable(PPI) Dirección: 0	clic rar.
🔽 Guardar ajustes con el p	royecto		
Parámetros de red			
Interfaz:	PC/PPI cable(COM 1)		
Protocolo:	PPI		
Modo:	11 bits		
Dirección más alta (HSA):			
😥 Soporta varios maestros			
Velocidad de transferencia Velocidad de transferencia: Euscar a todas las veloc	9,6 kbit/s idades de transferencia		
Ajustar interface PG/PC		Aceptar	Cancelar

Figura 2-5 Establecer la comunicación con el S7-200

Tras haber establecido la comunicación con el S7-200 podrá crear el programa de ejemplo y cargarlo.

Crear un programa de ejemplo

Al crear este programa de ejemplo podrá constatar lo fácil que es utilizar STEP 7-Micro/WIN. Este programa utiliza seis operaciones en tres segmentos para crear un temporizador muy sencillo que arranca y se inicializa a sí mismo.

En el presente ejemplo, utilice el editor KOP (Esquema de contactos) para introducir las operaciones del programa. La figura siguiente muestra el programa completo tanto en KOP como en AWL (Lista de instrucciones). Los comentarios de segmento en el programa AWL explican la lógica de cada segmento. El cronograma muestra el funcionamiento del programa.

Abrir el editor de programas

Haga clic en el icono "Bloque de programa" para abrir el editor de programas (v. fig. 2-6).

Aprecie el árbol de operaciones y el editor de programas. El árbol de operaciones se utiliza para insertar las operaciones KOP en los segmentos del editor de programas. Las operaciones se arrastran desde el árbol de operaciones y se colocan en los respectivos segmentos.

Los botones de la barra de herramientas crean un acceso directo a los comandos de menú correspondientes.

Tras haber introducido y guardado el programa podrá cargarlo en el S7-200.

Figura 2-6 Ventana de STEP 7-Micro/WIN

Introducir el primer segmento: arrancar el temporizador

Si el estado de señal de M0.0 es 0, este contacto se activará, haciendo que la corriente circule para arrancar el temporizador. Para introducir el contacto de M0.0:

- Haga doble clic en el icono "Operaciones lógicas con bits", o bien haga clic en el signo más (+) para visualizar estas operaciones.
- 2. Seleccione el contacto normalmente cerrado.
- Mantenga oprimido el botón izquierdo del ratón y arrastre el contacto hasta el primer segmento.
- Haga clic en los signos de interrogación "???" que aparecen encima del contacto e introduzca la dirección siguiente: M0.0
- 5. Pulse la tecla INTRO para confirmar la dirección del contacto.

Figura 2-7 Segmento 1

Para introducir la operación del temporizador T33:

- 1. Haga doble clic en el icono "Temporizadores" para visualizar las operaciones de temporización.
- 2. Seleccione el TON (temporizador como retardo a la conexión).
- 3. Mantenga oprimido el botón izquierdo del ratón y arrastre el temporizador hasta el primer segmento.
- 4. Haga clic en los signos de interrogación "???" que aparecen encima del cuadro del temporizador e introduzca el siguiente número de temporizador: T33
- 5. Pulse la tecla INTRO para confirmar el número de temporizador y para desplazar el cursor hasta el parámetro correspondiente al valor de preselección (PT).
- 6. Introduzca el siguiente valor de preselección: 100
- 7. Pulse la tecla INTRO para confirmar el valor.

Introducir el segundo segmento: activar la salida

Si el valor del temporizador T33 es mayor o igual a 40 (40 multiplicado por 10 milisegundos, es decir 0,4 segundos), el contacto permitirá que la corriente circule para activar la salida Q0.0 del S7-200. Para introducir la operación de comparación:

- 1. Haga doble clic en el icono "Comparación" para visualizar las operaciones de comparación. Seleccione la operación >=l (Mayor o igual a entero).
- Mantenga oprimido el botón izquierdo del ratón y arrastre la operación de comparación hasta el segundo segmento.
- Haga clic en los signos de interrogación "???" que aparecen encima del contacto e introduzca la dirección del bit del temporizador: T33
- Pulse la tecla INTRO para confirmar el número del temporizador y para desplazar el cursor hasta el valor que se debe comparar con el temporizador.
- Introduzca el siguiente valor para compararlo con el temporizador: 40
- 6. Pulse la tecla INTRO para confirmar el valor.

Para introducir la operación con objeto de activar la salida Q0.0:

- 1. Haga doble clic en el icono "Operaciones lógicas con bits" y seleccione la bobina de salida.
- 2. Mantenga oprimido el botón izquierdo del ratón y arrastre la bobina hasta el segundo segmento.
- 3. Haga clic en los signos de interrogación "???" que aparecen encima de la bobina e introduzca la dirección siguiente: Q0.0
- 4. Pulse la tecla INTRO para confirmar la dirección de la bobina.

# STEP 7-Micro/WIN 32 - Proyecto1	
Archivo Edición Ver CPU Test Herramientas Ventana Apuda	
● 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	á 6 á 55
100 100 三田 ▲ 34 34 34 第盟 マコモ → 41-01	
Ver 😥 🚱 Referencias cruzadas 🔺 📴 KOP (SIMATIC)	
8 2 Comunicación 2 3 3 3 4 4 5 5 5 5 6 5 1 7 7 5 8 8 5 9 5 1 7 10 1 7 11 5 1	2 13 14 15 16 17 18
e SI Assertes	Conertaio
TEMP	
programa TEMP	
- m) Operaciones lógicas con t	
1403 06 tilreoter	
Tabla de estado	
La	
Bioque de dytes	
-0 (SI) 122 000	
Diodae de corema	
TITLE INOP	
Henomientas + Natwork 3	
1	
Listo	Network 2 File 1, Col 2 INS

Figura 2-8 Segmento 2

Introducir el tercer segmento: inicializar el temporizador

Cuando el temporizador alcanza el valor de preselección (100) y habilita el bit del temporizador, se activa el contacto del T33. La corriente que circula desde este contacto activa la marca M0.0. Puesto que el temporizador ha sido activado mediante un contacto normalmente cerrado (correspondiente a M0.0), si el estado de señal de M0.0 cambia de 0 (OFF) a 1 (ON), se inicializará el temporizador.

Para introducir el contacto del bit del temporizador de T33:

- Haga doble clic en el icono "Operaciones lógicas con bits" y seleccione el contacto normalmente abierto.
- Mantenga oprimido el botón izquierdo del ratón y arrastre el contacto hasta el tercer segmento.
- Haga clic en los signos de interrogación "???" que aparecen encima del contacto e introduzca la dirección del bit del temporizador: T33

Figura 2-9 Segmento 3

4. Pulse la tecla INTRO para confirmar la dirección del contacto.

Para introducir la bobina con objeto de activar M0.0:

- 1. Haga doble clic en el icono "Operaciones lógicas con bits" y seleccione la bobina de salida.
- 2. Mantenga oprimido el botón izquierdo del ratón y arrastre la bobina hasta el tercer segmento.
- 3. Haga clic en los signos de interrogación "???" que aparecen encima de la bobina e introduzca la dirección siguiente: M0.0
- 4. Pulse la tecla INTRO para confirmar la dirección de la bobina.

Guardar el proyecto de ejemplo

El programa queda listo tras haber introducido las operaciones en los tres segmentos. Al guardar el programa se crea un proyecto que incluye el tipo de CPU S7-200 y otros parámetros. Para guardar el proyecto:

- En la barra de menús, elija el comando de menú
 Archivo > Guardar como.
- En el cuadro de diálogo "Guardar como", introduzca el nombre del proyecto.
- 3. Haga clic en "Aceptar" para guardar el proyecto

Tras haber guardado el proyecto podrá cargarlo en el S7-200.

Save As			1	? ×
Save in: 🔂	Projects	• + E	- 🖽 🍋	
File name:	Proyecto1		Save	
Save as type:	Archivos de proyecto (*.mwp)	•	Cancel	

Figura 2-10 Guardar el programa de ejemplo

Cargar el programa de ejemplo

Consejo

Todos los proyectos de STEP 7-Micro/WIN están asociados a un determinado tipo de CPU (CPU 221, CPU 222, CPU 224, CPU 224XP ó CPU 226XM). Si el tipo de proyecto no concuerda con la CPU conectada, STEP 7-Micro/WIN visualizará un mensaje de error, indicándole que debe tomar una determinada medida. Si ello ocurre en el presente ejemplo, elija la opción "Seguir cargando".

- En la barra de herramientas, haga clic en el botón "Cargar" o elija el comando Archivo > Cargar para cargar el programa en la CPU (v. fig. 2-11).
- Haga clic en "Aceptar" para cargar los elementos de programa en el S7-200.

Si el S7-200 está en modo RUN, aparecerá un mensaje indicando que debe cambiar el S7-200 a modo STOP. Haga clic en "Sí" para poner el S7-200 en modo STOP.

Dirección remota: 2	CPU 224 R
Haga clic en 'Cargar en CPU' para comenzar.	.
	-1
Opciones	Cargar en CPU Cancel
Opciones \$ Opciones 7º Bloque de programa	Cargar en CPU Carcel
Opciones 2 Opciones TP Bloque de programa TP Bloque de datos	Carpar en CPU Cancel
Opciones 2 Opciones IF Bloque de programa IF Bloque de datos IF Bloque de sitema	Cargar en CPU Cancel A : CPU A : CPU A : CPU A : CPU
Opciones 🔹 Opciones T ²⁷ Bloque de datos T ²⁷ Bloque de sistema T ²⁷ Bloque de sistema T ²⁷ Bloque de sistema	Cargar en CPU Carcel A : CPU A : CPU A : CPU A : CPU

Figura 2-11 Cargar el programa de ejemplo

Poner el S7-200 en modo RUN

Para que STEP 7-Micro/WIN pueda poner el S7-200 en modo RUN, el selector de modo de la CPU deberá estar en posición TERM o RUN. El programa se ejecuta cuando el S7-200 cambia a modo RUN:

- En la barra de herramientas, haga clic en el botón "RUN" o elija el comando de menú CPU > RUN.
- Haga clic en "Aceptar" para cambiar el modo de operación del S7-200.

Cuando el S7-200 cambia a modo RUN,

el LED correspondiente a la salida Q0.0 se enciende y se apaga a medida que el

S7-200 ejecuta el programa.

 RUN
 X

 Image: Signal Control
 Image: Signal Control

Figura 2-12 Poner el S7-200 en modo RUN

¡Felicidades! Acaba de terminar su primer programa S7-200.

Para observar el programa puede seleccionar el comando de menú **Test > Estado del programa**. STEP 7-Micro/WIN visualizará los valores de las operaciones. Para detener la ejecución del programa, cambie el S7-200 a modo STOP haciendo clic en el botón "STOP" de la barra de herramientas, o bien eligiendo el comando de menú **CPU > STOP**.

Montar el S7-200

Los equipos S7-200 son fáciles de montar. Se pueden instalar bien sea en un armario eléctrico, utilizando los orificios de sujeción previstos, o bien en un raíl normalizado (DIN), usando ganchos de retención. Sus pequeñas dimensiones permiten ahorrar espacio.

Este capítulo explica cómo montar y cablear un sistema de automatización S7-200.

Índice del capítulo

Reglas para montar el S7-200	18
Montar y desmontar el S7-200	20
Reglas de puesta a tierra y cableado	24

Reglas para montar el S7-200

El S7-200 se puede montar en un armario eléctrico o en un raíl normalizado (DIN), bien sea horizontal o verticalmente.

Alejar los equipos S7-200 de fuentes de calor, alta tensión e interferencias

Como regla general para la disposición de los equipos que conforman el sistema, aleje siempre los aparatos de alta tensión que generan interferencias de los equipos de baja tensión y de tipo lógico, tales como el S7-200.

Al configurar la disposición del S7-200 en el armario eléctrico, tenga en cuenta los aparatos que generan calor y disponga los equipos electrónicos en las zonas más frías del armario eléctrico. El funcionamiento de equipos electrónicos en entornos de alta temperatura acorta su vida útil.

Considere también la ruta del cableado de los equipos montados en el armario eléctrico. Evite colocar los conductores de señalización y los cables de comunicación en una misma canalización junto con los cables c.a. y los cables c.c. de alta tensión y de conmutación rápida.

Prever espacio suficiente para la ventilación y el cableado

Para los equipos S7-200 se ha previsto la ventilación por convección natural. Por tanto, se deberá dejar un margen mínimo de 25 mm por encima y por debajo de los equipos. Asimismo, prevea 75 mm para la profundidad de montaje.

Consejo

En el montaje vertical, la temperatura ambiente máxima admisible se reduce en 10° C. Monte la CPU S7-200 debajo de los módulos de ampliación.

Al planificar la disposición del sistema S7-200, prevea espacio suficiente para el cableado y la conexión de los cables de comunicación. Para mayor flexibilidad al configurar la disposición del sistema S7-200, utilice un cable de conexión para los módulos de ampliación.

Figura 3-1 Métodos de montaje, orientación y espacio necesario

Alimentación

Las CPUs S7-200 tienen integrada una fuente de alimentación capaz de abastecer la CPU, los módulos de ampliación y otras cargas que precisen 24 V c.c.

La CPU S7-200 suministra la corriente continua de 5 V necesaria para los módulos de ampliación del sistema. Preste especial atención a la configuración del sistema para garantizar que la CPU pueda suministrar la corriente de 5V necesaria para los módulos de ampliación seleccionados. Si la configuración requiere más corriente de la que puede suministrar la CPU, deberá retirar un módulo o seleccionar una CPU de mayor capacidad. Para más información acerca de la corriente continua de 5 V c.c. que pueden aportar las diferentes CPUs S7-200 y la alimentación de 5 V c.c. que requieren los módulos de ampliación, consulte el anexo A. Consulte el anexo B para determinar cuánta energía (o corriente) puede suministrar la CPU a la configuración deseada.

Todas las CPUs S7-200 aportan también una alimentación para sensores de 24 V c.c. que puede suministrar corriente de 24 V c.c. a las entradas y a las bobinas de relés de los módulos de ampliación, así como a otros equipos. Si los requisitos de corriente exceden la capacidad de la alimentación para sensores, será preciso agregar una fuente de alimentación externa de 24 V c.c. al sistema. Para más información acerca de la capacidad de alimentación para sensores de 24 V c.c. que pueden aportar las diferentes CPUs S7-200, consulte el anexo A.

Si se precisa una fuente de alimentación externa de 24 V c.c., vigile que ésta no se conecte en paralelo con la alimentación para sensores de la CPU S7-200. Para aumentar la protección contra interferencias, se recomienda conectar los cables neutros (M) de las distintas fuentes de alimentación.

Precaución

Si se conecta una fuente de alimentación externa de 24 V c.c. en paralelo con la fuente de alimentación para sensores de 24 V c.c. del S7-200, podría surgir un conflicto entre ambas fuentes, ya que cada una intenta establecer su propio nivel de tensión de salida.

Este conflicto puede tener como consecuencia una reducción de la vida útil o la avería inmediata de una o ambas fuentes de alimentación y, en consecuencia, el funcionamiento imprevisible del sistema de automatización, lo que podría ocasionar la muerte o lesiones graves al personal, y/o daños al equipo.

La fuente de alimentación c.c. para sensores del S7-200 y la fuente de alimentación externa deben alimentar diferentes puntos.

Montar y desmontar el S7-200

El S7-200 se puede montar fácilmente en un raíl DIN o en un armario eléctrico.

Requisitos previos

Antes de montar o desmontar cualquier aparato eléctrico, vigile que se haya desconectado la alimentación del mismo. Verifique también que se haya desconectado la alimentación de todos los equipos conectados.

Precaución

Si intenta montar o desmontar los módulos S7-200 y/o los equipos conectados a los mismos estando conectada la alimentación, puede producirse un choque eléctrico o fallos en los equipos.

Si antes del montaje o desmontaje no se ha desconectado por completo la alimentación eléctrica del S7-200 y de los equipos conectados a las mismas, ello podría causar la muerte o heridas graves al personal, y/o daños materiales.

Respete siempre las medidas de seguridad necesarias y verifique que la alimentación eléctrica del S7-200 y de los equipos conectados se haya desconectado antes del montaje o desmontaje.

Al sustituir o montar un sistema de automatización S7-200, vigile que se utilice siempre el módulo correcto o un equipo equivalente.

Precaución

Si monta un módulo incorrecto, es posible que el programa contenido en el S7-200 funcione de forma impredecible.

Si un equipo S7-200 se sustituye con otro modelo o si no se monta con la orientación correcta y en el orden previsto, ello podría causar la muerte o lesiones graves al personal, y/o daños materiales.

Sustituya un equipo S7-200 con el mismo modelo y móntelo con la orientación correcta y en el orden previsto.

137,3 mm

129,3 mm

Dimensiones de montaje

Las CPUs S7-200 y los módulos de ampliación disponen de orificios para facilitar el montaje en armarios eléctricos. En la tabla 3-1 figuran las dimensiones de montaje.

Tabla 3-1 Dimensiones de montaje

Módulos de ampliación: 32 E/S digitales (16l/16Q)

Montar una CPU o un módulo de ampliación

El montaje del S7-200 es muy sencillo. Proceda de la manera siguiente:

Montaje en un armario eléctrico

- 1. Posicione y taladre los orificios de montaje (M4 o estándar americano nº 8) conforme a las dimensiones indicadas en la tabla 3-1.
- 2. Atornille la CPU o el módulo de ampliación al armario eléctrico utilizando los tornillos apropiados.
- 3. Si desea montar un módulo de ampliación, enchufe el cable plano en el conector del módulo (ubicado debajo de la tapa frontal).

Montaje en un raíl DIN

- 1. Atornille el raíl DIN al armario eléctrico dejando un espacio de 75 mm entre tornillo y tornillo.
- 2. Abra el gancho de retención (ubicado en el lado inferior de la CPU o del módulo) y enganche la parte posterior de la CPU o del módulo al raíl DIN.
- 3. Si desea montar un módulo de ampliación, enchufe el cable plano en el conector del módulo (ubicado debajo de la tapa frontal).
- 4. Gire la CPU o el módulo hacia el raíl DIN y cierre el gancho de retención. Vigile que la CPU o el módulo se hayan enganchado correctamente en el raíl. Para evitar deterioros en la CPU o en el módulo, oprima la orejeta del orificio de montaje en vez presionar directamente sobre el lado frontal de la CPU o del módulo.

Consejo

Si el S7-200 se monta en un raíl DIN en entornos donde se presenten vibraciones fuertes, o bien con orientación vertical, puede resultar necesario asegurarlo con topes.

Si el S7-200 se encuentra en un entorno donde se presenten vibraciones fuertes, es recomendable montarlo en un armario eléctrico, puesto que éste ofrece una mejor protección contra vibraciones.

Desmontar una CPU o un módulo de ampliación

Para desmontar una CPU o un módulo de ampliación S7-200, proceda de la manera siguiente:

- 1. Desconecte la alimentación del S7-200.
- Desconecte todos los cables enchufados a la CPU o al módulo. La mayoría de las CPUs S7-200 y de los módulos de ampliación tienen conectores extraíbles que facilitan esta tarea.
- 3. Si hay módulos de ampliación conectados al equipo que desea desmontar, abra la tapa de acceso frontal y desconecte el cable plano de los módulos adyacentes.
- 4. Desatornille los tornillos de montaje o abra el gancho de retención.
- 5. Desmonte el módulo.
Extraer y reinsertar el bloque de terminales

La mayoría de las CPUs S7-200 y de los módulos de ampliación tienen bloques de terminales extraíbles incorporados que permiten montar y sustituir fácilmente el módulo. Consulte el anexo A para determinar si su módulo S7-200 incorpora un bloque de terminales extraíble. Para los módulos que no dispongan de un bloque de terminales extraíble se puede pedir un bloque de bornes opcional. Los números de referencia se indican en el anexo E.

Para extraer el bloque de terminales:

- 1. Abra la tapa del bloque de terminales para acceder al mismo.
- 2. Inserte un destornillador pequeño en la ranura central del bloque de terminales.
- 3. Extraiga el bloque de terminales haciendo palanca con el destornillador, alejándolo de la carcasa del S7-200 (v. fig. 3-2).

Figura 3-2 Extraer el bloque de terminales

Para reinsertar el bloque de terminales:

- 1. Abra la tapa del bloque de terminales.
- 2. Alinee el bloque de terminales con los pines de la CPU o del módulo de ampliación y alinee el borde del cableado con la base del bloque de terminales.
- Empuje firmemente el bloque de terminales hacia abajo hasta que quede insertado correctamente. Compruebe si el bloque de terminales está bien alineado y acoplado por completo.

Reglas de puesta a tierra y cableado

La puesta a tierra y el cableado de todos los equipos eléctricos es importante para garantizar el funcionamiento óptimo del sistema y para aumentar la protección contra interferencias en la aplicación y en el S7-200.

Requisitos previos

Antes de poner a tierra o cablear cualquier aparato eléctrico, vigile que se haya desconectado la alimentación del mismo. Verifique también que se haya desconectado la alimentación de todos los equipos conectados.

Al cablear un PLC S7-200 y los equipos conectados es necesario respetar todos los reglamentos, códigos y normas eléctricas vinculantes. Monte y utilice el equipo conforme a todas las normas nacionales y locales vigentes. Diríjase a las autoridades locales para informarse acerca de qué reglamentos, códigos o normas rigen en el lugar de montaje.

Precaución

Si intenta montar o cablear el S7-200 y/o los equipos conectados a los mismos estando conectada la alimentación, puede producirse un choque eléctrico o fallos en los equipos. Si antes del montaje o desmontaje no se ha desconectado por completo la alimentación eléctrica del S7-200 y de los equipos conectados a las mismas, ello podría causar la muerte o heridas graves al personal, y/o daños materiales.

Respete siempre las medidas de seguridad necesarias y vigile que la alimentación eléctrica del S7-200 y de los equipos conectados se haya desconectado antes del montaje o desmontaje.

Considere siempre los aspectos de seguridad al configurar la puesta a tierra y el cableado del sistema de automatización S7-200. Los aparatos electrónicos, tales como el S7-200, pueden fallar y causar un funcionamiento inesperado de los equipos conectados que se están controlando o vigilando. Por este motivo, es recomendable que prevea medidas de seguridad independientes del S7-200 para evitar lesiones personales y/o daños al equipo.

Precaución

Un funcionamiento anormal de los equipos de control puede causar un funcionamiento inesperado del equipo controlado, lo que podría ocasionar la muerte o lesiones graves al personal, y/o daños al equipo.

Prevea dispositivos de parada de emergencia, dispositivos electromecánicos de mayor jerarquía y otras medidas redundantes de seguridad que sean independientes del S7-200.

Reglas de aislamiento

El aislamiento de la alimentación c.a. del S7-200 y de las E/S a los circuitos c.a. es de 1500 V c.a. Estos aislamientos han sido comprobados y aprobados, ofreciendo una separación segura entre el conductor c.a. y los circuitos de baja tensión.

Todos los circuitos de baja tensión conectados a un S7-200 (por ejemplo, la corriente de 24 V) deben ser alimentados por una fuente aprobada que proporcione un aislamiento seguro del conductor c.a. y de otros circuitos de alta tensión. Estas fuentes incorporan un aislamiento doble conforme a lo definido en las normas internacionales de seguridad eléctrica, teniendo salidas clasificadas como SELV, PELV, clase 2 o intensidad limitada (según la norma en cuestión).

Precaución

La utilización de fuentes de alimentación no aisladas o con aislamiento simple para abastecer los circuitos de baja tensión de un conductor c.a. pueden causar tensiones peligrosas en circuitos considerados no peligrosos (seguros al tacto), tales como los circuitos de comunicación y el cableado de sensores de baja tensión.

Las altas tensiones inesperadas podrían ocasionar la muerte o lesiones graves al personal, y/o daños al equipo.

Utilice sólo convertidores de alta a baja tensión aprobados como fuentes de circuitos de tensión limitada seguros al tacto.

Reglas de puesta a tierra del S7-200

La mejor forma de poner a tierra la aplicación es garantizar que todos los conductores neutros y de masa del S7-200 y de los equipos conectados se pongan a tierra en un mismo punto. Este punto se debería conectar directamente a la toma de tierra del sistema.

Para incrementar la protección contra interferencias es recomendable que todos los conductores de retorno c.c. neutros se conecten a un mismo punto de puesta a tierra. Conecte a tierra el conductor neutro (M) de la alimentación para sensores de 24 V c.c.

Todos los cables de puesta a tierra deberían tener la menor longitud posible y una sección grande, p. ej. 2 mm² (14 AWG).

Al definir físicamente las tierras es necesario considerar los requisitos de puesta a tierra de protección y el funcionamiento correcto de los aparatos protectores.

Reglas de cableado del S7-200

Al diseñar el cableado del sistema de automatización S7-200, incorpore un interruptor unipolar para cortar simultáneamente la alimentación de la CPU S7-200, de todos los circuitos de entrada y de todos los circuitos de salida. Prevea dispositivos de protección contra sobreintensidad (por ejemplo, fusibles o cortacircuitos) para limitar las corrientes excesivas en el cableado de alimentación. Para mayor protección es posible instalar un fusible u otro limitador de sobreintensidad en todos los circuitos de salida.

Instale dispositivos de supresión de sobretensiones apropiados en el cableado susceptible de recibir sobretensiones causadas por rayos.

Evite colocar los conductores de señalización y los cables de comunicación en una misma canalización junto con los cables de corriente c.a. y los cables c.c. de alta tensión y de conmutación rápida. El cableado deberá efectuarse por pares; con el cable de neutro o común combinado con el cable de fase o de señal.

Utilice el cable más corto posible y vigile que tenga una sección suficiente para conducir la corriente necesaria. El conector acepta cables con sección de 2 mm² a 0,30 mm² (14 AWG a 22 AWG). Utilice cables apantallados para obtener el mayor nivel de inmunidad a interferencias. Por lo general, se obtienen los mejores resultados si la pantalla se pone a tierra en el S7-200.

Al cablear circuitos de entrada alimentados por una fuente externa, prevea dispositivos de protección contra sobreintensidad en esos circuitos. La protección externa no se requiere en los circuitos alimentados por la alimentación para sensores de 24 V c.c. del S7-200, puesto que la alimentación para sensores ya está protegida contra sobreintensidad.

La mayoría de los módulos S7-200 disponen de bloques de terminales extraíbles para el cableado de usuario. (Consulte el anexo A para determinar si su módulo S7-200 incorpora un bloque de terminales extraíble.) Para evitar conexiones flojas, vigile que el bloque de terminales esté encajado correctamente y que el cable esté instalado de forma segura. No apriete excesivamente los tornillos para evitar que se deteriore el bloque de terminales. El par máximo de apriete de los tornillos del bloque de terminales es de 0,56 N-m.

El S7-200 incluye aislamientos en ciertos puntos para prevenir la circulación de corrientes indeseadas en la instalación. Tenga en cuenta estos elementos de aislamiento al planificar el cableado del sistema de automatización. Consulte el anexo A para obtener más información acerca de la ubicación de los puntos de aislamiento y la capacidad que ofrecen. Los aislamientos con valores nominales inferiores a 1.500 V c.a. no deberán tomarse para definir barreras de seguridad.

Consejo

En una red de comunicación, la longitud máxima del cable de comunicación debería ser de 50 metros sin utilizar un repetidor. El puerto de comunicación del S7-200 no está aislado. Para más información al respecto, consulte el capítulo 7.

Reglas relativas a las cargas inductivas

Las cargas inductivas deberán equiparse con circuitos de supresión destinados a limitar el incremento de tensión producido al desactivarse las salidas. Los circuitos de supresión protegen las salidas contra fallos prematuros debidos a elevadas corrientes de conmutación inductivas. Además, estos circuitos limitan las interferencias generadas al conmutar cargas inductivas.

Consejo

La eficacia de un determinado circuito de supresión depende de la aplicación. Por tanto, deberá verificarse para cada caso particular. Vigile siempre que los componentes utilizados en el circuito de supresión se adecuen para la aplicación en cuestión.

Salidas c.c. y relés que controlan cargas c.c.

Las salidas c.c. tienen una protección interna adecuada para la mayoría de las aplicaciones. Puesto que los relés se pueden utilizar para cargas tanto c.c. como c.a., no proporcionan una protección interna.

La figura 3-3 muestra un circuito de supresión de ejemplo para una carga de corriente continua. En la mayoría de las aplicaciones es suficiente prever adicionalmente un diodo (A) en la carga inductiva. No obstante, si la aplicación requiere tiempos de desconexión más rápidos, se recomienda utilizar un diodo Zener (B). Vigile que el diodo Zener tenga suficiente capacidad para la cantidad de corriente en el circuito de salida.

Salidas de corriente alterna y relés que controlan cargas de corriente alterna

Las salidas de corriente alterna tienen una protección interna adecuada para la mayoría de las aplicaciones. Puesto que los relés se pueden utilizar para cargas tanto c.c. como c.a., no proporcionan una protección interna.

La figura 3-4 muestra un circuito de supresión de ejemplo para una carga de corriente alterna. Si utiliza un relé o una salida de corriente alterna para conmutar cargas de 115 V/230 V c.a., disponga redes de resistores/capacitores a lo largo de la carga de corriente alterna como se ilustra en la figura. También puede utilizar un varistor de óxido metálico (MOV) para limita la tensión de pico. Vigile que la tensión de trabajo del varistor MOV sea como mínimo un 20% superior a la tensión nominal de fase.

Figura 3-4 Circuito de supresión para una carga de corriente alterna

Nota

Si utiliza módulos de ampliación para conmutar cargas inductivas de 230 V c.a., el circuito externo de supresión de interferencias se deberá disponer a lo largo de la carga de corriente alterna como muestra la figura 3-4.

Reglas relativas a las cargas de lámparas

Las cargas de lámparas pueden averiar los contactos de relé, debido a la elevada intensidad momentánea al arrancar. Esta intensidad momentánea es 10 a 15 veces superior a la intensidad en modo estacionario de una lámpara de tungsteno. Se recomienda intercalar un relé sustituible o un limitador de sobretensión para las cargas de lámpara que se deban conmutar con frecuencia durante la vida útil de la aplicación.

Generalidades del S7-200

La función principal del S7-200 consiste en vigilar las entradas de campo y, conforme a la lógica de control, activar o desactivar los aparatos de salida de campo. En el presente capítulo se explican los conceptos utilizados para ejecutar el programa, los diversos tipos de memoria y cómo se respalda la memoria del S7-200.

Índice del capítulo

Ejecutar la lógica de control en el S7-200	28
Acceder a los datos del S7-200	30
Guardar y restablecer datos en el S7-200	40
Seleccionar el modo de operación del S7-200	46
Utilizar el Explorador S7-200	46
Funciones del S7-200	47

Ejecutar la lógica de control en el S7-200

El S7-200 ejecuta cíclicamente la lógica de control del programa, leyendo y escribiendo datos.

Relacionar el programa con las entradas y salidas físicas

El funcionamiento básico del S7-200 es muy sencillo:

- El S7-200 lee el estado de las entradas.
- El programa almacenado en el S7-200 utiliza las entradas para evaluar la lógica. Durante la ejecución del programa, el S7-200 actualiza los datos.
- El S7-200 escribe los datos en las salidas.

La figura 4-1 muestra cómo se procesa un esquema de circuitos simple en el S7-200. En este ejemplo, el estado del interruptor para arrancar el motor se combina con los estados de otras entradas. El resultado obtenido establece entonces el estado de la salida que corresponde al actuador que arranca el motor.

Figura 4-1 Controlar las entradas y salidas

Ejecutar las tareas en un ciclo

El S7-200 ejecuta una serie de tareas de forma repetitiva. Esta ejecución se denomina ciclo. Como muestra la figura 4-2, el S7-200 ejecuta la mayoría de las tareas siguientes (o todas ellas) durante un ciclo:

- Leer las entradas: el S7-200 copia el estado de las entradas físicas en la imagen del proceso de las entradas.
- Ejecutar la lógica de control en el programa: el S7-200 ejecuta las operaciones del programa y guarda los valores en las diversas áreas de memoria.
- Procesar las peticiones de comunicación: el S7-200 ejecuta las tareas necesarias para la comunicación.
- Efectuar el autodiagnóstico de la CPU: el S7-200 verifica si el firmware, la memoria del programa y los módulos de ampliación están trabajando correctamente.
- Escribir en las salidas: los valores almacenados en la imagen del proceso de las salidas se escriben en las salidas físicas.

Figura 4-2 Ciclo del S7-200

La ejecución del programa de usuario depende de si el S7-200 está en modo STOP o RUN. El programa se ejecutará si el S7-200 está en modo RUN. En cambio, no se ejecutará en modo STOP.

Leer las entradas

Entradas digitales: Al principio de cada ciclo se leen los valores actuales de las entradas digitales y se escriben luego en la imagen del proceso de las entradas.

Entradas analógicas: El S7-200 no actualiza las entradas analógicas de los módulos de ampliación como parte del ciclo normal, a menos que se haya habilitado la filtración de las mismas. Existe un filtro analógico que permite disponer de una señal más estable. Este filtro se puede habilitar para cada una de las entradas analógicas.

Si se habilita la filtración de una entrada analógica, el S7-200 actualizará esa entrada una vez por ciclo, efectuará la filtración y almacenará internamente el valor filtrado. El valor filtrado se suministrará cada vez que el programa accede a la entrada analógica.

Si no se habilita la filtración, el S7-200 leerá de los módulos de ampliación el valor de la entrada analógica cada vez que el programa de usuario acceda a esa entrada.

Las entradas analógicas AIW0 y AIW2 incorporadas en la CPU 224XP se actualizan en cada ciclo con el resultado más reciente del convertidor analógico/digital. Este convertidor es de tipo promedio (sigma-delta) y, por lo general, no es necesario filtrar las entradas en el software.

Consejo

La filtración de las entradas analógicas permite disponer de un valor analógico más estable. Utilice el filtro de entradas analógicas en aplicaciones donde la señal de entrada cambia lentamente. Si la señal es rápida, no es recomendable habilitar el filtro analógico.

No utilice el filtro analógico en módulos que transfieran informaciones digitales o indicaciones de alarma en las palabras analógicas. Desactive siempre el filtro analógico si utiliza módulos RTD, termopar o AS-Interface Master.

Ejecutar el programa

Durante esta fase del ciclo, el S7-200 ejecuta el programa desde la primera operación hasta la última (= Finalizar programa). El control directo de las entradas y salidas permite acceder directamente a éstas mientras se ejecuta el programa o una rutina de interrupción.

Si se utilizan interrupciones, las rutinas asociadas a los eventos de interrupción se almacenarán como parte del programa. Las rutinas de interrupción no se ejecutan como parte del ciclo, sino sólo cuando ocurre el evento (en cualquier punto del ciclo).

Procesar las peticiones de comunicación.

Durante esta fase del ciclo, el S7-200 procesa los mensajes que haya recibido por el puerto de comunicación o de los módulos de ampliación inteligentes.

Efectuar el autodiagnóstico

Durante el autodiagnóstico, el S7-200 comprueba si la CPU está funcionando correctamente, así como el estado de los módulos de ampliación.

Escribir las salidas digitales

Al final de cada ciclo, el S7-200 escribe los valores de la imagen del proceso de las salidas en las salidas digitales. (Las salidas analógicas se actualizan de inmediato, independientemente del ciclo.)

Acceder a los datos del S7-200

El S7-200 almacena información en diferentes áreas de la memoria que tienen direcciones unívocas. Es posible indicar explícitamente la dirección a la que se desea acceder. El programa puede acceder entonces directamente a la información. La tabla 4-1 muestra el rango de números enteros representables en diversos tamaños de datos.

 Tabla 4-1
 Rangos decimales y hexadecimales para los diferentes tamaños de datos

Representación	Byte (B)	Palabra (W)	Palabra doble (D)
Entero sin signo	0 a 255	0 a 65.535	0 a 4.294.967.295
	0 a FF	0 a FFFF	0 a FFFF FFFF
Entero con signo	-128 a +127	-32.768 a +32.767	-2.147.483.648 a +2.147.483.647
	80 a 7F	8000 a 7FFF	8000 0000 a 7FFF FFFF
Real IEEE de 32 bits en coma flotante	No aplicable	No aplicable	+1,175495E-38 a +3,402823E+38 (positivo) -1,175495E-38 a -3,402823E+38 (negativo)

Para acceder a un bit en un área de memoria es preciso indicar la dirección del mismo, compuesta por un identificador de área, la dirección del byte y el número del bit. La figura 4-3 muestra un ejemplo de direccionamiento de un bit (denominado también direccionamiento "byte.bit"). En el ejemplo, el área de memoria y la dirección del byte (l = entrada y 3 = byte 3) van seguidas de un punto decimal (".") que separa la dirección del bit (bit 4).

Figura 4-3 Direccionamiento byte.bit

Utilizando el formato de dirección de byte se puede acceder a los datos de la mayoría de las áreas de memoria (V, I, Q, M, S y SM) en formato de bytes, palabras o palabras dobles. La dirección de un byte, de una palabra o de una palabra doble de datos en la memoria se indica de forma similar a la dirección de un bit. Esta última está compuesta por un identificador de área, el tamaño de los datos y la dirección inicial del valor del byte, de la palabra o de la palabra doble, como muestra la figura 4-4.

Para acceder a los datos comprendidos en otras áreas de la memoria (por ejemplo, T, C, HC y acumuladores) es preciso utilizar una dirección compuesta por un identificador de área y un número de elemento.

Figura 4-4 Acceso a una misma dirección en formato de byte, palabra y palabra doble

Acceder a los datos en las áreas de memoria

Imagen del proceso de las entradas I

El S7-200 lee las entradas físicas al comienzo de cada ciclo y escribe los correspondientes valores en la imagen del proceso de las entradas. A ésta última se puede acceder en formato de bit, byte, palabra o palabra doble:

Bit:	\[direcc. del byte].[direcc. del bit]	10.1
Byte, palabra o palabra doble:	l[tamaño][direcc. del byte inicial]	IB4

Imagen del proceso de las salidas Q

Al final de cada ciclo, el S7-200 copia en las salidas físicas el valor almacenado en la imagen del proceso de las salidas. A ésta última se puede acceder en formato de bit, byte, palabra o palabra doble:

Bit:	Q[direcc. del byte].[direcc. del bit]	Q0.1
Byte, palabra o palabra doble:	Q[tamaño][direcc. del byte inicial]	QB5

Memoria de variables V

La memoria de variables (memoria V) se puede utilizar para depositar los resultados intermedios calculados por las operaciones en el programa. La memoria V también permite almacenar otros datos que pertenezcan al proceso o a la tarea actuales. A la memoria V se puede acceder en formato de bit, byte, palabra o palabra doble:

Bit:	V[direcc. del byte].[direcc. del bit]	V10.2
Byte, palabra o palabra doble:	V[tamaño][direcc. del byte inicial]	VW100

Área de marcas M

El área de marcas (memoria M) se puede utilizar como relés de control para almacenar el estado inmediato de una operación u otra información de control. Al área de marcas se puede acceder en formato de bit, byte, palabra o palabra doble:

Bit:	M[direcc. del byte].[direcc. del bit]	M26.7
Byte, palabra o palabra doble:	M[tamaño][direcc. del byte inicial]	MD20

Área de temporizadores T

Los temporizadores del S7-200 tienen resoluciones (intervalos) de 1 ms, 10 ms y 100 ms. Existen dos variables asociadas a los temporizadores:

- Valor actual: en este número entero de 16 bits con signo se deposita el valor de tiempo contado por el temporizador.
- Bit del temporizador (bit T): este bit se activa o se desactiva como resultado de la comparación del valor actual con el valor de preselección. Éste último se introduce como parte de la operación del temporizador.

A estas dos variables se accede utilizando la dirección del temporizador (T + número del temporizador). Dependiendo de la operación utilizada, se accede al bit del temporizador o al valor actual. Las operaciones con operandos en formato de bit acceden al bit del temporizador, en tanto que las operaciones con operandos en formato de palabra acceden al valor actual. Como muestra la figura 4-5, la operación Contacto normalmente abierto accede al bit del temporizador, en tanto que la operación Transferir palabra accede al valor actual del temporizador.

Figura 4-5 Acceder al bit del temporizador o al valor actual de un temporizador

Área de contadores C

Los contadores del S7-200 son elementos que cuentan los cambios de negativo a positivo en la(s) entrada(s) de contaje. Hay contadores que cuentan sólo adelante, otros que cuentan sólo atrás y otros cuentan tanto adelante como atrás. Existen dos variables asociadas a los contadores:

- Valor actual: en este número entero de 16 bits con signo se deposita el valor de contaje acumulado.
- Bit del contador (bit C): este bit se activa o se desactiva como resultado de la comparación del valor actual con el valor de preselección. El valor de preselección se introduce como parte de la operación del contador.

A estas dos variables se accede utilizando la dirección del contador (C + número del contador). Dependiendo de la operación utilizada, se accede al bit del contador o al valor actual. Las operaciones con operandos en formato de bit acceden al bit del contador, en tanto que las operaciones con operandos en formato de palabra acceden al valor actual. Como muestra la figura 4-6, la operación Contacto normalmente abierto accede al bit del contador, en tanto que la operación Transferir palabra accede al valor actual del contador.

Figura 4-6 Acceder al bit del contador o al valor actual de un contador

Contadores rápidos (HC)

Los contadores rápidos cuentan eventos rápidos, independientemente del ciclo de la CPU. Tienen un valor de contaje de entero de 32 bits con signo (denominado también valor actual). Para acceder al valor de contaje del contador rápido, se indica la dirección del mismo (utilizando el identificador HC) y el número del contador (por ejemplo, HC0). El valor actual del contador rápido es de sólo lectura, pudiéndose acceder al mismo sólo en formato de palabra doble (32 bits).

Formato:	HCInúmero del contador rápidol	HC1
i unnaiu.		1101

Acumuladores AC

Los acumuladores son elementos de lectura/escritura que se utilizan igual que una memoria. Por ejemplo, se pueden usar para transferir parámetros de y a subrutinas, así como para almacenar valores intermedios utilizados en cálculos. El S7-200 dispone de cuatro acumuladores de 32 bits (AC0, AC1, AC2 y AC3). A los acumuladores se puede acceder en formato de byte, palabra o palabra doble.

La operación utilizada para el acceso al acumulador determina el tamaño de los datos a los que se accede. Como muestra la figura 4-7, cuando se accede a un acumulador en formato de byte o de palabra se utilizan los 8 ó 16 bits menos significativos del valor almacenado en el acumulador. Cuando se accede a un acumulador en formato de palabra doble, se usan todos los 32 bits.

Para más información sobre cómo utilizar los acumuladores en rutinas de interrupción, consulte la descripción de las rutinas de interrupción en el capítulo 6.

Figura 4-7 Acceder a los acumuladores

Marcas especiales (SM)

Las marcas especiales permiten intercambiar datos entre la CPU y el programa. Estas marcas se puede utilizar para seleccionar y controlar algunas funciones especiales de la CPU S7-200. Por ejemplo, hay una marca que se activa sólo en el primer ciclo, marcas que se activan y se desactivan en determinados intervalos, o bien marcas que muestran el estado de las operaciones matemáticas y de otras operaciones. (Para más información acerca de las marcas especiales, consulte el anexo D). A las marcas especiales se puede acceder en formato de bit, byte, palabra o palabra doble:

Bit:	SM[direcc. del byte].[direcc. del bit]	SM0.1
Byte, palabra o palabra doble:	SM[tamaño][direcc. del byte inicial]	SMB86

Memoria local L

El S7-200 dispone de 64 bytes de memoria local (L), de los cuales 60 se pueden utilizar como memoria "borrador" para transferir parámetros formales a las subrutinas.

Consejo

Si programa en KOP o FUP, STEP 7-Micro/WIN reservará los últimos cuatro bytes de la memoria local para su propio uso.

La memoria local es similar a la memoria V (memoria de variables), con una excepción: la memoria V tiene un alcance global, en tanto que la memoria L tiene un alcance local. El término "alcance global" significa que a una misma dirección de la memoria se puede acceder desde cualquier parte del programa (programa principal, subrutinas o rutinas de interrupción). El término "alcance local" significa que la dirección de la memoria está asociada a una determinada parte del programa. El S7-200 asigna 64 bytes de la memoria L al programa principal, 64 bytes a cada nivel de anidado de las subrutinas y 64 bytes a las rutinas de interrupción.

A los bytes de la memoria L asignados al programa principal no se puede acceder ni desde las subrutinas ni desde las rutinas de interrupción. Una subrutina no puede acceder a la asignación de la memoria L del programa principal, ni a una rutina de interrupción, ni tampoco a una subrutina diferente. Una subrutina tampoco puede acceder a la asignación de la memoria L del programa principal, ni a una rutina.

El S7-200 asigna la memoria L según sea necesario en ese momento. Por consiguiente, mientras se está ejecutando la parte principal del programa, no existen las asignaciones de la memoria L para las subrutinas y las rutinas de interrupción. Cuando ocurre una interrupción o cuando se llama a una subrutina, la memoria local se asigna según sea necesario. La nueva asignación de la memoria L puede reutilizar las mismas direcciones de la memoria L de una subrutina o de una rutina de interrupción diferentes.

El S7-200 no inicializa la memoria L durante la asignación de direcciones, pudiendo contener cualquier valor. Al transferir parámetros formales a una llamada de subrutina, el S7-200 deposita los valores de los parámetros transferidos en las direcciones de la memoria L que se hayan asignado a esa subrutina. Las direcciones de la memoria L que no reciban un valor como resultado de la transferencia de parámetros formales no se inicializarán, pudiendo contener cualquier valor en el momento de la asignación.

Bit:	L[direcc. del byte].[direcc. del bit]	L0.0
Byte, palabra o palabra doble:	L[tamaño][direcc. del byte inicial]	LB33

Entradas analógicas Al

El S7-200 convierte valores reales analógicos (por ejemplo, temperatura, tensión, etc.) en valores digitales en formato de palabra (de 16 bits). A estos valores se accede con un identificador de área (AI), seguido del tamaño de los datos (W) y de la dirección del byte inicial. Puesto que las entradas analógicas son palabras que comienzan siempre en bytes pares (por ejemplo, 0, 2, 4, etc.), es preciso utilizar direcciones con bytes pares (por ejemplo, AIW0, AIW2, AIW4, etc.) para acceder a las mismas. Las entradas analógicas son valores de sólo lectura.

Formato:

AIW[dirección del byte inicial]

AIW4

Salidas analógicas (AQ)

El S7-200 convierte valores digitales en formato de palabra (de 16 bits) en valores reales analógicos (por ejemplo, intensidad o tensión). Estos valores analógicos son proporcionales a los digitales. A los valores analógicos se accede con un identificador de área (AQ), seguido del tamaño de los datos (W) y de la dirección del byte inicial. Puesto que las salidas analógicas son palabras que comienzan siempre en bytes pares (por ejemplo, 0, 2, 4, etc.), es preciso utilizar direcciones con bytes pares (por ejemplo, AQW0, AQW2, AQW4, etc.) para acceder a las mismas. Las salidas analógicas son valores de sólo escritura.

Formato:	AQW[dirección del byte inicial]	AQW4
----------	---------------------------------	------

Relés de control secuencial SCR S

Los relés de control secuencial (SCR o bits S) permiten organizar los pasos del funcionamiento de una máquina en segmentos equivalentes en el programa. Los SCRs sirven para segmentar lógicamente el programa de usuario. A los relés de control secuencial (SCR) se puede acceder en formato de bit, byte, palabra o palabra doble.

Bit:	S[direcc. del byte].[direcc. del bit]	S3.1
Byte, palabra o palabra doble:	S[tamaño][direcc. del byte inicial]	SB4

Formato de los números reales

Los números reales (o números en coma flotante) se representan como números de 32 bits de precisión sencilla, conforme al formato descrito en la norma ANSI/IEEE 754-1985 (v. fig. 4-8). A los números reales se accede en formato de palabra doble.

En el S7-200, los números en coma flotante tienen una precisión de hasta 6 posiciones decimales. Por consiguiente, al introducir una constante en coma flotante se pueden indicar como máximo 6 posiciones decimales.

Figura 4-8 Formato de un número real

Precisión al calcular números reales

Los cálculos que comprendan una serie de valores larga, incluyendo números muy grandes y muy pequeños, pueden producir resultados inexactos. Ello puede ocurrir si los números difieren en 10 a la potencia de x, siendo x > 6.

Por ejemplo, 100 000 000 + 1 = 100 000 000

Formato de las cadenas

Una cadena es una secuencia de caracteres. Cada uno de ellos se almacena en un byte diferente. El primer byte de la cadena define la longitud de la misma, es decir, el número de caracteres. La figura 4-9 muestra el formato de una cadena. Una cadena puede tener una longitud comprendida entre 0 y 254 caracteres, más el byte de longitud. Por tanto, la longitud máxima de una cadena es de 255 bytes. Una constante de cadena se limita a 126 bytes.

Longitud	Carácter 1	Carácter 2	Carácter 3	Carácter 4	 Carácter 254
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	 Byte 254

Figura 4-9 Formato de las cadenas

Utilizar constantes para las operaciones del S7-200

Las constantes se pueden utilizar en numerosas operaciones del S7-200. Pueden ser valores de bytes, palabras o palabras dobles. El S7-200 almacena todas las constantes como números binarios que se pueden representar en formato decimal, hexadecimal, ASCII, o bien como números reales (en coma flotante) (v. tabla 4-2).

Tabla 4-2	Representación de	constantes

Representación	Formato	Ejemplo
Decimal	[valor decimal]	20047
Hexadecimal	16#[valor hexadecimal]	16#4E4F
Binario	2#[número binario]	2#1010_0101_1010_0101
ASCII	'[texto ASCII]'	'ABCD'
Real	ANSI/IEEE 754-1985	+1,175495E-38 (positivo) -1,175495E-38 (negativo)
Cadena	"[texto de la cadena]"	"ABCDE"

Consejo

El S7-200 no permite indicar tipos de datos específicos ni comprobar datos (por ejemplo, indicar si la constante es un entero de 16 bits, un entero con signo o un entero de 32 bits). Por ejemplo, la operación Sumar puede utilizar el valor depositado en VW100 como entero con signo, en tanto que una operación de combinación con O-exclusiva puede emplear ese mismo valor de VW100 como valor binario sin signo.

Direccionar las E/S de la CPU y de los módulos de ampliación

Las entradas y salidas integradas en la unidad central de procesamiento (CPU) tienen direcciones fijas. Para agregar a la CPU entradas y salidas adicionales, se pueden conectar módulos de ampliación a la derecha de la CPU S7-200, formando así una cadena de entradas y salidas (E/S). Las direcciones de las E/S de cada módulo vienen determinadas por el tipo de E/S y por la posición relativa del módulo en la cadena (con respecto al anterior módulo de E/S del mismo tipo). Por ejemplo, un módulo de salidas no afecta a las direcciones de un módulo de entradas y viceversa. Igualmente, los módulos analógicos no afectan al direccionamiento de los módulos digitales y viceversa.

Consejo

Un espacio de la imagen del proceso para las E/S digitales se reserva siempre en incrementos de ocho bits (un byte). Si un módulo no dispone de un punto físico para cada bit de cada byte reservado, se perderán estos bits no utilizados y no se podrán asignar a los módulos siguientes en la cadena de E/S. En cuanto a los módulos de entradas, los bits no utilizados se ponen a cero cada vez que se actualizan las entradas.

Las E/S analógicas se asignan siempre en incrementos de dos puntos. Si un módulo no ofrece E/S físicas para cada uno de esos puntos, éstos se perderán y no se podrán asignar a los módulos siguientes en la cadena de E/S.

С	PU 224XP	4 entradas / 4 salidas	8 entradas	4 entradas analógicas 1 salida analógica	8 salidas	4 entradas analógicas 1 salida analógica
10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 11.0	A0.0 A0.1 A0.2 A0.3 A0.4 A0.5 Q0.6 Q0.7 Q1.0 Q1.1	Módulo 0 12.0 Q2.0 12.1 Q2.1 12.2 Q2.2 12.3 Q2.3 12.4 Q2.4 12.5 Q0.5 12.6 Q2.6 12.7 Q2.7	Módulo 1 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7	Módulo 2 AIW4 AQW4 AIW6 <i>AQW6</i> AIW8 AIW10	Módulo 3 Q3.0 Q3.1 Q3.2 Q3.3 Q3.4 Q3.5 Q3.6 Q3.6 Q3.7	Módulo 4 AIW12 AQW8 AIW14 AQW10 AIW16 AIW18
I1.2 I1.3	Q1.2 Q1.3	E/S de ampliacio	ón			
11.4 11.5 11.6 11.7 AIW0 AIW2	Q1.4 Q1.5 Q1.6 Q1.7 AQW0 AQW2					
E/S físi	cas					

La figura 4-10 muestra un ejemplo de la numeración de E/S para una configuración de hardware en particular. Los huecos entre las direcciones (que se representan en texto gris en cursiva) no se pueden utilizar en el programa.

Figura 4-10 Ejemplo de direcciones de E/S integradas y de ampliación (CPU 224XP)

Utilizar punteros para direccionar la memoria del S7-200 indirectamente

El direccionamiento indirecto utiliza un puntero para acceder a los datos de la memoria. Los punteros son valores de palabra doble que señalan a una dirección diferente en la memoria. Como punteros sólo se pueden utilizar direcciones de la memorias V y L, o bien los acumuladores (AC1, AC2 y AC3). Para crear un puntero se debe utilizar la operación Transferir palabra doble, con objeto de transferir la dirección indirecta a la del puntero. Los punteros también se pueden transferir a una subrutina en calidad de parámetros.

El S7-200 permite utilizar punteros para acceder a las siguientes áreas de memoria: I, Q, V, M, S, AI, AQ, SM, T (sólo el valor actual) y C (sólo el valor actual). El direccionamiento indirecto no se puede utilizar para acceder a un bit individual ni para acceder a las áreas de memoria HC o L.

Para acceder indirectamente a los datos de una dirección de la memoria es preciso crear un puntero a esa dirección, introduciendo para ello un carácter "&" y la dirección a la que se desea acceder. El operando de entrada de la operación debe ir precedido de un carácter "&" para determinar que a la dirección indicada por el operando de salida (es decir, el puntero) se debe transferir la dirección y no su contenido.

Introduciendo un asterisco (*) delante de un operando de una operación, se indica que el operando es un puntero. En el ejemplo que muestra la figura 4-11, *AC1 significa que AC1 es el puntero del valor de palabra indicado por la operación Transferir palabra (MOVW). En este ejemplo, los valores almacenados en VB200 y VB201 se transfieren al acumulador AC0.

Figura 4-11 Crear y utilizar un puntero

Como muestra la figura 4-12, es posible modificar el valor de los punteros. Puesto que los punteros son valores de 32 bits, para cambiarlos es preciso utilizar operaciones de palabra doble. Las operaciones aritméticas simples, tales como sumar o incrementar, se pueden utilizar para modificar los valores de los punteros.

Figura 4-12 Modificar un puntero

Consejo

Recuerde que debe indicar el tamaño de los datos a los que desea acceder. Para acceder a un byte, incremente el valor del puntero en 1. Para acceder a una palabra, o bien al valor actual de un temporizador o de un contador, incremente el valor del puntero en 2. Para acceder a una palabra doble, incremente el valor del puntero en 4.

Programa de ejemplo de un offset para acceder a datos de la memoria V

El presente ejemplo utiliza LD10 como puntero a la dirección VB0. El puntero se incrementa luego con un offset almacenado en VD1004. LD10 señala entonces a otra dirección en la memoria V (VB0 + offset). El valor almacenado en la dirección de la memoria V a la que señala LD10 se copia a continuación en VB1900. Modificando el valor en VD1004 es posible acceder a cualquier dirección de la memoria V.

Guardar y restablecer datos en el S7-200

El S7-200 incorpora numerosas funciones para garantizar que el programa de usuario y los datos se almacenen de forma segura.

- Áreas remanentes Áreas de la memoria de datos definidas por el usuario de manera que no se modifiquen tras desconectar y volver a conectar la alimentación, a condición de que no se hayan descargado el condensador de alto rendimiento ni el cartucho de pila opcional. Las áreas de la memoria V y M, así como los valores actuales de los temporizadores y contadores son las únicas áreas que se pueden configurar como remanentes.
- Memoria permanente Memoria no volátil utilizada para guardar los bloques de programa, de datos y del sistema, así como los valores forzados y la memoria M configurada para que se guarde tras un corte de alimentación, así como valores seleccionados escritos bajo el control del programa de usuario
- Cartucho de memoria Memoria no volátil extraíble utilizada para guardar los bloques de programa, de datos y del sistema, así como las recetas, los registros de datos y los valores forzados

El Explorador S7-200 se puede utilizar para guardar los archivos de documentación (doc, txt, pdf, etc.) en el cartucho, así como para realizar tareas de mantenimiento de archivos en el cartucho de memoria (copiar, borrar, directorio e iniciar).

Para enchufar un cartucho de memoria, retire la tapa de plástico del receptáculo de la CPU S7-200 e inserte el cartucho en el receptáculo. El cartucho se ha diseñado de forma que sólo se pueda insertar en un sólo sentido en el receptáculo.

Cuidado

Las descargas electroestáticas pueden deteriorar el cartucho de memoria o su receptáculo en el S7-200.

Cuando utilice el cartucho de memoria, deberá estar en contacto con una superficie conductiva puesta a tierra y/o llevar puesta una pulsera puesta a tierra. Guarde el cartucho en una caja conductiva.

Cargar los elementos del proyecto en la CPU y en la PG/el PC

El proyecto comprende tres elementos diferentes, a saber:

- Bloque de programa
- Bloque de datos (opcional)
- Bloque de sistema (opcional)
- Recetas (opcional)
- Registros de datos (opcional)

Cuando un proyecto se carga en la CPU, los bloques de programa, de datos y del sistema se guardan de forma segura en la memoria permanente. Las recetas y las configuraciones de registros de datos se almacenan en el cartucho de memoria, sustituyendo las recetas y los registros de datos que existan allí. Todos los elementos del programa que no se carguen en la CPU permanecerán sin modificar en la memoria permanente y el cartucho de memoria.

Si se deben cargar recetas y configuraciones de datos en la CPU, el cartucho de memoria deberá estar insertado para que el programa funcione correctamente.

Para cargar un proyecto en una CPU S7-200:

- 1. Elija el comando de menú Archivo > Cargar en CPU.
- 2. Haga clic en cada uno de los elementos del proyecto que desea cargar en la CPU.
- 3. Haga clic en el botón "Cargar en CPU".

Dirección remota: 2		CPU 224 RE
Haga clic en 'Cargar en CPU' para comenzar.		
Opciones 🖈	Cargar	r en CPU Cancela
Opciones 2 pciones 7 Ricoux de programa	Cargar A · CPI I	r en CPU Cancelar
Opciones 2 pciones 7 Bloque de programa 7 Bloque de datos	Cargar A : CPU A : CPU	r en CPU Cancela
Opciones \$ pciones 7 Bloque de programa 7 Bloque de datos 9 Bloque de interna	A: CPU A: CPU A: CPU A: CPU	r en CPU Cancelar
Opciones \$ pciones V Bloque de programa V Bloque de datos V Bloque de sistema Recetas	A : CPU A : CPU A : CPU A : CPU A : CPU	r en CPU Cancela

Figura 4-13 Cargar un proyecto en una CPU S7-200

Cuando un proyecto se carga en la PG/el PC con STEP 7-Micro/WIN, el S7-200 carga los bloques de programa, de datos y del sistema desde la memoria permanente. Las recetas y las configuraciones de registros de datos se cargan en la PG/el PC desde el cartucho de memoria. Los datos de los registros de datos no se cargan en la PG/el PC con STEP 7-Micro/WIN, sino con el Explorador S7-200 (véase el capítulo 14).

Para cargar un proyecto en la PG/el PC desde una CPU S7-200:

- 1. Elija el comando de menú Archivo > Cargar en PG.
- 2. Haga clic en cada uno de los elementos del proyecto que desea cargar en la PG/el PC.
- 3. Haga clic en el botón "Cargar en PG".

Cargar en PG		×
Enlace PPI Utilice el botón 'Opciones' para seleccionar los bloques	que desea cargar en la PG.	
Dirección remota: 2		
Haga olic en l'argar en P6' para iniciar la carga, en el proyecto actual se aplicarán al programa o o comentarios existentes, cargue el programa en	Todos los símbolos o comertarios existentes gado Para eviar que se utilicen los símbolos en el transforma e un nuevo proyecto.	
Opciones 🛣	Cargar en PG Cancelar	
Riggine de programa	De: CPU	
Bioque de programa	De: CPU	
Bloque de sistema	De: CPU	
Recetas		
Configuraciones de registros de datos		
😮 Haga clic para obtener ayuda y soport	Cerrar el cuadro de diálogo tras finalizar	

Figura 4-14 Cargar un proyecto en la PG/el PC

Guardar el programa en un cartucho de memoria

El S7-200 permite copiar el programa de usuario de una CPU a otra utilizando un cartucho de memoria. Asimismo, los siguientes bloques de pueden actualizar mediante un cartucho de memoria: el bloque de programa, el bloque de datos y/o el bloque de sistema.

Antes de copiar elementos del programa en el cartucho de memoria, STEP 7-Micro/WIN borra todos los elementos contenidos allí (incluyendo las recetas y los registros de datos), a excepción de los archivos de usuario. Si el programa no cabe en el cartucho de memoria, debido al tamaño de los archivos, puede utilizar uno de los métodos siguientes con objeto de crear suficiente espacio para almacenar el programa: bien sea, borrar el cartucho de memoria eligiendo el comando de menú **CPU > Borrar cartucho de memoria**, o bien, abrir el Explorador S7-200 y borrar los archivos de usuario que no se necesiten más.

Para poder programar el cartucho de memoria, la CPU deberá estar en modo STOP.

Para guardar el programa en el cartucho de memoria:

- 1. Elija el comando de menú CPU > Cartucho de memoria .
- Haga clic en cada uno de los elementos del proyecto que desea copiar en el cartucho de memoria (todos los elementos que existan en el proyecto aparecerán seleccionados por defecto). Si está seleccionado el bloque de sistema, se copiarán también los valores forzados.
- 3. Haga clic en el botón "Programar".

Los bloques de programa, de sistema y de datos, así como todos los valores forzados se copiarán de la memoria permanente del S7-200 en el cartucho de memoria. Las recetas y configuraciones de registros de datos se copiarán de STEP 7-Micro/WIN en el cartucho de memoria.

Restablecer el programa desde un cartucho de memoria

Para transferir el programa de un cartucho de memoria en el S7-200, es preciso conectar la alimentación del S7-200 con el cartucho insertado. Si alguno de los bloques o valores forzados existentes en el cartucho de memoria difieren de los del S7-200, todos los bloques existentes en el cartucho de memoria se copiarán en el S7-200.

- Si un bloque de programa ha sido transferido desde el cartucho de memoria, se sustituirá el bloque de programa existente en la memoria permanente del S7-200.
- Si un bloque de datos ha sido transferido desde el cartucho de memoria, se sustituirá el bloque de datos existente en la memoria permanente del S7-200, se borrará toda la memoria V y ésta se inicializará con el contenido del bloque de datos.
- Si un bloque de sistema ha sido transferido desde el cartucho de memoria, se sustituirán el bloque de sistema y los valores forzados existentes en la memoria permanente del S7-200 y se borrarán todas las áreas remanentes.

El cartucho de memoria se puede extraer una vez que el programa transferido se haya guardado en la memoria permanente. No obstante, si el cartucho contiene recetas o registros de datos, deberá permanecer insertado. Al dejar el cartucho de memoria insertado se retrasará la entrada a modo RUN las próximas veces que se conecte la alimentación del S7-200.

Nota

Si se conecta la alimentación de la CPU S7-200 estando insertado un cartucho de memoria programado con un modelo diferente de CPU S7-200, podría ocurrir un error. Los cartuchos de memoria hayan sido programados en una CPU de un modelo inferior pueden leerse en una CPU de un modelo superior, mas no al contrario. Por ejemplo, los cartuchos de memoria programados en una CPU 221 ó 222 se pueden leer también en una CPU 224. No obstante, los cartuchos de memoria programados en una CPU 224 serán rechazados por una CPU 221 ó 222.

El apartado "Cartuchos opcionales" del anexo A contiene una lista en la que figuran todas las restricciones al utilizar cartuchos de memoria.

Guardar el área de marcas (M) tras un corte de alimentación

Si se define que los primeros 14 bytes del área de marcas (MB0 a MB13) sean remanentes, estos bytes se guardarán en la memoria permanente cuando se produzca un corte de alimentación del S7-200. El ajuste estándar para los primeros 14 bytes de la memoria M es que no sean remanentes.

Restablecer los datos tras conectar la alimentación

Tras conectar la alimentación, el S7-200 restablece el bloque de programa y el bloque de sistema desde la memoria permanente. A continuación, el S7-200 comprueba si el condensador de alto rendimiento y el cartucho de pila opcional han respaldado los datos almacenados en la RAM. En caso afirmativo, no se modificarán las áreas remanentes de la memoria de datos de usuario. Las áreas no remanentes de la memoria permanente. Las áreas no remanentes de las demás áreas de memoria se borrarán.

Si el contenido de la RAM no se ha respaldado (p. ej. en el caso de un corte de alimentación prolongado), el S7-200 borrará todas las áreas de datos de usuario, activará la marca "Datos remanentes perdidos" (SM0.2), restablecerá la memoria V conforme con el contenido del bloque de datos en la memoria permanente, y restablecerá los primeros 14 bytes de la memoria M a partir de la memoria permanente, si estos bytes se han definido previamente como remanentes.

Utilizar el programa para guardar la memoria V en la memoria permanente

Un valor (byte, palabra o palabra doble) almacenado en cualquier dirección de la memoria V se puede guardar en la memoria permanente. Por lo general, esta operación prolonga el tiempo de ciclo en 5 ms como máximo. Si en esta operación se escribe un valor en el área de la memoria V de la memoria permanente, se sobrescribirá el valor anterior de esa dirección.

La operación de guardar en memoria permanente no actualiza los datos contenidos en el cartucho de memoria.

Consejo

Puesto que el número de operaciones de guardar en la memoria permanente (EEPROM) es limitado (mín. 100.000, típ. 1.000.000), sólo se deberán almacenar los valores realmente necesarios. De lo contrario, es posible que se sobrecargue la EEPROM y que falle la CPU. Generalmente, las operaciones de guardar se deberían ejecutar sólo cuando se presenten determinados eventos, lo cual no suele ocurrir con frecuencia.

Por ejemplo, si el tiempo de ciclo del S7-200 es de 50 ms y un valor se almacena una vez por ciclo, la EEPROM se llenaría al cabo de 5.000 segundos, es decir, en menos de una hora y media. En cambio, si ese valor se almacena cada hora, la EEPROM podría utilizarse 11 años como mínimo.

Copiar la memoria V en la memoria permanente

El byte de marcas 31 (SMB31) indica al S7-200 que copie un valor de la memoria V en el área de la memoria V de la memoria permanente. La palabra de marcas 32 (SMW32) almacena la dirección del valor a copiar. La figura 4-16 muestra el formato de SMB31 y SMW32.

SMB31

Para programar el S7-200 con objeto de guardar o escribir un valor determinado en la memoria V:

- 1. Cargue en SMW32 la dirección de la memoria V del valor a almacenar.
- 2. Cargue el tamaño de los datos en SM31.0 y SM31.1, como muestra la figura 4-16.
- 3. Active la marca SM31.7.

finalizar la operación de quardar.

Al final de cada ciclo, el S7-200 comprueba el estado de SM31.7. Si SM31.7 está activada (es decir, si su estado de señal es "1"), el valor indicado se guardará en la memoria permanente. La operación se finalizará cuando el S7-200 desactive SM31.7.

0.01	7							0	Tamaño del valor a quardar
	sv	0	0	0	0	0	s1	s0	00 - byte
Gu	ardar	en	la m	emo	ria				_10 - palabra _10 - palabra _11 - palabra doble
0 = 1 =	rmanente: ■ No Sí Sí SM31.7 después de cada operación de guardar.								
SM\	N32								
	15			Dire	ecció	n en	la me	emoria	a V 0
b	ndiqu	e la	dire	cció	n en	la me	emori	a V c	omo offset de V0.

Figura 4-16 SMB31 y SMW32

Programa de ejemplo: copiar la memoria V en la memoria permanente

No cambie el valor en la memoria V antes de

En este ejemplo, VB100 se transfiere a la memoria permanente. Si se produce un flanco positivo en I0.0 y si no se está efectuando ninguna otra transferencia, se carga la dirección de la memoria V a transferir a SMW32. Luego se selecciona la cantidad de memoria V a transferir (1=byte; 2=palabra; 3=palabra doble o número real). A continuación, se activa SM31.7 para que el S7-200 transfiera los datos al final del ciclo

El S7-200 desactiva automáticamente SM31.7 al finalizar la transferencia.

Seleccionar el modo de operación del S7-200

El S7-200 tiene dos modos de operación, a saber: STOP y RUN. Los diodos luminosos (LEDs) ubicados en la parte frontal de la CPU indican el modo de operación actual. En modo STOP, el S7-200 no ejecuta el programa. Entonces es posible cargar un programa o configurar la CPU. En modo RUN, el S7-200 ejecuta el programa.

El S7-200 incorpora un selector de modos que permite cambiar el modo de operación. El modo de operación se puede cambiar manualmente accionando el selector (ubicado debajo de la tapa de acceso frontal del S7-200). Si el selector se pone en STOP, se detendrá la ejecución del programa. Si se pone en RUN, se iniciará la ejecución del programa. Si se pone en TERM, no cambiará el modo de operación.

Si se interrumpe la alimentación estando el selector en posición STOP o TERM, el S7-200 pasará a modo STOP cuando se le aplique tensión. Si se interrumpe la alimentación estando el selector en posición RUN, el S7-200 pasará a modo RUN cuando se le aplique tensión.

- STEP 7-Micro/WIN permite cambiar el modo de operación del S7-200 conectado. Para que el modo de operación se pueda cambiar mediante el software, el selector del S7-200 deberá estar en posición TERM o RUN. Elija para ello el comando de menú CPU > STOP o CPU > RUN, respectivamente (o haga clic en los botones correspondientes de la barra de herramientas).
- Para cambiar el S7-200 a modo STOP es posible introducir la correspondiente operación (STOP) en el programa. Ello permite detener la ejecución del programa en función de la lógica. Para más información sobre la operación STOP, consulte el capítulo 6.

Utilizar el Explorador S7-200

El Explorador S7-200 es una ampliación del Explorador de Windows que sirve para acceder a las CPUs S7-200, permitiendo explorar el contenido de todas las CPUs conectadas. Ello permite determinar los bloques diferentes que puedan existir bien sea en la CPU o en el cartucho de memoria. Cada bloque dispone de propiedades.

Puesto que el Explorador S7-200 es una ampliación del Explorador de Windows, se soportan la navegación estándar y el comportamiento de Windows.

G Back + O + T P Search O Polders G	3×9 .	- ¥ @ @					
Address 🖂 My 57-200 Network (2) CPU 226 X1116 - REL	77.00l,256k Memory Ca	tridge				-	
Folders	×	Nerse	See	Type ^	Modified		Creates
■ 0 consist ■ 0 consist ■ 3 m Propy (A) ■ 3 m Propy (A) ■ 0 constraint (A)	Target (Jocyne)' (K) st ardhived (K)	All Configuration 0 (UA10) Bostin dock Bostin dock Bostin dock Byterin Block Byterin Block Byterin Block System Block Configuration 0 (PCP0) Configuration 0 (PCP0) Bostine Jost	1 KB 20 KB 1 KB 1 KB 1 KB 1 KB 1 KB	Data Log Microsoft Word Docum PLC Block PLC Block PLC Block Recipe STEP 7-MicroWDI Project Text Document	12(11)2023 - 955 PM 31)12024 - 122 PM 12(11)2023 - 957 PM 12(11)2023 - 957 PM 12(11)2023 - 957 PM 12(21)2020 - 957 PM 12(21)2020 - 958 PM 2(25)2024 - 958 AM	12/11/2003 3/11/2004 11/20/2003 11/20/2003 11/20/2003 11/20/2003 2/25/2004 2/16/2004	3.56 Pt 1:14 Pt 5:37 Pt 5:37 Pt 5:37 Pt 5:37 Pt 9:01 At 9:50 At

Figura 4-17 Explorador S7-200

El Explorador S7-200 es la herramienta utilizada para leer los registros de datos almacenados en el cartucho de memoria. Para más información sobre los registros de datos, consulte el capítulo 14.

El Explorador S7-200 también puede utilizarse para leer o escribir archivos de usuario en el cartucho de memoria. Estos archivos pueden ser de cualquier tipo, documentos de MS Word, archivos de imagen (.bmp), archivos .jpeg, o bien proyectos de STEP 7-Micro/WIN.

Funciones del S7-200

El S7-200 incorpora diversas funciones especiales para poder personalizar la aplicación.

Leer o escribir directamente las E/S con el programa

El juego de operaciones del S7-200 incluye funciones para leer y escribir directamente las E/S físicas. Estas operaciones de control directo de las entradas y salidas (E/S) permiten acceder a la entrada o salida física en cuestión, aunque el acceso a las E/S se efectúa por lo general a través de las imágenes del proceso.

El acceso directo a una entrada no modifica la dirección correspondiente en la imagen del proceso de las entradas. En cambio, el acceso directo a una salida actualiza simultáneamente la dirección correspondiente en la imagen del proceso de las salidas.

Consejo

El S7-200 procesa las entradas analógicas como si fuesen datos directos, a menos que se haya habilitado la filtración de las entradas analógicas. Cuando se escribe un valor en una salida analógica, ésta se actualiza inmediatamente.

Por lo general, es recomendable utilizar la imagen del proceso, en vez de acceder directamente a las entradas o salidas mientras se ejecuta el programa. Las imágenes del proceso existen por tres razones:

- El sistema verifica todas las entradas al comenzar el ciclo. De este modo se sincronizan y "congelan" los valores de estas entradas mientras se ejecuta el programa. La imagen del proceso actualiza las salidas cuando termina la ejecución del programa. Ello tiene un efecto estabilizador en el sistema.
- El programa de usuario puede acceder a la imagen del proceso mucho más rápido de lo que podría acceder directamente a las entradas y salidas físicas, con lo cual se acelera su tiempo de ejecución.
- ❑ Las entradas y salidas (E/S) son unidades de bit a las que se debe acceder en formato de bit o de byte. No obstante, la imagen del proceso permite acceder a las E/S en formato de bits, bytes, palabras y palabras dobles, lo que ofrece flexibilidad adicional.

Interrumpir el ciclo con el programa

Si se utilizan interrupciones, las rutinas asociadas a los eventos de interrupción se almacenan como parte del programa. Las rutinas de interrupción no se ejecutan como parte del ciclo, sino sólo cuando ocurre el evento (en cualquier punto del ciclo).

El S7-200 procesa las interrupciones según su prioridad y después en el orden que aparecen. Para más información, consulte la descripción de las operaciones de interrupción en el capítulo 6.

Asignar tiempo de procesamiento para la edición en modo RUN y el estado de ejecución con el S7-200

Es posible configurar el porcentaje del tiempo de ciclo que se dedicará a procesar la edición en modo RUN o el estado de ejecución. (La edición en modo RUN y el estado de ejecución son opciones que incorpora STEP 7-Micro/WIN para facilitar la comprobación del programa de usuario.) Si se incrementa el porcentaje de tiempo dedicado a estas dos tareas, aumentará también el tiempo de ciclo, por lo que el proceso de control se ejecutará más lentamente.

El ajuste estándar del porcentaje dedicado a procesar la edición en modo RUN y el estado de ejecución es 10%. Este ajuste se ha elegido como compromiso apropiado para procesar las operaciones de compilación y de estado, reduciendo al mismo tiempo el impacto en el proceso de control. El valor se puede ajustar en incrementos de 5% hasta un máximo de 50%. Para ajustar el porcentaje del tiempo de ciclo dedicado a las peticiones de comunicación en segundo plano:

- Elija el comando de menú Ver > Componente > Bloque de sistema y seleccione "Tiempo en segundo plano".
- En la ficha "Tiempo en segundo plano", utilice la lista desplegable para seleccionar el tiempo en segundo plano para la comunicación.
- 3. Haga clic en "Aceptar" para confirmar su selección.
- 4. Cargue en el S7-200 el bloque de sistema modificado.

estado de ejecución y las opera Billoque de sistema - Puertos de comunicación - Contraseña - Contraseña - Contraseña - Contrajurar salidas - Filtra rentradas - Bits de captura de impulso - Tempo en asgundo plano	ciones de edición en runtime.
Configure módulos EM Configure núclulos EM Configure niLED Incrementar la memoria	10 🚍

Figura 4-18 Tiempo en segundo plano para la comunicación

Determinar el estado de las salidas digitales cuando el S7-200 cambie a modo STOP

El S7-200 permite elegir si las salidas digitales deben adoptar valores conocidos cuando cambie a modo STOP, o bien congelar las salidas en su último estado antes del cambio. La tabla de salidas forma parte del bloque de sistema que se carga y almacena en el S7-200.

- Elija el comando de menú Ver > Componente > Bloque de sistema y seleccione "Configurar salidas". Haga clic en la ficha "Digitales".
- Para congelar las salidas en su último estado, marque la casilla de verificación "Congelar salidas".
- Para copiar los valores de la tabla en las salidas, introduzca estos valores haciendo clic en las casillas de verificación correspondientes a las salidas que desea activar (poner a 1) cuando el S7-200 cambie de RUN a STOP. En la tabla, todas las salidas están desactivadas (puestas a 0) por defecto.
- 4. Haga clic en "Aceptar" para confirmar su selección.
- 5. Cargue en el S7-200 el bloque de sistema modificado.

Bloque de sistema Configurar salidas digitales En la ficha 'Configurar salidas dig la CPU cambie de RUN a STOP.	iitales' se pueden configurar los estados ON y OFF	de todas las salidas di	igitales cuand	° R
Bloque de sistema Puertos de comunicación Aros semantes Contaseña Contaseña Titra entradas Bita de captura de impulso Titraro en segundo plano Configurar el LED Incrementar la memoria	Digital Analógicas Congele las salidas en su último estado Estados el cambiar de RUN a STOP Las salidas seleccionadas permanecerán a STOP. 2 x 5 4 3 2 1 0 0 x 7 5 5 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ctivadas cuando la CPI 08 x 010 x 012 x 014 x 015 x 014 x 015 x	L cambie de f	ándar
🙆 Hana clic nara obtener a	auda v sonorte	Aceptar C	ancelar	Estándar

Figura 4-19 Configurar las salidas digitales

Configurar el valor de las salidas analógicas

La tabla de salidas analógicas permite ajustar éstas últimas a valores conocidos tras un cambio de RUN a STOP, o bien conservar los valores de las salidas existentes antes del cambio a modo STOP. La tabla de salidas analógicas forma parte del bloque de sistema que se carga y almacena en el S7-200.

- Elija el comando de menú Ver > Componente > Bloque de sistema y seleccione "Configurar salidas". Haga clic en la ficha "Analógicas".
- Para congelar las salidas en su último estado, marque la casilla de verificación "Congelar salidas".
- La tabla "Congelar valores" permite ajustar las salidas analógicas a un valor conocido (-32768 a 37262) cuando se produzca un cambio de RUN a STOP.
- 4. Haga clic en "Aceptar" para confirmar su selección.
- 5. Cargue en el S7-200 el bloque de sistema modificado.

Bloque de sistema Configurar salidas analógicas En la ficha "Configurar salidas ana cuando la CPU cambie de RUN a	lógicas' se pueden confi <u>c</u> a STOP.	urar los estados ON y I	DFF de todas las salida	s analógicas
Puetos de comunicación Areas remanentes Contraseña Contraseña	Congelar las salidas	s en su último estado RUN a STOP		Estándar
Pitta entradas Pitta entradas Pitta entradas Pitta entradas Dirargo en segundo plano Configues módulos EM Configues en LED Incrementar la memoia	AQW0: 0 AQW2: 0 AQW4: 0 AQW6: 0 AQW8: 0 AQW10: 0 AQW10: 0	AQW18: 0 AQW18: 0 AQW20: 0 AQW22: 0 AQW22: 0 AQW28: 0 AQW28: 0	AQW32: 0 AQW34: 0 AQW36: 0 AQW38: 0 AQW38: 0 AQW40: 0 AQW42: 0 AQW44: 0	AQW48: 0 AQW50: 0 AQW52: 0 AQW54: 0 AQW56: 0 AQW56: 0 AQW50: 0
۲ کار المحمد ماند محمد محمد محمد محمد محم	AQW14: 0 Para que los parámetro la CPU.	AQW30: 0	AQW46: 0	AQW62: 0

Definir el respaldo de la memoria en caso de un corte de alimentación

Se pueden definir hasta seis áreas remanentes para seleccionar las áreas de memoria que se deban respaldar cuando se interrumpa la alimentación. Es posible determinar que sean remanentes los rangos de direcciones en las áreas de memoria V, M, C y T. En el caso de los temporizadores, sólo es posible respaldar los que tienen retardo a la conexión con memoria (TONR). El ajuste estándar para los primeros 14 bytes de la memoria M es que no sean remanentes.

Sólo se pueden respaldar los valores actuales de los temporizadores y contadores. Los bits de los temporizadores y de los contadores no son remanentes.

Consejo

Si el rango comprendido entre MB0 y MB13 se define de manera que sea remanente, se habilitará una función especial que guarda automáticamente estas direcciones en la memoria permanente al desconectarse la alimentación.

Para definir las áreas remanentes:

- Elija el comando de menú Ver > Componente > Bloque de sistema y seleccione "Áreas remanentes".
- Seleccione las áreas de memoria que se deben respaldar tras un corte de alimentación y haga clic en "Aceptar".
- 3. Cargue en el S7-200 el bloque de sistema modificado.

En la ficha 'Áreas remanentes' se p	uede definir la n	nemoria que se deb	e respaldar t	ras un corte de a	alimentación.	
Bloque de sistema Duertos de comunicación Contraseña	Áreas remanent	es				Estándar
Configurar salidas Filtrar entradas Bits de captura de impulsos Tiempo en segundo plano	Rangos Área 0	Área de datos	Offset	Nº de e	lementos	Borrar
Configurar módulos EM Configurar el LED Incrementar la memoria	Área 1	VB T	0		 	Borrar
	Área 3 Área 4		64	· 32	 	Borrar
	Área 5	мв	14	- 18 	3	Borrar
	Para que los p la CPU.	arámetros de config	juración teng	gan efecto, es pr	eciso cargarl	os previamente en

Figura 4-21 Definir las áreas remanentes

Filtrar las entradas digitales

El S7-200 permite seleccionar un filtro de entrada que define un tiempo de retardo (comprendido entre 0,2 ms y 12,8 ms) para algunas o bien para todas las entradas digitales integradas. Este retardo sirve para filtrar en el cableado de entrada las interferencias que pudieran causar cambios accidentales del estado de las entradas.

El filtro de entrada forma parte del bloque de sistema que se carga y se almacena en el S7-200. El tiempo estándar del filtro es de 6,4 ms. Como muestra la figura 4-22, cada indicación del tiempo de retardo se aplica a grupos de cuatro entradas.

Para configurar el tiempo de retardo del filtro de entradas:

- Elija el comando de menú Ver > Componente > Bloque de sistema y seleccione "Filtrar entradas". Haga clic en la ficha "Digitales".
- Introduzca el retardo de cada grupo de entradas y haga clic en "Aceptar".
- 3. Cargue en el S7-200 el bloque de sistema modificado.

En la ficha Filtra entradas digitales antes de que la CPU detecte un	es' se puede indicar el tiempo durante el que la entrada debe permane s transición.	cer constante
Pueros de comunicación Areas remarries Contraseña Contraseña Contraseña Tiempo en segundo plano Triempo en segundo plano Configura raidólos EM Configura el LED Incrementar la memoia	Retardos de filto de entradas 10.0 - 10.3: 6.40 x ms 10.4 - 10.7: 6.40 x ms 11.0 - 11.3: 6.40 x ms 11.4 - 11.5: 6.40 x ms	Estándar

Consejo

El filtro de entradas digitales afecta el valor de la entrada desde el punto de vista de las operaciones de lectura, las interrupciones y las capturas de impulsos. Dependiendo del filtro seleccionado, el programa podría omitir un evento de interrupción o una captura de impulsos. Los contadores rápidos cuentan los eventos en las entradas no filtradas.

Filtrar las entradas analógicas

El S7-200 permite filtrar cada una de las entradas analógicas utilizando el software. El valor filtrado es el valor promedio de un número preseleccionado de muestreos de la entrada analógica. Los datos de filtración indicados (número de impulsos y banda muerta) se aplican a todas las entradas analógicas para las que se habilite esta función.

El filtro dispone de una función de respuesta rápida para que los cambios considerables se puedan reflejar rápidamente en el valor de filtración. El filtro cambia al último valor de la entrada analógica cuando ésta exceda una determinada diferencia del valor actual. Esta diferencia, denominada banda muerta, se indica en contajes del valor digital de la entrada analógica.

La configuración estándar es permitir que se filtren todas las entradas analógicas, a excepción de AIW0 y AIW2 en la CPU 224XP.

- Elija el comando de menú Ver > Componente > Bloque de sistema y seleccione "Filtrar entradas". Haga clic en la ficha "Analógicas".
- Elija las entradas analógicas que desea filtrar, el número de muestreos y la banda muerta.
- 3. Haga clic en "Aceptar".
- 4. Cargue en el S7-200 el bloque de sistema modificado.

Figura 4-23 Filtrar las entradas analógicas

Consejo

No utilice el filtro analógico en módulos que transfieran informaciones digitales o indicaciones de alarma en las palabras analógicas. Desactive siempre el filtro analógico si utiliza módulos RTD, termopar o AS-Interface Master.

3	- (
()	
<u> </u>	

Consejo

El convertidor analógico/digital filtra las entradas AIW0 y AIW2 de la CPU 224XP. Por lo general, no es necesario filtrar las entradas en el software.

Capturar impulsos de breve duración

El S7-200 ofrece una función de captura de impulsos que se puede utilizar para algunas o todas las entradas digitales integradas. Esta función permite capturar impulsos altos o bajos de tan corta duración que no se registrarían en todos los casos, cuando el S7-200 lee las entradas digitales al comienzo del ciclo. Si se ha habilitado la captura de impulsos en una entrada y se produce un cambio de estado de la misma, se señalará este cambio, conservándose hasta que la entrada se actualice al comienzo del ciclo siguiente. De esta forma, un impulso de breve duración se capturará y se conservará hasta que el S7-200 lea las entradas.

La función de captura de impulsos se puede habilitar individualmente para cada una de las entradas digitales integradas.

Para configurar la captura de impulsos:

- Elija el comando de menú Ver > Componente > Bloque de sistema y seleccione "Bits de captura de impulsos".
- Marque la casilla de verificación correspondiente y haga clic en "Aceptar".
- 3. Cargue en el S7-200 el bloque de sistema modificado.

Figura 4-24 Capturar impulsos

La figura 4-25 muestra el funcionamiento básico del S7-200 con y sin captura de impulsos.

Figura 4-25 Funcionamiento del S7-200 con y sin captura de impulsos

Puesto que la captura de impulsos funciona en la entrada después de que pase por el filtro, es preciso ajustar el tiempo de filtración de las entradas de manera que el filtro no suprima el impulso. La figura 4-26 muestra un esquema funcional de una entrada digital.

Figura 4-26 Esquema funcional de una entrada digital

La figura 4-27 muestra la reacción de un circuito de captura de impulsos a diversas condiciones de entrada. Si en un ciclo dado se presenta más de un impulso, se leerá únicamente el primer impulso. En caso de que se presenten varios impulsos en un ciclo, se recomienda utilizar los eventos de interrupción de flanco positivo/negativo. La tabla 6-46 contiene una lista de los eventos de interrupción.

	Ciclo	Ciclo siguiente
	Actualización de las entradas	Actualización de las entradas
Entrada a la captura de impulsos		
Salida de captura de impulsos		
Entrada a la captura de impulsos		
Salida de captura de impulsos		
Entrada a la captura de impulsos		
Salida de captura de impulsos	 	

Figura 4-27 Reacciones de la captura de impulsos a diversas condiciones de entrada

Configurar el LED de diagnóstico

El S7-200 incorpora un LED (SF/DIAG) que puede iluminarse en color rojo (LED de fallo del sistema) o amarillo (LED de diagnóstico). El LED de diagnóstico puede iluminarse bajo el control del programa de usuario, o bien automáticamente al forzarse una E/S o un valor de datos, o bien cuando ocurra un error de E/S en un módulo.

Para configurar la selección automática del LED de diagnóstico:

- Elija el comando de menú Ver > Componente > Bloque de sistema y seleccione "Configurar el LED".
- Haga clic en cada uno de los elementos que deban encender el LED al forzarse una E/S o un valor de datos, o bien cuando ocurra un error de E/S en un módulo.
- 3. Cargue en el S7-200 el bloque de sistema modificado.

Para controlar el estado del LED de diagnóstico con el programa de usuario, utilice la operación "LED de diagnóstico" descrita en el capítulo 6.

Figura 4-28 LED de diagnóstico

Historial de los principales eventos de la CPU

El S7-200 conserva un historial con marca de fecha y hora de los principales eventos de la CPU, p. ej. cuando se conecta la alimentación, cuando la CPU pasa a modo RUN y cuando ocurren errores fatales. El reloj de tiempo real debe configurarse para obtener marcas de fecha y hora válidas en el historial.

Para visualizar el historial de eventos, elija el comando de menú **CPU > Información** y seleccione "Historial de eventos".

Fecha	Hora	Tipo	Error
23.05.04	16:43:13	Cambio a RUN	
23.05.04	16:43:09	Cambio a RUN	
23.05.04	16:42:18	Cambio a RUN	
23.05.04	16:41:18	Cambio a RUN	
		Arrangue	No se ajustado el reloj de la CPU.
		Cambio a RUN	No se ajustado el reloj de la CPU.
		Arrangue	No se ajustado el reloj de la CPU.
		Cambio a RUN	No se ajustado el reloj de la CPU.
4			

Figura 4-29 Visualizar el historial de eventos

Incrementar la memoria disponible para el programa de usuario

El S7-200 permite desactivar la función de edición en modo RUN en las CPUs 224, 224XP y 226 para incrementar la cantidad de memoria disponible para el programa de usuario. Para más información sobre la cantidad de memoria disponible para cada una de las CPUs, consulte la tabla 1-2.

Para desactivar la función de edición en modo RUN, proceda de la manera siguiente:

- Elija el comando de menú Ver > Bloque de sistema y seleccione "Incrementar memoria del programa".
- Haga clic en "Incrementar memoria del programa" para desactivar la función de edición en modo RUN.
- 3. Cargue en el S7-200 el bloque de sistema modificado.

Figura 4-30 Desactivar la edición en modo RUN

Proteger el S7-200 con contraseña

Todas las CPUs S7-200 ofrecen una protección con contraseña para restringir el acceso a determinadas funciones.

Con una contraseña se puede acceder a las funciones y a la memoria del S7-200. Si no se utiliza la opción de contraseña, el S7-200 permite un acceso ilimitado. Si está protegido con una contraseña, el S7-200 prohibe todas las operaciones restringidas conforme a la configuración definida al configurar la contraseña.

La contraseña no distingue entre mayúsculas y minúsculas.

Como muestra la tabla 4-3, el S7-200 ofrece tres niveles de protección para acceder a sus funciones. Cada uno de estos niveles permite ejecutar determinadas funciones sin la contraseña. Si se introduce la contraseña correcta, es posible acceder a todas las funciones. El ajuste estándar para el S7-200 es el nivel 1 (privilegios totales).

Si se introduce la contraseña a través de una red, no se afecta la protección con contraseña del S7-200.

Tabla 4-3 Restringir el acceso al S7-200

Función de la CPU	Nivel 1	Nivel 2	Nivel 3
Leer y escribir datos de usuario	Permitido	Permitido	Permitido
Arrancar, detener y rearrancar la CPU			
Leer y escribir el reloj de tiempo real			
Cargar en la PG/el PC el programa de usuario, los datos y la configuración de la CPU	Permitido	Permitido	Restringido
Cargar en la CPU	Permitido	Restringido	
Obtener el estado de ejecución			
Borrar el bloque de programa, el bloque de datos o el bloque de sistema			
Forzar datos o ejecutar uno o varios ciclos			
Copiar en el cartucho de memoria			
Escribir en las salidas en modo STOP			

Si un usuario tiene acceso a las funciones restringidas, ello no autoriza a los demás usuarios a acceder a esas funciones. El acceso ilimitado a las funciones del S7-200 sólo se permite a un usuario a la vez.

Consejo

Una vez introducida la contraseña, el nivel de protección se conservará aproximadamente durante un minuto tras haber desconectado la unidad de programación del S7-200. Salga siempre de STEP 7-Micro/WIN antes de desconectar el cable para evitar que otro usuario acceda a los privilegios de la unidad de programación.

Definir una contraseña para el S7-200

En el cuadro de diálogo "Bloque de sistema" (v. fig. 4-31) se puede definir una contraseña para el S7-200: El ajuste estándar para el S7-200 es el nivel 1 (privilegios totales).

- Elija el comando de menú Ver > Componente > Bloque de sistema para visualizar el cuadro de diálogo "Bloque de sistema" y seleccione "Contraseña".
- 2. Seleccione el nivel de protección deseado para el S7-200.
- Introduzca y verifique la contraseña para el acceso parcial (nivel 2) o mínimo (nivel 3).
- 4. Haga clic en "Aceptar".
- 5. Cargue en el S7-200 el bloque de sistema modificado.

Bloque de sistema Fuertos de comunicación Contractos C	Contraceña Estándar Pitivlegios
 Baca clic nara obtener a 	Para que los parámetros de configuración tengan efecto, es preciso carganios previamente en la CPU. Virida v sonnn te Aceptar Cancelar Estándar

Figura 4-31 Definir una contraseña

Remedio si se olvida la contraseña

Si se olvida la contraseña, es preciso efectuar un borrado total de la memoria del S7-200 y volver a cargar el programa. Al borrar la memoria del S7-200, éste pasa a modo STOP y recupera los ajustes estándar, con excepción de la dirección de red, la velocidad de transferencia y el reloj de tiempo real. Para borrar el programa en el S7-200:

- 1. Elija el comando de menú CPU > Borrar para visualizar el cuadro de diálogo "Borrar CPU".
- 2. Seleccione los tres bloques y confirme haciendo clic en "Aceptar".
- Si se ha definido una contraseña, STEP 7-Micro/WIN visualizará el cuadro de diálogo "Contraseña". Para borrar la contraseña, introduzca CLEARPLC en el cuadro de diálogo para continuar con la operación de borrado total. (La contraseña CLEARPLC no distingue entre mayúsculas y minúsculas.)

La función de borrado total no borra el programa contenido en el cartucho de memoria. Puesto que en éste último se encuentra almacenado no sólo el programa, sino también la contraseña, es preciso volver a programar también el cartucho para borrar la contraseña olvidada.

Precaución

Al efectuarse un borrado total del S7-200, se desactivan las salidas (si son salidas analógicas, éstas se congelan en un valor determinado).

Si el S7-200 está conectado a otros equipos durante el borrado total, es posible que los cambios de las salidas se transfieran también a esos equipos. Si ha determinado que el "estado seguro" de las salidas sea diferente al ajustado de fábrica, es posible que los cambios de las salidas provoquen reacciones inesperadas en los equipos, lo que podría causar la muerte o heridas graves personales y/o daños materiales.

Adopte siempre las medidas de seguridad apropiadas y vigile que el proceso se encuentre en un estado seguro antes de efectuar un borrado total de la memoria del S7-200.

Potenciómetros analógicos del S7-200

Los potenciómetros analógicos están ubicados debajo de la tapa de acceso frontal de la CPU. Estos potenciómetros permiten incrementar o decrementar valores almacenados en los bytes de marcas especiales (SMB). El programa puede utilizar estos valores de sólo lectura para diversas funciones, por ejemplo, para actualizar el valor actual de un temporizador o de un contador, para introducir o modificar los valores estándar, o bien, para configurar límites. Utilice un destornillador pequeño para ajustar los potenciómetros. Gire el potenciómetro hacia la derecha para incrementar el valor, o bien hacia la izquierda para decrementarlo.

SMB28 almacena el valor digital que representa la posición del potenciómetro analógico 0. SMB29 almacena el valor digital que representa la posición del potenciómetro analógico 1. El potenciómetro analógico tiene un rango nominal comprendido entre 0 y 255, así como una capacidad de repetición de ±2 contajes.

Entradas y salidas rápidas del S7-200

Contadores rápidos

El S7-200 dispone de contadores rápidos integrados que cuentan eventos externos sin influir en el funcionamiento del autómata programable. En el anexo A se indican las velocidades soportadas por los diversos modelos de CPUs. Todos los contadores disponen de entradas que soportan funciones tales como relojes, control del sentido, puesta a 0 y arranque. Es posible seleccionar diferentes modos de cuadratura para variar la velocidad de contaje. Para más información sobre los contadores rápidos, consulte el capítulo 6.

Salida de impulsos de los contadores rápidos

El S7-200 soporta salidas de impulsos rápidos. Las salidas Q0.0 y Q0.1 generan un Tren de impulsos (PTO), o bien una Modulación por ancho de impulsos (PWM).

La función PTO ofrece una salida en cuadratura (con un ciclo de trabajo de 50%) para un número determinado de impulsos (comprendido entre 1 y 4.294.967.295 impulsos) y un tiempo de ciclo determinado (en microsegundos o milisegundos). La función Tren de impulsos (PTO) se puede programar para generar un tren de impulsos, o bien un perfil de impulsos compuesto por varios trenes de impulsos. Por ejemplo, es posible utilizar un perfil de impulsos para controlar un motor paso a paso utilizando una secuencia simple de aceleración, marcha y desaceleración, o bien secuencias más complicadas.

La función PWM ofrece un tiempo de ciclo fijo con un ciclo de trabajo variable. El tiempo de ciclo y el ancho de impulsos pueden indicarse en incrementos de microsegundos o milisegundos. Si el ancho de impulsos y el tiempo de ciclo son iguales, entonces el ciclo de trabajo (relación impulso-pausa) será de 100% y la salida se activará continuamente. Si el ancho de impulsos es cero, el ciclo de trabajo será de 0% y se desactivará la salida.

Para más información sobre las operaciones Tren de impulsos (PTO) y Modulación por ancho de impulsos (PWM), consulte el capítulo 6. Para más información sobre cómo utilizar la operación PTO para controlar movimientos en lazo abierto, consulte el capítulo 9.
Conceptos de programación, convenciones y funciones

El S7-200 ejecuta continuamente el programa para controlar una tarea o un proceso. El programa se crea con STEP 7-Micro/WIN y se carga en el S7-200. STEP 7-Micro/WIN ofrece diversas herramientas y funciones para crear, implementar y comprobar el programa de usuario.

Índice del capítulo

Crear una solución de automatización con un Micro-PLC	60
Elementos básicos de un programa	61
Utilizar STEP 7-Micro/WIN para crear programas	64
Juegos de operaciones SIMATIC e IEC 1131-3	67
Convenciones utilizadas en los editores de programas	68
Utilizar asistentes para facilitar la creación del programa	70
Eliminar errores en el S7-200	70
Asignar direcciones y valores iniciales en el editor de bloque de datos	73
Utilizar la tabla de símbolos para el direccionamiento simbólico de variables	74
Utilizar variables locales	75
Utilizar la tabla de estado para observar el programa	75
Crear una librería de operaciones	76
Funciones para comprobar el programa	76

Crear una solución de automatización con un Micro-PLC

Existen diversos métodos para crear una solución de automatización con un Micro-PLC. Las reglas generales siguientes se pueden aplicar a numerosos proyectos. No obstante, también deberá tener en cuenta las reglas de su empresa y su propia experiencia.

Estructurar el proceso o la instalación

Divida el proceso o la instalación en secciones independientes. Estas secciones determinan los límites entre los diversos sistemas de automatización e influyen en las descripciones de las áreas de funciones y en la asignación de recursos.

Especificar las unidades funcionales

Describa las funciones de cada sección del proceso o de la instalación. Considere los siguientes aspectos: entradas y salidas, descripción del funcionamiento de la operación, estados que se deben alcanzar antes de ejecutar funciones con cada uno de los actuadores (electroválvulas, motores, accionamientos, etc.), descripción de la interfaz de operador y de las uniones con otras secciones del proceso o de la instalación.

Diseñar los circuitos de seguridad

Determine qué aparatos requieren un cableado permanente por motivos de seguridad. Si fallan los sistemas de automatización, puede ocurrir un arranque inesperado o un cambio en el funcionamiento de las máquinas. En este caso, pueden producirse lesiones graves o daños materiales. Por tanto, es preciso utilizar dispositivos de protección contra sobrecargas electromecánicas que funcionen independientemente del S7-200, evitando así las condiciones inseguras. Para diseñar los circuitos de seguridad:

- Defina el funcionamiento erróneo o inesperado de los actuadores que pudieran causar peligros.
- Defina las condiciones que garanticen un funcionamiento seguro y determine cómo detectar esas condiciones, independientemente del S7-200.
- Defina cómo el S7-200 y los módulos de ampliación deberán influir en el proceso cuando se conecte y desconecte la alimentación, así como al detectarse errores. Estas informaciones se deberán utilizar únicamente para diseñar el funcionamiento normal y el funcionamiento anormal esperado, sin poderse aplicar para fines de seguridad.
- Prevea dispositivos de parada de emergencia manual o de protección contra sobrecargas electromagnéticas que impidan un funcionamiento peligroso, independientemente del S7-200.
- Desde los circuitos independientes, transmita informaciones de estado apropiadas al S7-200 para que el programa y las interfaces de operador dispongan de los datos necesarios.
- Defina otros requisitos adicionales de seguridad para que el proceso se lleve a cabo de forma segura y fiable.

Definir las estaciones de operador

Conforme a las funciones exigidas, cree planos de las estaciones de operador considerando los aspectos siguientes:

- Panorámica de la ubicación de todas las estaciones de operador con respecto al proceso o a la instalación.
- Disposición mecánica de los componentes (pantalla, interruptores y lámparas) de la estación de operador.
- Esquemas eléctricos con las correspondientes entradas y salidas de la CPU S7-200 o de los módulos de ampliación.

Crear los planos de configuración

Conforme a las funciones exigidas, cree planos de configuración del sistema de automatización considerando los aspectos siguientes:

- Panorámica de la ubicación de todos los PLCs S7-200 con respecto al proceso o a la instalación.
- Disposición mecánica de los PLCs S7-200 y de los módulos de ampliación (incluyendo armarios, etc.)
- Esquemas eléctricos de todos los S7-200 y de los módulos de ampliación (incluyendo los números de referencia, las direcciones de comunicación y las direcciones de las entradas y salidas).

Crear una lista de nombres simbólicos (opcional)

Si desea utilizar nombres simbólicos para el direccionamiento, elabore una lista de nombres simbólicos para las direcciones absolutas. Incluya no sólo las entradas y salidas físicas, sino también todos los demás elementos que utilizará en el programa.

Elementos básicos de un programa

Un bloque de programa incluye el código ejecutable y los comentarios. El código ejecutable comprende el programa principal, así como subrutinas y/o rutinas de interrupción (opcionales). El código se compila y se carga en el S7-200, a excepción de los comentarios del programa. Las unidades de organización (programa principal, subrutinas y rutinas de interrupción) sirven para estructurar el programa de control.

El programa de ejemplo siguiente incluye una subrutina y una rutina de interrupción. Este programa utiliza una interrupción temporizada para leer el valor de una entrada analógica cada 100 ms.

Programa principal

Esta parte del programa contiene las operaciones que controlan la aplicación. El S7-200 ejecuta estas operaciones en orden secuencial en cada ciclo. El programa principal se denomina también OB1.

Subrutinas

Estos elementos opcionales del programa se ejecutan sólo cuando se llaman desde el programa principal, desde una rutina de interrupción, o bien desde otra subrutina. Las subrutinas son elementos opcionales del programa, adecuándose para funciones que se deban ejecutar repetidamente. Así, en vez de tener que escribir la lógica de la función en cada posición del programa principal donde se deba ejecutar esa función, basta con escribirla sólo una vez en una subrutina y llamar a la subrutina desde el programa principal cada vez que sea necesario. Las subrutinas tienen varias ventajas:

- La utilización de subrutinas permite reducir el tamaño total del programa.
- La utilización de subrutinas acorta el tiempo de ciclo, puesto que el código se ha extraído del programa principal. El S7-200 evalúa el código del programa principal en cada ciclo, sin importar si el código se ejecuta o no. Sin embargo, el S7-200 evalúa el código en la subrutina sólo si se llama a ésta. En cambio, no lo evalúa en los ciclos en los que no se llame a la subrutina.
- La utilización de subrutinas crea códigos portátiles. Es posible aislar el código de una \Box función en una subrutina y copiar ésta a otros programas sin necesidad de efectuar cambios o con sólo pocas modificaciones.

Cons	5
------	---

ejo

La utilización de direcciones de la memoria V limita la portabilidad de las subrutinas, ya que la asignación de direcciones de un programa en la memoria V puede estar en conflicto con la asignación en un programa diferente. En cambio, las subrutinas que utilizan la tabla de variables locales (memoria L) para todas las asignaciones de direcciones se pueden transportar muy fácilmente, puesto que no presentan el riesgo de conflictos de direcciones entre la subrutina y otra parte del programa.

Rutinas de interrupción

Estos elementos opcionales del programa reaccionan a determinados eventos de interrupción. Las rutinas de interrupción se pueden programar para gestionar eventos de interrupción predefinidos. El S7-200 ejecuta una rutina de interrupción cuando ocurre el evento asociado.

El programa principal no llama a las rutinas de interrupción. Una rutina de interrupción se asocia a un evento de interrupción y el S7-200 ejecuta las operaciones contenidas en esa rutina sólo cada vez que ocurra el evento en cuestión.

Consejo

Puesto que no es posible saber con anterioridad cuándo el S7-200 generará una interrupción, es recomendable limitar el número de variables utilizadas tanto por la rutina de interrupción como en otra parte del programa.

Utilice la tabla de variables locales de la rutina de interrupción para garantizar que ésta utilice únicamente la memoria temporal, de manera que no se sobrescriban los datos utilizados en ninguna otra parte del programa.

Hay diversas técnicas de programación que se pueden utilizar para garantizar que el programa principal y las rutinas de interrupción compartan los datos correctamente. Estas técnicas se describen en el capítulo 6 en relación con las operaciones de interrupción.

Otros elementos del programa

Hay otros bloques que contienen información para el S7-200. A la hora de cargar el programa en el S7-200, es posible indicar qué bloques se deben cargar también.

Bloque de sistema

El bloque de sistema permite configurar diversas opciones de hardware para el S7-200.

Bloque de datos

Bloque de datos

En el bloque de datos se almacenan los valores de las diferentes variables (memoria V) utilizadas en el programa. Este bloque se puede usar para introducir los valores iniciales de los datos.

Utilizar STEP 7-Micro/WIN para crear programas

Para iniciar STEP 7-Micro/WIN, haga doble clic en el icono de STEP 7-Micro/WIN o elija los comandos **Inicio > SIMATIC > STEP 7 Micro/WIN 32 V4.0**. Como muestra la figura NO TAG, STEP 7-Micro/WIN ofrece una interfaz de usuario cómoda para crear el programa de control.

Las barras de herramientas incorporan botones de método abreviado para los comandos de menú de uso frecuente. Estas barras se pueden mostrar u ocultar.

La barra de navegación comprende iconos que permiten acceder a las diversas funciones de programación de STEP 7-Micro/WIN.

En el árbol de operaciones se visualizan todos los objetos del proyecto y las operaciones para crear el programa de control. Para insertar operaciones en el programa, puede utilizar el método de "arrastrar y soltar" desde el árbol de operaciones, o bien hacer doble clic en una operación con objeto de insertarla en la posición actual del cursor en el editor de programas.

El editor de programas contiene el programa y una tabla de variables locales donde se pueden asignar nombres simbólicos a las variables locales temporales. Las subrutinas y las rutinas de interrupción se visualizan en forma de fichas en el borde inferior del editor de programas. Para acceder a las subrutinas, a las rutinas de interrupción o al programa principal, haga clic en la ficha en cuestión.

Figura 5-1 STEP 7-Micro/WIN

STEP 7-Micro/WIN incorpora los tres editores de programas siguientes: Esquema de contactos (KOP), Lista de instrucciones (AWL) y Diagrama de funciones (FUP). Con algunas restricciones, los programas creados con uno de estos editores se pueden visualizar y editar con los demás.

Funciones del editor AWL

El editor AWL visualiza el programa textualmente. Permite crear programas de control introduciendo la nemotécnica de las operaciones. El editor AWL sirve para crear ciertos programas que, de otra forma, no se podrían programar con los editores KOP ni FUP. Ello se debe a que AWL es el lenguaje nativo del S7-200, a diferencia de los editores gráficos, sujetos a ciertas restricciones para poder dibujar los diagramas correctamente. Como muestra la figura 5-2, esta forma textual es muy similar a la programación en lenguaje ensamblador.

El S7-200 ejecuta cada operación en el orden determinado por el programa, de arriba a abajo, reiniciando después arriba. AWL utiliza una pila lógica para resolver	LD A =	10.0 10.1 Q0.0	//Leer una entrada //AND con otra entrada //Escribir en el valor en //Ia salida 1	
operaciones AWL para procesar las operaciones de pila.	Figura 5-2	Programa de	e ejemplo AWL	

Considere los siguientes aspectos importantes cuando desee utilizar el editor AWL:

- El lenguaje AWL es más apropiado para los programadores expertos.
- □ En algunos casos, AWL permite solucionar problemas que no se podrían resolver fácilmente con los editores KOP o FUP.
- El editor AWL soporta sólo el juego de operaciones SIMATIC.
- En tanto que el editor AWL se puede utilizar siempre para ver o editar programas creados con los editores KOP o FUP, lo contrario no es posible en todos los casos. Los editores KOP o FUP no siempre se pueden utilizar para visualizar un programa que se haya creado en AWL.

Funciones del editor KOP

El editor KOP visualiza el programa gráficamente, de forma similar a un esquema de circuitos. Los programas KOP hacen que el programa emule la circulación de corriente eléctrica desde una fuente de alimentación, a través de una serie de condiciones lógicas de entrada que, a su vez, habilitan condiciones lógicas de salida. Los programas KOP incluyen una barra de alimentación izquierda que está energizada. Los contactos cerrados permiten que la corriente circule por ellos hasta el siguiente elemento, en tanto que los contactos abiertos bloquean el flujo de energía.

La lógica se divide en segmentos ("networks"). El programa se ejecuta un segmento tras otro, de izquierda a derecha y luego de arriba a abajo. La figura 5-3 muestra un ejemplo de un programa KOP. Las operaciones se representan mediante símbolos gráficos que incluyen tres formas básicas.

Los contactos representan condiciones lógicas de entrada, tales como interruptores, botones o condiciones internas.

Las bobinas representan condiciones lógicas de salida, tales como lámparas, arrancadores de motor, relés interpuestos o condiciones internas de salida.

Figura 5-3 Programa de ejemplo KOP

Los cuadros representan operaciones adicionales, tales como temporizadores, contadores u operaciones aritméticas.

Considere los siguientes aspectos importantes cuando desee utilizar el editor KOP:

- El lenguaje KOP les facilita el trabajo a los programadores principiantes.
- La representación gráfica es fácil de comprender, siendo popular en el mundo entero.
- El editor KOP se puede utilizar con los juegos de operaciones SIMATIC e IEC 1131-3.
- El editor AWL se puede utilizar siempre para visualizar un programa creado en KOP SIMATIC.

Funciones del editor FUP

El editor FUP visualiza el programa gráficamente, de forma similar a los circuitos de puertas lógicas. En FUP no existen contactos ni bobinas como en el editor KOP, pero sí hay operaciones equivalentes que se representan en forma de cuadros.

La figura 5-4 muestra un ejemplo de un programa FUP.

El lenguaje de programación FUP no utiliza las barras de alimentación izquierda ni derecha. Sin embargo, el término "circulación de corriente" se utiliza para expresar el concepto análogo del flujo de señales por los bloques lógicos FUP.

Figura 5-4 Programa de ejemplo FUP

El recorrido "1" lógico por los elementos FUP se denomina circulación de corriente. El origen de una entrada de circulación de corriente y el destino de una salida de circulación de corriente se pueden asignar directamente a un operando.

La lógica del programa se deriva de las conexiones entre las operaciones de cuadro. Ello significa que la salida de una operación (por ejemplo, un cuadro AND) se puede utilizar para habilitar otra operación (por ejemplo, un temporizador), con objeto de crear la lógica de control necesaria. Estas conexiones permiten solucionar numerosos problemas lógicos.

Considere los siguientes aspectos importantes cuando desee utilizar el editor FUP:

- El estilo de representación en forma de puertas gráficas se adecúa especialmente para observar el flujo del programa.
- El editor FUP soporta los juegos de operaciones SIMATIC e IEC 1131-3.
- El editor AWL se puede utilizar siempre para visualizar un programa creado en SIMATIC FUP.

Juegos de operaciones SIMATIC e IEC 1131-3

La mayoría de los sistemas de automatización ofrecen los mismos tipos básicos de operaciones. No obstante, existen pequeñas diferencias en cuanto al aspecto, al funcionamiento, etc. de los productos de los distintos fabricantes. Durante los últimos años, la Comisión Electrotécnica Internacional (CEI) o International Electrotechnical Commission (IEC) ha desarrollado una norma global dedicada a numerosos aspectos de la programación de autómatas programables (denominados "sistemas de automatización" en la terminología SIMATIC). El objetivo de esta norma es que los diferentes fabricantes de autómatas programables ofrezcan operaciones similares tanto en su aspecto como en su funcionamiento.

El S7-200 ofrece dos juegos de operaciones que permiten solucionar una gran variedad de tareas de automatización. El juego de operaciones IEC cumple con la norma IEC 1131-3 para la programación de autómatas programables (PLCs), en tanto que el juego de operaciones SIMATIC se ha diseñados especialmente para el S7-200.

Consejo

Si en STEP 7-Micro/WIN está ajustado el modo IEC, junto a las operaciones no definidas en la norma IEC 1131-3 se visualizará un diamante rojo (♦ en el árbol de operaciones.

Existen algunas diferencias básicas entre los juegos de operaciones SIMATIC e IEC:

- El juego de operaciones IEC se limita a las operaciones estándar comunes entre los fabricantes de autómatas programables. Algunas operaciones incluidas en el juego SIMATIC no están normalizadas en la norma IEC 1131-3. Éstas se pueden utilizar en calidad de operaciones no normalizadas. No obstante, en este caso, el programa ya no será absolutamente compatible con la norma IEC 1131-3.
- Algunos cuadros IEC soportan varios formatos de datos. A menudo, ésto se denomina sobrecarga. Por ejemplo, en lugar de tener cuadros aritméticos por separado, tales como ADD_I (Sumar enteros), ADD_R (Sumar reales) etc., la operación ADD definida en la norma IEC examina el formato de los datos a sumar y selecciona automáticamente la operación correcta en el S7-200. Así se puede ahorrar tiempo al diseñar los programas.
- Si se utilizan las operaciones IEC, se comprueba automáticamente si los parámetros de la operación corresponden al formato de datos correcto (por ejemplo, entero con signo o entero sin signo). Por ejemplo, si ha intentado introducir un valor de entero en una operación para la que se deba utilizar un valor binario (on/off), se indicará un error. Esta función permite reducir los errores de sintaxis de programación.

Considere los siguientes aspectos a la hora de seleccionar el juego de operaciones (SIMATIC o IEC):

- Por lo general, el tiempo de ejecución de las operaciones SIMATIC es más breve. Es posible que el tiempo de ejecución de algunas operaciones IEC sea más prolongado.
- El funcionamiento de algunas operaciones IEC (por ejemplo, temporizadores, contadores, multiplicación y división) es diferente al de sus equivalentes en SIMATIC.
- Las operaciones SIMATIC se pueden utilizar en los tres editores de programas disponibles (KOP, AWL y FUP). Las operaciones IEC sólo se pueden utilizar en los editores KOP y FUP.
- El funcionamiento de las operaciones IEC es igual en las diferentes marcas de autómatas programables (PLCs). Los conocimientos acerca de cómo crear un programa compatible con la norma IEC se pueden nivelar a lo largo de las plataformas de PLCs.
- Aunque la norma IEC define una menor cantidad de operaciones de las disponibles en el juego de operaciones SIMATIC, en los programas IEC se pueden incluir siempre también operaciones SIMATIC.
- La norma IEC 1131-3 especifica que las variables se deben declarar tipificadas, soportando que el sistema verifique el tipo de datos.

Convenciones utilizadas en los editores de programas

En todos los editores de programas de STEP 7-Micro/WIN rigen las convenciones siguientes:

- Si un nombre simbólico (por ejemplo, #var1) va antecedido de un signo de número (#), significa que se trata de un símbolo local.
- En las operaciones IEC, el símbolo % identifica una dirección directa.
- El símbolo de operando "?.?" ó "????" indica que el operando se debe configurar.

Los programas KOP se dividen en segmentos denominados "networks". Un segmento es una red organizada, compuesta por contactos, bobinas y cuadros que se interconectan para formar un circuito completo. No se permiten los cortocircuitos, ni los circuitos abiertos, ni la circulación de corriente inversa. STEP 7-Micro/WIN ofrece la posibilidad de crear comentarios para cada uno de los segmentos del programa KOP. El lenguaje FUP utiliza el concepto de segmentos para subdividir y comentar el programa.

Los programas AWL no utilizan segmentos. Sin embargo, la palabra clave NETWORK se puede utilizar para estructurar el programa.

Convenciones específicas del editor KOP

En el editor KOP, las teclas de función F4, F6 y F9 sirven para acceder a los contactos, los cuadros y las bobinas. El editor KOP utiliza las convenciones siguientes:

- El símbolo "--->>" representa un circuito abierto o una conexión necesaria para la circulación de corriente.
- □ El símbolo "→" indica que la salida es una conexión opcional para la circulación de corriente en una operación que se puede disponer en cascada o conectar en serie.
- El símbolo ">>" indica que se puede utilizar la circulación de corriente.

Convenciones específicas del editor FUP

En el editor FUP, las teclas de función F4, F6 y F9 sirven para acceder a las operaciones AND y OR, así como a las operaciones con cuadros. El editor FUP utiliza las convenciones siguientes:

- El símbolo "--->>" en un operando EN es un indicador de circulación de corriente o de operando. También puede representar un circuito abierto o una conexión necesaria para la circulación de corriente.
- □ El símbolo "→" indica que la salida es una conexión opcional para la circulación de corriente en una operación que se puede disponer en cascada o conectar en serie.
- Los símbolos "<<" y ">>" indican que se puede utilizar bien sea un valor, o bien la circulación de corriente.
- Símbolo de negación: La condición lógica NOT (la condición invertida) del operando o la corriente se representa mediante un círculo pequeño en la entrada. En la figura 5-5, Q0.0 es igual al NOT de I0.0 AND I0.1. Los símbolos de negación sólo son aplicables a las señales booleanas, que se pueden indicar en forma de parámetros o de circulación de corriente.

Figura 5-5 Convenciones FUP

- Indicadores directos: Como muestra la figura 5-5, el editor FUP visualiza una condición directa de un operando booleano mediante una línea vertical en la entrada de una operación FUP. El indicador directo causa un lectura directa de la entrada física indicada. Los indicadores directos sólo son aplicables a las entradas físicas.
- Cuadro sin entradas ni salidas: Un cuadro sin entradas ni salidas indica que la operación no depende de la circulación de corriente.

Consejo

La cantidad de operandos se puede incrementar hasta 32 entradas en el caso de las operaciones AND y OR. Para agregar o quitar operandos, utilice las teclas "+" y "-" del teclado, respectivamente.

Convenciones generales para programar el S7-200

Definición de EN/ENO

EN (entrada de habilitación) es una entrada booleana para los cuadros KOP y FUP. Para que la operación se pueda ejecutar, el estado de señal de la entrada EN deberá ser "1" (ON). En AWL, las operaciones no tienen una entrada EN, pero el valor del nivel superior de la pila deberá ser un "1" lógico para poder ejecutar la operación AWL correspondiente.

ENO (salida de habilitación) es una salida booleana para los cuadros KOP y FUP. Si el estado de señal de la entrada EN es "1" y el cuadro ejecuta la función sin errores, la salida ENO conducirá corriente al siguiente elemento. Si se detecta un error en la ejecución del cuadro, la circulación de corriente se detendrá en el cuadro que ha generado el error.

En AWL no existe la salida ENO, pero las operaciones AWL correspondientes a las funciones KOP y FUP con salidas ENO activarán un bit ENO especial. A este bit se accede mediante la operación AND ENO (AENO), pudiendo utilizarse para generar el mismo efecto que el bit ENO de un cuadro.

Consejo

Los operandos y los tipos de datos EN/ENO no figuran en la tabla de operandos válidos de las operaciones, puesto que son idénticos para todas las operaciones KOP y FUP. La tabla 5-1 muestra los operandos y tipos de datos EN/ENO para KOP y FUP, siendo aplicables a todas las operaciones KOP y FUP descritas en el presente manual.

Tabla 5-1	Operandos y	/ tipos de datos	EN/ENO p	bara KOP	y FUP
-----------	-------------	------------------	----------	----------	-------

Editor de programas	Entradas/salidas	Operandos	Tipos de datos
KOP	EN, ENO	Circulación de corriente	BOOL
FUP	EN, ENO	I, Q, V, M, SM, S, T, C, L	BOOL

Entradas condicionadas e incondicionadas

En KOP y FUP, un cuadro o una bobina que dependa de la circulación de corriente aparecerá conectado a algún elemento a la izquierda. Una bobina o un cuadro que no dependa de la circulación de corriente se mostrará con una conexión directa a la barra de alimentación izquierda. La tabla 5-2 muestra dos entradas: una condicionada y otra incondicionada.

	Tabla 5-2	Representación d	e entradas	condicionadas	e incondicionad
--	-----------	------------------	------------	---------------	-----------------

Circulación de corriente	КОР	FUP
Operación dependiente de la circulación de corriente (condicionada)	1 —(JMP)	- JMP
Operación independiente de la circulación de corriente (incondicionada)		NEXT

Operaciones sin salidas

Los cuadros que no se puedan conectar en cascada se representan sin salidas booleanas. Estos cuadros incluyen las llamadas a subrutinas, JMP y CRET. También hay bobinas KOP que sólo se pueden disponer en la barra de alimentación izquierda, incluyendo las operaciones Definir meta, NEXT, Cargar relé de control secuencial, Fin condicionado del relé de control secuencial y Fin del relé de control secuencial. Estas operaciones se representan en FUP en forma de cuadros con entradas sin meta y sin salidas.

Operaciones de comparación

Las operaciones de comparación se ejecutan sin tener en cuenta el estado de señal. Si el estado es "0" (FALSO), el estado de señal de la salida también será "0" (FALSO). Si el estado de señal es "1" (VERDADERO), la salida se activará dependiendo del resultado de la comparación. Las operaciones de comparación FUP (SIMATIC), LD (IEC) y FBD (IEC) se representan con cuadros, aunque la operación se ejecute en forma de contacto.

Utilizar asistentes para facilitar la creación del programa

STEP 7-Micro/WIN incorpora diversos asistentes para facilitar y automatizar algunas funciones de programación. En el capítulo 6, las operaciones que tienen un asistente asociado se identifican con el icono siguiente:

Eliminar errores en el S7-200

El S7-200 clasifica los errores en errores fatales y no fatales. Para visualizar los códigos generados por los errores, elija el comando de menú **CPU > Información**.

La figura 5-6 muestra el cuadro de diálogo "Información CPU". Allí se visualizan el código y la descripción del error.

El campo "Último fatal" muestra el último código de error fatal generado por el S7-200. Al desconectarse la alimentación, este valor se conservará si se respalda la RAM. El valor se pondrá a 0 si se efectúa un borrado total del S7-200 o si la RAM no se respalda tras un corte prolongado de la alimentación.

El campo "Total fatales" muestra el contaje total de los errores fatales generados por el S7-200 desde la última vez que se efectuó un borrado total de la memoria. Al desconectarse la alimentación, este valor se conservará si se respalda la RAM. El valor se pondrá a 0 si se efectúa un borrado total del S7-200 o si la RAM no se respalda tras un corte prolongado de la alimentación.

En el anexo C figuran los códigos de error del S7-200 y en el anexo D se describen las marcas especiales (SM) que se pueden utilizar para detectar errores.

Modo de operación:		RUN				
Versión				- Tiempos	de ciclo (ms)	
CPU:	CF	PU 224 REL 02.00		Último:		1
Firmware:		02.00 Versión 2		M ínimo:		1
ASIC:		00.00		Máximo:		1
Errores						
Fatales:	0	No se han presentad	o errore	s fatales.		
No fatales:	0	No se han presentad	o errore	s no fatales		
Último fatal:		No se han presentad	o errore	s fatales.		
Total fatales:	0]				
Errores de E/S						
Nº de errores:		0				
Errores detectados:		Sin errores de E/S.				~
Módulo Tipo		E Comienzo	S I	Comienzo	Estado	
CPU Digitales		16 IO.O	16 (20.0	Sin error	
					No existe No existe	
					No existe	
2					No existe	
1 2 3					THU CAIS(C	
1 2 3 4 5					No existe	
1 2 3 4 5 5					No existe No existe	

Figura 5-6 Cuadro de diálogo "Información CPU"

Errores no fatales

Los errores no fatales indican problemas en relación con la estructura del programa de usuario, con la ejecución de una operación en el programa de usuario o con los módulos de ampliación. STEP 7-Micro/WIN permite visualizar los códigos generados por los errores no fatales. Hay tres categorías básicas de errores no fatales.

Errores de compilación del programa

Al cargar un programa en el S7-200, éste lo compila. Si durante la compilación se detecta una violación de las reglas, el proceso de carga se suspenderá, generándose entonces un código de error. (Si ya se ha cargado un programa en el S7-200, seguirá existiendo en la memoria permanente, por lo que no se perderá). Una vez corregido el programa, se podrá cargar de nuevo. El anexo C contiene una lista de violaciones de las reglas de compilación.

Errores de E/S

Al arrancar, el S7-200 lee la configuración de E/S de todos los módulos. Durante el funcionamiento normal, el S7-200 comprueba periódicamente el estado de todos los módulos y lo compara con la configuración obtenida durante el arranque. Si el S7-200 detecta una diferencia, activará el bit de error de configuración en el registro de errores del módulo. El S7-200 no leerá datos de las entradas ni escribirá datos en las salidas de ese módulo hasta que la configuración concuerde de nuevo con la obtenida durante el arranque.

La información de estado del módulo se guarda en marcas especiales (SM). El programa puede observar y evaluar estas marcas. Consulte el anexo D para obtener más información acerca de las marcas especiales utilizadas para indicar los errores de E/S. SM5.0 es la marca global de errores de E/S, permaneciendo activada mientras exista una condición de error en un módulo de ampliación.

Errores de programación en el tiempo de ejecución

El programa puede crear condiciones de error mientras se está ejecutando. Estos errores pueden ocurrir debido al uso incorrecto de una operación, o bien si una operación procesa datos no válidos. Por ejemplo, un puntero de direccionamiento indirecto que era válido cuando se compiló el programa puede haber cambiado durante la ejecución del programa, señalando entonces a una dirección fuera de área. Este es un ejemplo de un error de programación en el tiempo de ejecución. La marca especial SM4.3 se activa al ocurrir este error y permanece activada mientras que el S7-200 se encuentre en modo RUN. (El anexo C incluye una lista de los errores de programa se guarda en marcas especiales (SM). El programa puede observar y evaluar estas marcas. Consulte el anexo D si desea obtener más información acerca de las marcas especiales utilizadas para indicar los errores de ejecución del programa.

El S7-200 no cambia a modo STOP cuando detecta un error no fatal. Tan sólo deposita el evento en la marca especial en cuestión y continúa ejecutando el programa. No obstante, es posible programar que el S7-200 cambie a modo STOP cuando se detecte un error no fatal. El siguiente programa de ejemplo muestra un segmento de un programa que observa las dos marcas globales de errores no fatales, cambiando el S7-200 a STOP cuando se active una de esas marcas.

Programa de ejemplo: Lógica para detectar una condición de error no fatal						
Network 1 SM5.0	Network 1	//Si ocurre un error de E/S o durante el tiempo //de ejecución, pasar a modo STOP.				
(sтор) 	LD SM5.0 O SM4.3 STOP					

Errores fatales

Cuando ocurre un error fatal, el S7-200 detiene la ejecución del programa. Según la gravedad del error, es posible que el S7-200 no pueda ejecutar todas las funciones, o incluso ninguna de ellas. El objetivo del tratamiento de errores fatales es conducir al S7-200 a un estado seguro, en el que se puedan analizar y eliminar las condiciones que hayan causado el error. Cuando se detecta un error fatal, el S7-200 cambia a modo STOP, enciende los indicadores "SF/DIAG (Rojo)" y "STOP", omite la tabla de salidas y desactiva las salidas. El S7-200 permanece en ese estado hasta que se haya eliminado la causa del error fatal.

Tras remediar las condiciones que causaron el error fatal, rearranque el S7-200 utilizando uno de los métodos siguientes:

- Desconecte la alimentación y vuelva a conectarla luego.
- Cambie el selector de modos de RUN o TERM a STOP.
- En STEP 7-Micro/WIN, elija el comando de menú CPU > Reset al arrancar. Ello obliga al S7-200 a efectuar un rearranque y a borrar todos los errores fatales.

Al rearrancar el S7-200 se borra la condición de error fatal y se ejecuta un diagnóstico de arranque para verificar si se ha corregido el error. En caso de detectarse otro error fatal, se encenderá de nuevo el indicador "SF". De lo contrario, el S7-200 comenzará a funcionar con normalidad.

Algunas condiciones de error incapacitan al S7-200 para la comunicación. En esos casos no es posible visualizar el código de error del S7-200. Estos errores indican fallos de hardware, por lo que es necesario reparar el S7-200. No se pueden solucionar modificando el programa ni borrando la memoria del S7-200.

Asignar direcciones y valores iniciales en el editor de bloque de datos

El editor de bloques de datos permite asignar datos iniciales sólo a la memoria V (memoria de variables). Se pueden efectuar asignaciones a bytes, palabras o palabras dobles de la memoria V. Los comentarios son opcionales.

El editor de bloques de datos es un editor de texto de libre formato. Por tanto, no hay campos específicos definidos para un tipo determinado de información. Tras introducir una línea, pulse la tecla INTRO. El editor formatea la línea (alinea las columnas de direcciones, los datos y los comentarios; pone las direcciones de la memoria V en mayúsculas) y la visualiza de nuevo. Si pulsa CTRL-INTRO, tras completar una línea de asignación, la dirección se incrementará automáticamente a la siguiente dirección disponible.

Figura 5-7 Editor de bloques de datos

El editor asigna una cantidad suficiente de la memoria V, en función de las direcciones que se hayan asignado previamente, así como del tamaño (byte, palabra o palabra doble) del (de los) valor(es) de datos.

La primera línea del bloque de datos debe contener una asignación de dirección explícita. Las líneas siguientes pueden contener asignaciones de direcciones explícitas o implícitas. El editor asignará una dirección implícita si se introducen varios valores de datos tras asignarse una sola dirección o si se introduce una línea que contenga únicamente valores de datos.

En el editor de bloques de datos se pueden utilizar mayúsculas y minúsculas. Además, es posible introducir comas, tabuladores y espacios que sirven de separadores entre las direcciones y los valores de datos.

Utilizar la tabla de símbolos para el direccionamiento simbólico de variables

En la tabla de símbolos es posible definir y editar los símbolos a los que pueden acceder los nombres simbólicos en cualquier parte del programa. Es posible crear varias tablas de símbolos. La tabla de símbolos incorpora también una ficha que contiene los símbolos definidos por el sistema utilizables en el programa de usuario. La tabla de símbolos se denomina también tabla de variables globales.

A los operandos de las operaciones se les pueden asignar direcciones absolutas o simbólicas. Una dirección absoluta utiliza el área de memoria y un bit o un byte para identificar la dirección. Una dirección simbólica utiliza una combinación de caracteres alfanuméricos para identificar la dirección.

En los programas SIMATIC, los símbolos globales se asignan utilizando la tabla de símbolos. En los programas IEC, los símbolos globales se asignan utilizando la tabla de variables globales.

	0	Q	Symbol	Address	Comment				
1		0	AlwaysOn	SM0.0	Always on contact				
2		0	Pump1	Q2.3	Pump 1 on/off				
3		0	Pump1Limit	11.1	Pump 1 pressure limit switch				
4		0	Pump1Pressure	VD100	Pump 1 current pressure (real)				
5		0	Pump1Rpm	VW200	Pump1 PRMs (integer)				
6									

Para asignar un símbolo a una dirección:

Figura 5-8 Tabla de símbolos

- 1. Haga clic en el icono "Tabla de símbolos" en la barra de navegación para abrir la tabla de símbolos.
- 2. En la columna "Nombre simbólico", teclee el nombre del símbolo (por ejemplo, "Entrada1"). Un nombre simbólico puede comprender 23 caracteres como máximo.
- 3. En la columna "Dirección", teclee la dirección (por ejemplo, 10.0).
- 4. Si está utilizando la tabla de variables globales (IEC), introduzca un valor en la columna "Tipo de datos" o seleccione uno del cuadro de lista.

Es posible crear varias tablas de símbolos. No obstante, una misma cadena no se puede utilizar más de una vez como símbolo global, ni en una misma tabla ni en tablas diferentes.

Utilizar variables locales

La tabla de variables locales del editor de programas se puede utilizar para asignar variables que existan únicamente en una subrutina o en una rutina de interrupción individual (v. fig. 5-9).

Las variables locales se pueden usar como parámetros que se transfieren a una subrutina, lo que permite incrementar la portabilidad y la reutilización de la subrutina.

B SIMATIC LAD							
•••••••••••••••••••••••••••••••••••••••							
	Name	Var Type	Data Type	Comment 🔺			
	EN	IN	BOOL				
L0.0	FirstPass	IN	BOOL	First pass flag			
LB1	Addr	IN	BYTE	Address of slave device			
LW2	Data	IN	INT	Data to write to slave			
LB4	Status	IN_OUT	BYTE	Status of write			
L5.0	Done	OUT	BOOL	Done flag			
LW6	Error	OUT	WORD	Error number (if any)			
▲ ► MAIN	λsbr_0 √ INT_	0/		•			

Figura 5-9 Tabla de variables locales

Utilizar la tabla de estado para observar el programa

La tabla de estado sirve para observar o modificar los valores de las variables del proceso a medida que el S7-200 ejecuta el programa. Es posible observar el estado de las entradas, salidas o variables del programa, visualizando para ello los valores actuales. La tabla de estado también permite forzar o modificar los valores de las variables del proceso.

Es posible crear varias tablas de estado para visualizar elementos de diferentes partes del programa.

Para acceder a la tabla de estado, elija el comando de menú **Ver > Componente > Tabla de estado** o haga clic en el icono "Tabla de estado" en la barra de navegación.

Al crear una tabla de estado se deben introducir las direcciones de las variables del proceso que se desean observar. No es posible visualizar el estado de las constantes, ni de los acumuladores, ni tampoco de las variables locales. Los valores de los temporizadores y contadores se pueden visualizar en formato de bit o de palabra. En formato de bit, se visualizará el estado del bit del temporizador o del contador. En formato de palabra, se visualizará el valor del temporizador o del contador.

🔓 St	a Status Chart							
		· 2 · · · I · · ·	3 · · · 1 · · · 4 · · ·	5 6 .				
	Address	Format	Current Value	New Value 🔺				
1	Pump1	Bit	2#0					
2	Pump1Limit	Bit	2#0					
3	Pump1Pressure	Signed	+0					
4	Pump1Rpm	Signed	+0					
5	M3.7	Bit	2#0					
6	VB100	Hexadecimal	16#00					
7	VD200	Floating Point	0.0					
8		Signed						
4 ►	\CHT1/		4					

Para crear una tabla de estado y observar las variables:

- 1. En el campo "Dirección", introduzca la dirección de cada valor deseado.
- 2. En la columna "Formato", seleccione el tipo de datos.
- 3. Para visualizar el estado de las variables del proceso en el S7-200, elija el comando de menú **Test > Tabla de estado**.
- 4. Para observar continuamente los valores o para efectuar una sola lectura del estado, haga clic en el botón correspondiente en la barra de herramientas. La tabla de estado también permite modificar o forzar los valores de las variables del proceso.

Para insertar filas adicionales en la tabla de estado, elija los comandos de menú Edición > Insertar > Fila.

Consejo

Es posible crear varias tablas de estado para estructurar las variables en grupos lógicos, de manera que cada grupo se pueda visualizar por separado en una tabla de estado más pequeña.

Crear una librería de operaciones

STEP 7-Micro/WIN permite crear librerías de operaciones personalizadas, o bien utilizar una librería creada por otro usuario (v. fig. 5-11).

Para crear una librería de operaciones, es preciso generar subrutinas y rutinas de interrupción estándar en STEP 7-Micro/WIN y agruparlas luego. El código de estas rutinas se puede ocultar para que no sea modificado involuntariamente, o bien para proteger el know-how del autor.

🖻 💼 Operaciones

Para crear una librería de operaciones, proceda de la manera siguiente:

- Introduzca el programa en forma de proyecto estándar en STEP 7-Micro/WIN y deposite en una subrutina o en una rutina de interrupción la operación que desea incluir en la librería.
- Asigne nombres simbólicos a todas las direcciones de la memoria V contenidas en las subrutinas o en las rutinas de interrupción. Para reducir la cantidad de memoria V que necesita la librería, utilice direcciones consecutivas de la memoria V.
- Cambie los nombres de las subrutinas o de las rutinas de interrupción, indicando cómo deben aparecer en la librería de operaciones.
- Elija el comando de menú Archivo > Crear librería para compilar la nueva librería de operaciones.

Para más información acerca de cómo crear librerías, consulte la Ayuda en pantalla de STEP 7-Micro/WIN.

🛨 💼 Aritmética en coma fija 🗄 💼 Aritmética en coma flotante 🗄 📠 Cadena 🗄 🗹 Compara Librerías de operaciones 🗄 🞯 Comunic 🗄 🗐 Contador 🗄 🐨 Control del programa 🗄 🔤 Conversión 🗄 💼 Desplazamiento/rotació 🗄 🛅 Interrupción 🗄 🗐 Operaciones lógicz 🗄 💼 Operaciones lógizas con bits 🗄 💿 Reloj 🗄 🛅 Tabla E Temporiz dores Transfrencia 💼 Scaling (v1.1) [] Scale_I_to_R [] Scale_R_to_F [] Scale_R_I $Scale_R_to_R$ 🕂 📾 Llamar a subrutinas

Para acceder a una operación contenida en una librería, proceda de la manera siguiente:

- 1. Para agregar el directorio "Librerías" al árbol de operaciones, elija el comando de menú Archivo > Agregar librerías.
- 2. Seleccione la operación deseada e insértela en el programa (de igual manera que al insertar una operación estándar).

Si la rutina de la librería necesita memoria V, una vez compilado el proyecto STEP 7-Micro/WIN le indicará que debe asignar un bloque de memoria. Utilice el cuadro de diálogo "Asignar memoria a librería" para asignar bloques de memoria.

Funciones para comprobar el programa

STEP 7-Micro/WIN incorpora las siguientes funciones para comprobar el programa:

- Los marcadores sirven para desplazarse fácilmente (hacia arriba y hacia abajo) por un programa extenso.
- La tabla de referencias cruzadas permite comprobar las referencias utilizadas en el programa.
- □ La edición en modo RUN se utiliza para efectuar cambios pequeños en el programa sin afectar demasiado a los equipos controlados. El bloque del programa también se puede cargar en la CPU durante la edición en modo RUN.

Para más información sobre cómo comprobar el programa, consulte el capítulo 8.

Juego de operaciones del S7-200

En el presente capítulo se describen las operaciones SIMATIC e IEC 1131 del S7-200.

Índice del capítulo

Convenciones utilizadas para describir las operaciones	79
Áreas de memoria y funciones del S7-200	80
Operaciones lógicas con bits	82
Contactos	82
Bobinas	85
Operaciones lógicas de pilas	87
Posicionar y rearmar dominante biestable	89
Operaciones de reloj	90
Operaciones de comunicación	93
Leer de la red y Escribir en la red	93
Transmitir mensaje y Recibir mensaje (Freeport)	98
Leer dirección de puerto y Ajustar dirección de puerto	108
Operaciones de comparación	109
Comparar valores numéricos	109
Comparar cadenas	111
Operaciones de conversión	112
Operaciones de conversión normalizadas	112
Operaciones de conversión ASCII	116
Operaciones de conversión de cadenas	120
Codificar y Decodificar	125
Operaciones de contaje	126
Operaciones de contaje (SIMATIC)	126
Operaciones de contaje (IEC)	129
Operaciones con contadores rápidos	131
Salida de impulsos	147
Operaciones aritméticas	154
Operaciones de sumar, restar, multiplicar y dividir	154
Multiplicar enteros a enteros dobles y Dividir enteros con resto	156
Operaciones con funciones numéricas	157
Incrementar y decrementar	158
Regulación PID proporcional/integral/derivativa	159
Operaciones de interrupción	167
Operaciones lógicas	175
Operaciones de invertir	175
Operaciones de combinación con Y, O y O-exclusiva	176
Operaciones de transferencia	178
Transferir bytes, palabras, palabras dobles v números reales	178
Transferir bytes directamente (lectura y escritura)	179
Operaciones de transferencia en bloque	180

Operaciones de control del programa	181
Fin condicionado	181
STOP	181
Borrar temporizador de vigilancia	181
FOR y NEXT	183
Operaciones de salto	185
Operaciones del relé de control secuencial (SCR)	186
LED de diagnóstico	192
Operaciones de desplazamiento y rotación	193
Desplazar a la derecha y Desplazar a la izquierda	193
Rotar a la derecha y Rotar a la izquierda	193
Registro de desplazamiento	195
Invertir bytes de una palabra	197
Operaciones con cadenas	198
Operaciones de tabla	203
Registrar valor en tabla	203
Borrar primer registro de la tabla y Borrar último registro de la tabla	204
Inicializar memoria	206
Buscar valor en tabla	207
Operaciones de temporización	210
Operaciones de temporización (SIMATIC)	210
Operaciones de temporización (IEC)	215
Temporizadores de intervalos	217
Operaciones con subrutinas	218

Convenciones utilizadas para describir las operaciones

La figura 6-1 muestra una descripción típica de una operación y señala las diferentes áreas utilizadas para describir la operación y su funcionamiento. La ilustración de la operación muestra el formato en KOP (LD), FUP (FBD) y AWL. Tenga en cuenta que la terminología IEC difiere considerablemente de la terminología SIMATIC (tanto en cuanto a los nombres de las operaciones como al de los lenguajes de programación). Por ejemplo, en SIMATIC existe la operación Incrementar contador (CTU), en tanto que en IEC se hace referencia al bloque funcional Contador ascendente (CTU). Además, en SIMATIC se habla del lenguaje KOP (Esquema de contactos) que equivale en IEC al lenguaje LD (Diagrama de escalera). Igualmente, el lenguaje FUP (Diagrama de funciones) de SIMATIC se denomina FBD (Diagrama de bloques funcionales) en IEC. En la tabla de operandos figuran los operandos de la operación, así como los tipos de datos válidos, las áreas de memoria y los tamaños de cada uno de los operandos.

Los operandos y los tipos de datos EN/ENO no figuran en la tabla de operandos de la operación, puesto que son idénticos para todas las operaciones KOP y FUP.

- En KOP: EN y ENO son conductores de corriente y su tipo de datos es BOOL.
- En FUP: EN y ENO son I, Q, V, M, SM, S, T, C, L o conductores de corriente y su tipo de datos es BOOL.

Áreas de memoria y funciones del S7-200

Descripción		CPU 221	CPU 222	CPU 224	CPU 224XP	CPU 226			
Tamaño del programa de usuario con edición en modo RUN sin edición en modo RUN		4096 bytes 4096 bytes	4096 bytes 4096 bytes	8192 bytes 12288 bytes	12288 bytes 16384 bytes	16384 bytes 24576 bytes			
Tamaño de los datos usuario	de	2048 bytes	2048 bytes	8192 bytes	10240 bytes	10240 bytes			
Imagen del proceso o entradas	le las	10.0 a 115.7							
Imagen del proceso o salidas	le las	Q0.0 a Q15.7							
Entradas analógicas (sólo lectura)		AIW0 a AIW30	AIW0 a AIW30	AIW0 a AIW62	AIW0 a AIW62	AIW0 a AIW62			
Salidas analógicas (sólo escritura)		AQW0 a AQW30	AQW0 a AQW30	AQW0 a AQW62	AQW0 a AQW62	AQW0 a AQW62			
Memoria de variables	s (V)	VB0 a VB2047	VB0 a VB2047	VB0 a VB8191	VB0 a VB10239	VB0 a VB10239			
Memoria local (L) ¹		LB0 a LB63							
Área de marcas (M)		M0.0 a M31.7							
Marcas especiales (S	SM)	SM0.0 a SM179.7	SM0.0 a SM299.7	SM0.0 a SM549.7	SM0.0 a SM549.7	SM0.0 a SM549.7			
Sólo lectura		SM0.0 a SM29.7							
Temporizadores		256 (T0 a T255)							
Retardo a la conexión	ר 1 mo	TO T64				TO T64			
conmeniona	10 ms	T0, T04	T1 a T4 v	T0, T04	T0, T04	T1 a T4 v			
	To mo	T65 a T68							
	100 ms	T5 a T31 y T69 a T95							
Retardo a la	n								
conexion/desconexio	1 ms	T32, T96							
	10 ms	T33 a T36 y T97 a T100							
	100 ms	T37 a T63 y T101 a T255							
Contadores		C0 a C255							
Contadores rápidos		HC0 a HC5							
Relés de control secu (S)	uencial	S0.0 a S31.7							
Acumuladores		AC0 a AC3							
Saltos a metas		0 a 255							
Llamadas a subrutinas		0 a 63	0 a 63	0 a 63	0 a 63	0 a 127			
Rutinas de interrupcio	ón	0 a 127							
Detectar flanco positivo/negativo		256	256	256	256	256			
Lazos PID		0 a 7	0a7	0 a 7	0 a 7	0 a 7			
Puertos		Puerto 0	Puerto 0	Puerto 0	Puerto 0, puerto 1	Puerto 0, puerto 1			

Tabla 6-1Áreas de memoria y funciones de las CPUs S7-200

¹ STEP 7-Micro/WIN (versión 3.0 o posterior) reserva LB60 a LB63.

Tipo de acceso	CPU 221	CPU 222	CPU 224	CPU 224XP	CPU 226
Bit (byte.bit) I	0.0 a 15.7				
Q	0.0 a 15.7				
V	0.0 a 2047.7	0.0 a 2047.7	0.0 a 8191.7	0.0 a 10239.7	0.0 a 10239.7
Μ	0.0 a 31.7				
SM	0.0 a 165.7	0.0 a 299.7	0.0 a 549.7	0.0 a 549.7	0.0 a 549.7
S	0.0 a 31.7				
Т	0 a 255				
C	0 a 255				
L	0.0 a 63.7				
Byte IB	0 a 15				
QB	0 a 15				
VB	0 a 2047	0 a 2047	0 a 8191	0 a 10239	0 a 10239
MB	0 y 31				
SMB	0 a 165	0 a 299	0 a 549	0 a 549	0 a 549
SB	0 y 31				
LB	0 a 63				
AC	0 a 3	0 a 3	0 a 3	0 a 255	0 a 255
KB (constante)	KB (constante)	KB (constante)	KB (constante)	KB (constante)	KB (constante)
Palabra IW	0 a 14				
QW	0 a 14				
VW	0 a 2046	0 a 2046	0 a 8190	0 a 10238	0 a 10238
MW	0 a 30				
SMW	0 a 164	0 a 298	0 a 548	0 a 548	0 a 548
SW	0 a 30				
Т	0 a 255				
C	0 a 255				
LW	0 a 62				
AC	0 a 3	0 a 3	0 a 3	0 a 3	0 a 3
AIW	0 a 30	0 a 30	0 a 62	0 a 62	0 a 62
AQW	0 a 30	0 a 30	0 a 62	0 a 62	0 a 62
KW (constante)	KW (constante)	KW (constante)	KW (constante)	KW (constante)	KW (constante)
Palabra doble ID	0 a 12				
QD	0 a 12				
VD	0 a 2044	0 a 2044	0 a 8188	0 a 10236	0 a 10236
MD	0 a 28				
SMD	0 a 162	0 a 296	0 a 546	0 a 546	0 a 546
SD	0 a 28				
LD	0 a 60				
AC	0 a 3	0 a 3	0 a 3	0 a 3	0 a 3
HC	0 a 5	0 a 5	0 a 5	0 a 5	0 a 5
KD (constante)	KD (constante)	KD (constante)	KD (constante)	KD (constante)	KD (constante)

 Tabla 6-2
 Rangos de operandos de las CPUs S7-200

Operaciones lógicas con bits

Contactos

Contactos estándar

Las operaciones Contacto normalmente abierto (LD, A y O) y Contacto normalmente cerrado (LDN, AN y ON) leen el valor direccionado de la memoria (o bien de la imagen del proceso, si el tipo de datos es I o Q).

El Contacto normalmente abierto se cierra (ON) si el bit es igual a 1, en tanto que el Contacto normalmente cerrado se cierra (ON) si el bit es igual a 0. En FUP, la cantidad de entradas de los cuadros AND y OR se puede incrementar a 32 como máximo. En AWL, el Contacto normalmente abierto carga, o bien combina con Y u O el valor binario del bit de dirección en el nivel superior de la pila. El Contacto normalmente cerrado carga, o bien combina con Y u O el valor negado del bit de dirección en el nivel superior de la pila.

Contactos directos

Los contactos directos no dependen del ciclo del S7-200 para actualizarse, sino que se actualizan inmediatamente. Las operaciones del Contacto abierto directo (LDI, AI y OI) y del Contacto cerrado directo (LDNI, ANI y ONI) leen el valor de la entrada física cuando se ejecuta la operación, pero la imagen del proceso no se actualiza.

El Contacto abierto directo se cierra (ON) si la entrada física (bit) es 1, en tanto que el Contacto cerrado directo se cierra (ON) si la entrada física (bit) es 0. El Contacto abierto directo carga, o bien combina con Y u O directamente el valor de la entrada física en el nivel superior de la pila. El Contacto cerrado directo carga, o bien combina con Y u O directamente el valor binario negado de la entrada física en el nivel superior de la pila.

NOT

La operación NOT cambia el estado de la entrada de circulación de corriente (es decir, modifica el valor del nivel superior de la pila de "0" a "1", o bien de "1" a "0").

SIMATIC / IEC1131

SIMATI	ا ٢			
STL F C L F C C C C C C C C C C C C C C C	.D .DN .DN .DN .DN .DN .D	Bit Bit Bit Bit Bit	LDI AI OI LDNI ANI ONI	Bit Bit Bit Bit Bit Bit

Detectar flanco positivo y negativo

El contacto Detectar flanco positivo (EU) permite que la corriente circule durante un ciclo cada vez que se produce un cambio de "0" a "1" (de "off" a "on"). El contacto Detectar flanco negativo (ED) permite que la corriente circule durante un ciclo cada vez que se produce un cambio de "1" a "0" (de "on" a "off"). Cuando se detecta un cambio de señal de "0" a "1" en el primer valor de la pila, éste se pone a 1. En caso contrario, se pone a 0. Cuando se detecta un cambio de señal de "1" a "0" en el primer valor de la pila, éste se pone a 1. En caso contrario, se pone a 1. En caso contrario, se pone a 0.

Para poder editar el programa durante el tiempo de ejecución (es decir, en modo RUN) es preciso introducir un parámetro para las operaciones Detectar flanco positivo y Detectar flanco negativo. Para más información sobre la edición de programas en modo RUN, consulte el capítulo 5.

Tabla 6-3 Operandos válidos para las operaciones lógicas con bits de entrada

Entradas/salidas	Tipos de datos	Operandos
Bit	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Bit (directo)	BOOL	I

El S7-200 utiliza una pila lógica para resolver la lógica de control (v. fig. 6-2). En estos ejemplos, los valores iniciales de la pila se denominan "iv0" a "iv7". Los nuevos valores se representan mediante "nv", en tanto que "S0" es el valor calculado que se almacena en la pila lógica.

Cargar (LD, LDI, LDN, LDN) Carga un nuevo valor (nv) en la pila.	Antes iv0 iv1 iv2 iv3 iv4 iv5 iv6 iv7 iv8 ²	Después nv iv0 iv1 iv2 iv3 iv4 iv5 iv6 iv7	AND (A, AI, AN, ANI) Combina mediante Y un nuevo valor (nv) con el valor inicial (iv) del primer nivel de la pila. S0=iv0 AND nv	Antes iv0 iv1 iv2 iv3 iv4 iv5 iv6 iv7 iv8	Después S01 iv1 iv2 iv3 iv4 iv5 iv6 iv7 iv8	OR (O, OI, ON, ONI) Combina mediante O un nuevo valor (nv) con el valor inicial (iv) del primer nivel de la pila. S0=iv0 OR nv	Antes iv0 iv1 iv2 iv3 iv4 iv5 iv6 iv7 iv8	Después So1 iv1 iv2 iv3 iv4 iv5 iv6 iv7 iv8
--	---	---	--	--	--	---	--	--

¹ S0 identifica el valor calculado que se guarda en la pila lógica.

² Tras ejecutarse una operación de carga, se pierde el valor iv8.

Figura 6-2 Funcionamiento de las operaciones con contactos

Consejo

Puesto que las operaciones Detectar flanco positivo y Detectar flanco negativo exigen una transición de "off" a "on" o de "on" a "off", respectivamente, no es posible detectar un flanco positivo o negativo en el primer ciclo. En el primer ciclo, el S7-200 ajusta el estado del bit indicado por estas operaciones. En los ciclos siguientes, las operaciones pueden detectar flancos en el bit indicado.

SIMATIC / IEC1131

Bobinas

Asignar

La operación Asignar (=) escribe el nuevo valor del bit de salida en la imagen del proceso. Cuando se ejecuta la operación Asignar, el S7-200 activa o desactiva el bit de salida en la imagen del proceso. En KOP y FUP, el bit indicado se ajusta de forma equivalente a la circulación de la corriente. En AWL, el primer valor de la pila se copia en el bit indicado.

Asignar directamente

La operación Asignar directamente (=I) escribe el nuevo valor tanto en la salida física como en la correspondiente dirección de la imagen del proceso.

Cuando se ejecuta la operación Asignar directamente, la salida física (bit) se ajusta directamente de forma equivalente a la circulación de la corriente. En AWL, la operación copia el primer valor de la pila directamente en la salida física indicada (bit). La "I" indica que la operación se ejecuta directamente. El nuevo valor se escribe entonces tanto en la salida física como en la correspondiente dirección de la imagen del proceso. En cambio, en las operaciones no directas, el nuevo valor se escribe sólo en la imagen del proceso.

Poner a 1 y Poner a 0

Las operaciones Poner a 1 (S) y Poner a 0 (R) activan (ponen a 1) o desactivan (ponen a 0) el número indicado de E/S (N) a partir de la dirección indicada (bit). Es posible activar o desactivar un número de entradas y salidas (E/S) comprendido entre 1 y 255.

it it, N it, N
333

Si la operación Poner a 0 indica un bit de temporización (T) o un bit de contaje (C), se desactivará el bit de temporización o de contaje y se borrará el valor actual del temporizador o del contador, respectivamente.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)

Poner a 1 directamente y Poner a 0 directamente

Las operaciones Poner a 1 directamente (SI) y Poner a 0 directamente (RI) activan (ponen a 1) o desactivan (ponen a 0) directamente el número indicado de E/S (N) a partir de la dirección indicada (bit). Es posible activar o desactivar directamente un número de entradas y salidas (E/S) comprendido entre 1 y 128.

La "I" indica que la operación se ejecuta directamente. El nuevo valor se escribe tanto en la salida física como en la correspondiente dirección de la imagen del proceso. En cambio, en las operaciones no directas, el nuevo valor se escribe sólo en la imagen del proceso.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)

Tabla 6-4 Operandos válidos para las operaciones lógicas con bits de salida

Entradas/salidas	Tipos de datos	Operandos
Bit	BOOL	I, Q, V, M, SM, S, T, C, L
Bit (directo)	BOOL	Q
N	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante

Operaciones lógicas de pilas

Combinar primer y segundo valor mediante Y

La operación Combinar primer y segundo valor mediante Y (ALD) combina los valores del primer y segundo nivel de la pila mediante una operación lógica Y. El resultado se carga en el nivel superior de la pila. Una vez ejecutada la operación ALD, la profundidad de la pila tiene un nivel menos.

Combinar primer y segundo valor mediante O

La operación Combinar primer y segundo valor mediante O (OLD) combina los valores del primer y segundo nivel de la pila mediante una operación lógica O. El resultado se carga en el nivel superior de la pila. Una vez ejecutada la operación OLD, la profundidad de la pila tiene un nivel menos.

Duplicar primer valor

La operación Duplicar primer valor (LPS) duplica el primer valor de la pila y lo desplaza dentro de la misma. El último valor de la pila se expulsa y se pierde.

Copiar segundo valor

La operación Copiar segundo valor (LRD) copia el segundo valor de la pila en el nivel superior de la misma. En la pila no se carga ni se expulsa ningún valor. No obstante, el valor que se encontraba en el nivel superior se sobrescribe con el nuevo valor.

Sacar primer valor

La operación Sacar primer valor (LPP) desplaza el primer valor fuera de la pila. El segundo valor se convierte entonces en el primer nivel de la pila.

Y-ENO

La operación Y-ENO (AENO) combina mediante Y el bit ENO con el primer nivel de la pila para generar el mismo efecto que el bit ENO de un cuadro en KOP o FUP. El resultado de la operación de combinación mediante Y es el nuevo valor en el nivel superior de la pila.

ENO es una salida booleana para los cuadros KOP y FUP. Si la corriente fluye en un cuadro por la entrada EN y el cuadro se ejecuta sin error, la salida ENO conduce la corriente al siguiente elemento. ENO se puede utilizar como bit de habilitación para indicar que una operación se ha ejecutado correctamente. El bit ENO se utiliza en el primer nivel de la pila para influir en la circulación de la corriente cuando se ejecutan las operaciones posteriores. Las operaciones AWL carecen de una entrada de habilitación (EN). El primer nivel de la pila debe ser un 1 lógico para poder ejecutar las operaciones condicionadas. En AWL tampoco existe la salida de habilitación (ENO), pero las instrucciones AWL correspondientes a las operaciones KOP y FUP con salidas ENO activan un bit ENO especial. A este bit se puede acceder con la operación AENO.

Cargar pila

La operación Cargar pila (LDS) duplica el bit (N) la pila y lo deposita en el nivel superior de la misma. El último valor de la pila se expulsa y se pierde.

Tabla 6-5	Operandos válidos	para la operació	on Cargar pila

Entradas/salidas	Tipos de datos	Operandos
Ν	BYTE	Constante (0 a 8)

El S7-200 utiliza una pila lógica para resolver la lógica de control (v. fig. 6-3). En estos ejemplos, los valores iniciales de la pila se denominan "iv0" a "iv7". Los nuevos valores se representan mediante "nv", en tanto que "S0" es el valor calculado que se almacena en la pila lógica.

ALD Combina los valores del primer y segundo nivel de la pila mediante Y	Antes iv0 iv1 iv2 iv3 iv4 iv5 iv6	Después S0 iv2 iv3 iv4 iv5 iv6 iv7	OLD Combina los valores del primer y segundo nivel de la pila mediante O	Antes iv0 iv1 iv2 iv3 iv4 iv5 iv6	Después S0 iv2 iv3 iv4 iv5 iv6 iv7	LDS Cargar pila	Antes iv0 iv1 iv2 iv3 iv4 iv5 iv6	Después iv3 iv0 iv1 iv2 iv3 iv4 iv5
S0 = iv0 AND iv1	iv7 iv8 Antes	iv8 x1 Después	S0 = iv0 OR iv1	iv7 iv8 Antes	iv8 x1 Después	LPP	iv7 iv8 ²	iv6 iv7 Después
Duplicar primer valor	iv0 iv1 iv2 iv3 iv4	iv0 iv0 iv1 iv2 iv3	Copiar segundo valor	iv0 iv1 iv2 iv3 iv4	iv1 iv1 iv2 iv3 iv4	Sacar primer valor	iv0 iv1 iv2 iv3 iv4	iv1 iv2 iv3 iv4 iv5 iv6
	iv6 iv7 iv8 ²	iv4 iv5 iv6 iv7		iv6 iv7 iv8	iv6 iv7 iv8		iv6 iv7 iv8	ivo iv7 iv8 x1

La "x" significa que se desconoce el valor (puede ser 0 ó 1).
 Tras baberse ejecutado una operación Duplicar primer valor o Ca

Tras haberse ejecutado una operación Duplicar primer valor o Cargar pila, se pierde el valor iv8.

Figura 6-3 Funcionamiento de las operaciones lógicas de pilas

Posicionar y rearmar dominante biestable

La operación Posicionar dominante biestable es un flip-flop en el que domina la señal "posicionar". Si tanto la señal "posicionar" (S1) como la señal "rearmar" (R) son verdaderas, la salida (OUT) será verdadera.

La operación Rearmar dominante biestable es un flip-flop en el que domina la señal "rearmar". Si tanto la señal "posicionar" (S) como la señal "rearmar" (R1) son verdaderas, la salida (OUT) será falsa.

El parámetro "bit" indica el parámetro booleano que está activado ("posicionado") o desactivado ("rearmado"). La salida opcional refleja el estado de señal del parámetro "bit". SIMATIC / IEC1131 LAD FBD Bit Bit OUT OUT S1 S1 SR SR HR. R Bit Bit OUT OUT S s R1 RS RS R1

La tabla 6-7 muestra las tablas de verdad del programa de ejemplo.

Network 2

10.0

10.1

Tabla 6-6 Operandos válidos para las operaciones Posicionar dominante biestable y Rearmar dominante biestable

Entradas/salidas	Tipos de datos	Operandos
S1, R	BOOL	I, Q, V, M, SM, S, T, C, circulación de corriente
S, R1, OUT	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Bit	BOOL	I, Q, V, M, S

Ejemplo de las operaciones Posicionar y rearmar dominante biestable Network 1 Q0.0 I0.0 Q0.0 SR Posicionar I0.1 Rearmar I0.1 R SR Q0.0

Q0.1

RS

K

Q0.1

R1

OU RS

Operación	S1	R	OUT (bit)
Posicionar dominante biestable (SR)	0	0	Estado anterior
	0	1	0
	1	0	1
	1	1	1
Operación	S	R1	OUT (bit)
Rearmar dominante biestable (RS)	0	0	Estado antorior
	8	0	
	0	1	0
	0	1 0	0 1

89

Operaciones de reloj

Leer reloj de tiempo real y Ajustar reloj de tiempo real

La operación Leer reloj de tiempo real (TODR) lee la hora y fecha actuales del reloj del hardware y carga ambas en un búfer de tiempo de 8 bytes que comienza en la dirección T. La operación Ajustar reloj de tiempo real (TODW) escribe la hora y fecha actuales en el reloj del hardware, comenzando en la dirección del búfer de tiempo de 8 bytes indicada por T.

Todos los valores de la fecha y la hora se deben codificar en BCD (por ejemplo, 16#97 para el año 1997). La figura 6-4 muestra el formato del búfer de tiempo de 8 bytes (T).

El reloj de tiempo real se inicializa con la siguiente fecha y hora tras un corte de alimentación prolongado o cuando se produzca una pérdida de memoria:

Fecha: 01-Ene-90 Hora: 00:00:00 Día de la semana: Domingo

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0007 (error de datos TOD) (sólo en el reloj de tiempo real)
- 000C (falta reloj)

Tabla 6-8 Operandos válidos para las operaciones de reloj

Entradas/salidas	Tipos de datos	Operandos
Т	BYTE	IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

т	T+1	T+2	T+3	T+4	T+5	T+6	T+7
Año:	Mes:	Día:	Horas:	Minutos:	Segundos:	0	Día de la
00 a 99	01 a 12	01 a 31	00 a 23	00 a 59	00 a 59		semana: 0 a 7*

*T+7 1=Domingo, 7=Sábado 0 desactiva el día de la semana.

Figura 6-4 Formato del búfer de tiempo de 8 bytes (T)

FBD

SIMATIC

Ŷ

Consejo

La CPU S7-200 no comprueba si el día de la semana coincide con la fecha. Así puede ocurrir que se acepten fechas no válidas, p. ej. el 30 de febrero. Asegúrese de que los datos introducidos sean correctos.

No utilice nunca las operaciones TODR y TODW en el programa principal y en una rutina de interrupción a la vez. Si se está procesando una operación TODR/TODW y se intenta ejecutar simultáneamente otra operación TODR/TODW en una rutina de interrupción, ésta no se ejecutará. SM4.3 se activa indicando que se han intentado dos accesos simultáneos al reloj (error no fatal 0007).

El reloj de tiempo real de la CPU S7-200 utiliza sólo los dos dígitos menos significativos para representar el año. Por tanto, el año 2000 se representa como "00". El S7-200 no utiliza la información relativa al año de ninguna forma. No obstante, si en los programas de usuario se utilizan operaciones aritméticas o de comparación con el valor del año, se deberá tener en cuenta la representación de dos dígitos y el cambio de siglo.

Los años bisiestos se tratan correctamente hasta el año 2096.

Leer reloj de tiempo real ampliado

La operación Leer reloj de tiempo real ampliado (TODRX) lee de la CPU la fecha y la hora actuales, así como la configuración del horario de verano y las carga en un búfer de 19 bytes que comienza en la dirección T.

Ajustar reloj de tiempo real ampliado

La operación Ajustar reloj de tiempo real ampliado (TODWX) escribe en la CPU la fecha y la hora actuales, así como la configuración del horario de verano, comenzando en la dirección del búfer de 19 bytes indicada por T.

Todos los valores de la fecha y la hora se deben codificar en BCD (por ejemplo, 16#02 para el año 2002). La tabla 6-9 muestra el formato del búfer de tiempo de 19 bytes (T).

El reloj de tiempo real se inicializa con la siguiente fecha y hora tras un corte de alimentación prolongado o una pérdida de memoria:

Fecha:01-Ene-90Hora:00:00:00Día de la semana:Domingo

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 000C (falta el cartucho de reloj)
- 0091 (error de rango)

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0007 (error de daos TOD)
- 000C (falta el cartucho de reloj)
- 0091 (error de rango)

Byte T	Descripción	Datos de byte
0	Año (0-99)	Año actual (valor BCD)
1	Mes (1-12)	Mes actual (valor BCD)
2	Día (1-31)	Día actual (valor BCD)
3	Hora (0-23)	Hora actual (valor BCD)
4	Minuto (0-59)	Minuto actual (valor BCD)
5	Segundo (0-59)	Segundo actual (valor BCD)
6	00	Reservado - ajustado siempre a 00
7	Día de la semana (1-7)	Día actual de la semana, 1=domingo (valor BCD)
8	Modo (00H-03H, 08H, 10H-13H, FFH)	Modo de corrección: 00H = corrección inhibida $01H = UE (diferencia horaria de UTC = 0 h)^{1}$ $02H = UE (diferencia horaria de UTC = +1 h)^{1}$ $03H = UE (diferencia horaria de UTC = +2 h)^{1}$ 04H-07H = reservados $08H = UE (diferencia horaria de UTC = -1 h)^{1}$ $09H-0FH = reservados 10H = EE UU^{2}$ $11H = Australia^{3}$ $12H = Australia (Tasmania)^{4}$ $13H = Nueva Zelanda^{5}$ 14H-FEH = reservados FFH = personalizado (utilizando los valores de los bytes 9-18)
9	Horas de corrección (0-23)	Cantidad de corrección, horas (valor BCD)
10	Minutos de corrección (0-59)	Cantidad de corrección, minutos (valor BCD)
11	Mes inicial (1-12)	Mes inicial del horario de verano (valor BCD)
12	Día inicial (1-31)	Día inicial del horario de verano (valor BCD)
13	Hora inicial (0-23)	Hora inicial del horario de verano (valor BCD)
14	Minuto inicial (0-59)	Minuto inicial del horario de verano (valor BCD)
15	Mes final (1-12)	Mes final del horario de verano (valor BCD)
16	Día final (1-31)	Día final del horario de verano (valor BCD)
17	Hora final (0-23)	Hora final del horario de verano (valor BCD)
18	Minuto final (0-59)	Minuto final del horario de verano (valor BCD)

Tabla 6-9 Formato del búfer de tiempo de 19 bytes (T)

¹ Convención de la Unión Europea (UE): Adelantar el reloj una hora el último domingo de marzo a las 01:00 h (UTC). Retrasar el reloj una hora el último domingo de octubre a las 02:00 h (UTC). (La hora local a la que se efectúa la corrección depende de la diferencia horaria frente a UTC).

² Convención de los EE UU: Adelantar el reloj una hora el primer domingo de abril a las 02:00 h (hora local). Retrasar el reloj una hora el último domingo de octubre a las 02:00 h (hora local).

³ Convención de Australia: Adelantar el reloj una hora el último domingo de octúbre a las 02:00 h (hora local). Retrasar el reloj una hora el último domingo de marzo a las 03:00 h (hora local).

⁴ Convención de Australia (Tasmania): Adelantar el reloj una hora el primer domingo de octubre a las 02:00 h (hora local). Retrasar el reloj una hora el último domingo de marzo a las 03:00 h (hora local).

⁵ Convención de Nueva Zelanda: Adelantar el reloj una hora el primer domingo de octubre a las 02:00 h (hora local). Retrasar el reloj una hora el primer domingo o después del 15 de marzo a las 03:00 h (hora local).

Operaciones de comunicación

Leer de la red y Escribir en la red

La operación Leer de la red (NETR) inicia una comunicación para leer datos de una estación remota a través del puerto indicado (PORT), según se define en la tabla (TBL). La operación Escribir en la red (NETW) inicia una comunicación para escribir datos en una estación remota a través del puerto indicado (PORT), según se define en la tabla (TBL).

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- Si la función devuelve un error y activa el bit E del byte de la tabla de estado (v. fig. 6-5)

Con la operación Leer de la red (NETR) se pueden leer hasta 16 bytes de información de una estación remota, en tanto que con la operación Escribir en la red (NETW) se pueden escribir hasta 16 bytes de información en una estación remota.

El programa puede contener un número cualquiera de operaciones NETR y NETW, pero sólo ocho de ellas (en total) pueden estar activadas simultáneamente. Por ejemplo, en un sistema de automatización S7-200 pueden estar activadas cuatro operaciones NETR y cuatro NETW, o bien 2 operaciones NETR y 6 NETW.

operaciones

El asistente de operaciones Leer de la red y Escribir en la red se puede utilizar para configurar el contador. Para iniciar el asistente, elija el comando de menú **Herramientas > Asistente de operaciones** y, a continuación, seleccione el asistente NETR/NETW.

Tabla 6-10 Operandos válidos para las operaciones Leer de la red y Escribir en la red

Entradas/salidas	Tipos de datos	Operandos		
TBL	BYTE	VB, MB, *VD,	*LD, *AC	
PORT	BYTE	Constante	para las CPUs 221, 222 y 224: para las CPUs 224XP y 226:	0 0 ó 1

La figura 6-5 muestra la tabla a la que hace referencia el parámetro TBL. En la tabla 6-11 se indican los códigos de error.

Tabla 6-11	Códigos	de error	del	parámetro	TBL

Código	Definición
0	Sin error.
1	Error de timeout: no responde la estación remota.
2	Error de recepción: error de paridad, de ajuste o de suma de verificación en la respuesta.
3	Error offline: colisiones causadas por direcciones de estación repetidas o fallo del hardware.
4	Error de desbordamiento en la cola de espera: se han activado más de 8 operaciones Leer de la red o Escribir en la red.
5	Violación de protocolo: se intentó ejecutar una operación Leer de la red o Escribir en la red sin habilitar el modo maestro PPI en SMB30 ó SMB130.
6	Parámetro no válido: el parámetro TBL contiene un valor no válido.
7	Sin recursos: la estación remota está ocupada. (Secuencia de cargar en PG o de cargar en CPU en curso.)
8	Error de capa 7: violación de protocolo de aplicación.
9	Error de mensaje: dirección de datos errónea o longitud de datos incorrecta.
AaF	No utilizados (reservados).

La figura 6-6 muestra un ejemplo que ilustra la utilidad de las operaciones Leer de la red y Escribir en la red. Se trata de una línea de producción donde se están llenando paquetes de mantequilla que se envían a una de las cuatro máquinas empaquetadoras. La empaquetadora embala ocho paquetes de mantequilla en cada caja. Una máquina distribuidora controla el flujo de los paquetes de mantequilla hacia cada una de las empaquetadoras. Se utilizan cuatro PLCs S7-200 para controlar las empaquetadoras y un PLC S7-200 equipado con un visualizador de textos TD 200 para controlar a la distribuidora.

- Figura 6-6 Ejemplo de las operaciones Leer de la red y Escribir en la red

La figura 6-7 muestra los búfers de recepción (VB200) y transmisión (VB300) para acceder a los datos de la estación 2. El S7-200 utiliza la operación Leer de la red para leer continuamente el control y el estado de cada una de las empaquetadoras. Cada vez que una empaquetadora ha embalado 100 cajas, la máquina distribuidora lo registra y envía un mensaje para borrar la palabra de estado utilizando una operación Leer de la red.

Búfer de recepción para leer la							
empaquetadora nº 1							
	7				0		
VB200	D	А	Е	0	Código de error		
VB201	Dire	iòiɔɔə	n de l	a est	ación remota = 2		
VB202			Ρι	untero	o al		
VB203	área de datos						
VB204	en la						
VB205	estación remota = (&VB100)						
VB206	Longitud de datos = 3 bytes						
VB207	Control						
VB208	Estado (MSB)						
VB209			Esta	do (L	SB)		

Búfer de transmisión para borrar el contaje
de la empaquetadora nº 1

Figura 6-7 Ejemplo de TBL para las operaciones Leer de la red y Escribir en la red

Ejemplo de las operaciones Leer de la red y Escribir en la red

Transmitir mensaje y Recibir mensaje (Freeport)

La operación Transmitir mensaje (XMT) se utiliza en modo Freeport para transmitir datos por el (los) puerto(s) de comunicación.

La operación Recibir mensaje (RCV) inicia o finaliza la función Recibir mensaje. Para el cuadro Recibir mensaje es preciso indicar una condición inicial y final. Los mensajes que se hayan recibido a través del puerto indicado (PORT) se almacenan en el búfer de datos (TBL). La primera entrada del búfer indica el número de bytes que se han recibido.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0009 (operaciones Transmitr mensaje/Recibir mensaje simultáneas en el puerto 0)
- 000B (operaciones Transmitr mensaje/Recibir mensaje simultáneas en el puerto 1)
- El error de parámetro de la operación Recibir mensaje activa SM86.6 ó SM186.6.
- La CPU S7-200 no está en modo Freeport.

Tabla 6-12	Operandos válidos	para las operaciones	Transmitir mensaie	/ Recibir mensaie
	oporariado valiado	para lao oporaciónico	manomia monoajo	, ittoololi illiollioujo

Entradas/salidas	Tipos de datos	Operandos
TBL	BYTE	IB, QB, VB, MB, SMB, SB, *VD, *LD, *AC
PORT	BYTE	Constante para las CPUs 221, 222 y 224: 0 para las CPUs 224XP y 226: 0 ó 1

Para más información acerca de cómo utilizar el modo Freeport, consulte el apartado "Crear protocolos personalizados en modo Freeport" en la página 240 del capítulo 7.

Utilizar el modo Freeport para controlar el puerto serie de comunicación

El programa de usuario puede controlar el puerto serie del S7-200. La comunicación a través de este puerto se denomina modo Freeport (comunicación programable por el usuario). Eligiendo el modo Freeport, el programa de usuario controla el puerto de comunicación utilizando interrupciones de recepción y de transmisión, así como las operaciones Transmitir mensaje y Recibir mensaje. En modo Freeport, el programa KOP controla todo el protocolo de comunicación. Las marcas especiales SMB30 (para el puerto 0) y SMB130 (para el puerto 1, si el S7-200 dispone de dos puertos) se utilizan para elegir la velocidad de transferencia y la paridad.

Cuando el S7-200 pasa a modo STOP se inhibe el modo Freeport y se restablece la comunicación (por ejemplo, el acceso a través de la unidad de programación).

En el caso más simple se puede enviar un mensaje a la impresora o a la pantalla con sólo utilizar la operación Transmitir mensaje (XMT). Otros ejemplos incluyen la conexión a un lector de código de barras, una balanza o una soldadora. En todo caso, el programa deberá soportar el protocolo con el que el S7-200 se comunica en modo Freeport.

Para poder utilizar el modo Freeport, es preciso que el S7-200 esté en modo RUN. El modo Freeport se habilita ajustando el valor 01 en el campo de selección del protocolo de SMB30 (puerto 0) o de SMB130 (puerto 1). Estando en modo Freeport, la CPU no se puede comunicar con la unidad de programación.

Consejo

El modo Freeport se puede controlar con la marca especial SM0.7 que indica la posición actual del selector de modos de operación. Si SM0.7 = 0, el selector estará en posición TERM; si SM0.7 = 1, el selector estará en posición RUN. Si el modo Freeport se habilita sólo cuando el selector esté en RUN, la unidad de programación se podrá utilizar para vigilar o controlar el funcionamiento del S7-200, cambiando el selector a una posición diferente.

Cambiar la comunicación PPI a modo Freeport

SMB30 y SMB130 se utilizan para inicializar el modo Freeport en los puertos de comunicación 0 y 1, respectivamente, permitiendo elegir la velocidad de transferencia, la paridad y el número de bits por carácter. La figura 6-8 describe el byte de control Freeport. Se genera un bit de parada para todas las configuraciones.

MSB 7 P SMB SMB	p d b 30 = 130 =	LSB 0 Puerto 0 Puerto 1	bbb:	Velocidad 000 = 001 = 010 = 011 = 100 =	de transferencia 38.400 bit/s 19.200 bit/s 9.600 bit/s 4.800 bit/s 2.400 bit/s	
pp:	Selección 00 = 01 = 10 = 11 =	de paridad sin paridad paridad par sin paridad paridad impar	mm:	101 = 110 = 111 = Selección 00 =	1.200 bit/s 115,2 kbit/s ¹ 57,6 kbit/s ¹ de protocolo PPI/modo esclavo	Requiere CPUs S7-200 de la versión 1.2 o posterior
d:	Bits por c 0 = 1 =	arácter 8 bits por carácter 7 bits por carácter		01 = 10 = 11 =	Protocolo Freeport PPI/modo maestro Reservado (estánda	r: PPI/modo esclavo)

Figura 6-8 Byte de control para el modo Freeport (SMB30 ó SMB130)

Transmitir datos

Con la operación Transmitir mensaje se puede enviar un búfer de uno o más caracteres (255 como máximo).

La figura 6-9 muestra el formato del búfer de transmisión.

Una vez transmitido el ultimo carácter del búfer, el S7-200 genera una interrupción (evento de interrupción 9 para el puerto 0 y evento de interrupción 26 para el puerto 1), si una rutina de interrupción se ha asociado al evento Transmisión finalizada.

Figura 6-9 Formato del búfer de transmisión

También es posible transmitir datos sin utilizar interrupciones (por ejemplo, enviar un mensaje a una impresora), vigilando SM4.5 ó SM4.6 hasta que finalice la transmisión.

La operación Transmitir mensaje (XMT) sirve para generar una condición BREAK, poniendo el número de caracteres a cero y ejecutando luego la operación XMT. Así se genera una condición BREAK en la línea de temporizadores de 16 bits a la velocidad de transferencia actual. La transmisión de una condición BREAK se gestiona de la misma forma que la de cualquier otro mensaje. Una interrupción de transmisión se genera cuando se termina de transmitir la condición BREAK, indicando SM4.5 ó SM4.6 el estado actual de la transmisión.

Recibir datos

Con la operación Recibir mensaje se puede recibir un búfer de uno o más caracteres (255 como máximo).

La figura 6-10 muestra el formato del búfer de recepción.

Una vez recibido el ultimo carácter del búfer, el S7-200 genera una interrupción (evento de interrupción 23 para el puerto 0 y evento de interrupción 24 para el puerto 1), si una rutina de interrupción se ha asociado al evento Recepción de mensajes finalizada.

Contaje	Carácter inicial	М	Е	Ν	S	A	J	Е	Carácter final
†	Caracteres del mensaje								
Número de bytes a recibir (campo de byte)									

Figura 6-10 Formato del búfer de recepción

También es posible recibir mensajes sin utilizar interrupciones, vigilando para ello SMB86 (puerto 0) o SMB186 (puerto 1). Este byte no será igual a cero si la operación Recibir mensaje está inactiva o si ha finalizado. En cambio, será igual a cero cuando se estén recibiendo datos.

Como muestra la tabla 6-13, la operación Recibir mensaje permite seleccionar las condiciones de comienzo y fin del mensaje, utilizando SMB86 a SMB94 para el puerto 0 y SMB186 a SMB194 para el puerto 1.

Consejo

La recepción de mensajes se finalizará automáticamente si se produce un desbordamiento o un error de paridad. Para la operación Recibir mensaje es preciso definir una condición inicial y una condición final (el número máximo de caracteres).

Tabla 6-13 Bytes del búfer de recepción (SMB86 a SMB94 y SM1B86 a SMB194)

Puerto 0	Puerto 1	Descripción			
SMB86	SMB186	Byte de estado de MSB LSB			
		recepción de mensajes n r e 0 0 t c p			
		n: 1 = Ha finalizado la recepción de mensajes: el usuario ha enviado un comando de inhibir.			
		r: 1 = Ha finalizado la recepción de mensajes: error en los parámetros de entrada o falta condición inicial o final.			
		e: 1 = Carácter final recibido.			
		t: 1 = Ha finalizado la recepción de mensajes: ha transcurrido la temporización.			
		c: 1 = Ha finalizado la recepción de mensajes: se ha excedido el número máximo de caracteres.			
		p 1 = Ha finalizado la recepción de mensajes: error de paridad.			
SMB87	SMB187	Byte de control de MSB LSB 0			
		en sc ec il c/m tmr bk 0			
		 en: 0 = Inhibida la función de recibir mensajes. 1 = Habilitada la función de recibir mensajes. El bit para habilitar/inhibir la recepción de mensajes se comprueba cada vez que se ejecuta la operación RCV. 			
		 sc: 0 = Ignorar SMB88 o SMB188. 1 = Utilizar el valor de SMB88 o de SMB188 para detectar el comienzo del mensaje. 			
		 ec: 0 = Ignorar SMB89 o SMB189. 1 = Utilizar el valor de SMB89 o de SMB189 para detectar el final del mensaje. 			
		 il: 0 = Ignorar SMB90 o SMB190. 1 = Utilizar el valor de SMW90 o SMW190 para detectar una condición de inactividad. 			
		c/m: 0 = Utilizar el temporizador como temporizador entre caracteres. 1= Utilizar el temporizador como temporizador de mensajes.			
		 tmr: 0 = Ignorar SMB92 o SMB192. 1 = Finalizar la recepción si se excede el período de tiempo indicado en SMW92 o SMW92. 			
		 bk: 0 = Ignorar condiciones BREAK. 1 = Utilizar condición BREAK como comienzo de la detección de mensajes 			
SMB88	SMB188	Carácter de comienzo del mensaje.			
SMB89	SMB189	Carácter de fin del mensaje.			
SMW90	SMW190	Tiempo de línea de inactividad en milisegundos. El primer carácter recibido una vez transcurrido el tiempo de línea de inactividad es el comienzo del nuevo mensaje.			
SMW92	SMW192	Vigilancia de tiempo del temporizador entre caracteres/mensajes en milisegundos. Si se excede el tiempo, finalizará la función de recepción de mensajes.			
SMB94	SMB194	Número máximo de caracteres a recibir (1 a 255 bytes). Este rango debe ajustarse al tamaño máximo esperado para el búfer, incluso si no se utiliza la finalización de mensajes por el contaje de caracteres.			

Condiciones de comienzo y fin para la operación Transmitir mensaje

La operación Recibir mensaje utiliza los bits del byte de control de recepción de mensajes (SMB87 ó SMB187) para definir las condiciones de comienzo y fin del mensaje.

Consejo

Si en el puerto de comunicación hay tráfico con otros aparatos mientras se está ejecutando la operación Recibir mensaje, puede suceder que se comience a recibir un carácter en medio de ese carácter. Ello podría causar un error de paridad y la terminación de la operación Recibir mensaje. Si la paridad no está habilitada, el mensaje recibido podría contener caracteres incorrectos. Ésto puede ocurrir si se ha indicado que la condición inicial sea un carácter inicial en particular o un carácter cualquiera, conforme a lo descrito a continuación en los puntos 2. y 6.

La operación Recibir mensaje soporta varias condiciones iniciales. Definiendo una condición inicial que incluya un BREAK o una detección de inactividad es posible evitar este problema, puesto que se obliga a la operación Recibir mensaje a sincronizar el comienzo del mensaje con el comienzo de un carácter antes de depositar caracteres en el búfer de mensajes.

La operación Recibir mensaje soporta varias condiciones iniciales, a saber:

 Detección de inactividad: La condición de inactividad representa el tiempo muerto (o tiempo de inactividad) en la línea de transmisión. La recepción se inicia cuando la línea de comunicación ha estado inactiva durante el número de milisegundos indicado en SMW90 ó SMW190. Cuando se ejecuta la operación Recibir mensaje en el programa, la función de recepción de mensajes inicia una búsqueda para comprobar si hay una condición de inactividad. Si se reciben caracteres antes de haber transcurrido el tiempo de inactividad, la operación Recibir mensaje ignorará esos caracteres y reiniciará el temporizador de inactividad con el tiempo indicado en SMW90 ó SMW190 (v. fig. 6-11). Una vez transcurrido el tiempo de inactividad, la operación Recibir mensaje almacenará en el búfer de mensajes todos los caracteres que se reciban posteriormente.

El tiempo de inactividad debería ser siempre superior al tiempo necesario para transmitir un carácter (bit de inicio, bits de datos, paridad y bits de parada) a la velocidad de transferencia indicada. Un valor típico del tiempo de inactividad equivale al tiempo necesario para transmitir tres caracteres a la velocidad de transferencia indicada.

La detección de inactividad se utiliza como condición inicial para los protocolos binarios, así como para los protocolos que carezcan de un carácter inicial determinado, o bien si el protocolo prevé un tiempo mínimo entre los mensajes.

Figura 6-11 Utilizar la detección de inactividad para iniciar la operación Recibir mensaje

2. Detección del carácter inicial: El carácter inicial puede ser un carácter cualquiera utilizado como primer carácter de un mensaje. Un mensaje comienza cuando se recibe el carácter inicial indicado en SMB88 ó SMB188. La operación Recibir mensaje almacena el carácter inicial en el búfer de recepción como primer carácter del mensaje e ignora los caracteres que se hayan recibido antes del carácter inicial. El carácter inicial y todos los demás caracteres recibidos posteriormente se almacenan en el búfer de mensajes.

La detección del carácter inicial se utiliza generalmente con los protocolos ASCII en los que todos los mensajes comienzan con un mismo carácter.

Configuración: il = 0, sc = 1, bk = 0, SMW90/SMW190 = no es relevante, SMB88/SMB188 = carácter inicial 3. Inactividad y carácter inicial: La operación Recibir mensaje puede iniciar un mensaje combinando las condiciones de inactividad y de carácter inicial. Cuando se ejecuta la operación Recibir mensaje, ésta inicia una búsqueda para comprobar si hay una condición de inactividad. Tras haber detectado la condición de inactividad, la operación Recibir mensaje buscará el carácter inicial indicado. Si se ha recibido algún carácter que no sea el carácter inicial, esta operación buscará de nuevo una condición de inactividad, ignorando todos los caracteres recibidos antes de cumplirse la condición de inactividad y antes de haberse recibido el carácter inicial. El carácter inicial se deposita en el búfer de mensajes junto con los caracteres posteriores.

El tiempo de inactividad debería ser siempre superior al tiempo necesario para transmitir un carácter (bit de inicio, bits de datos, paridad y bits de parada) a la velocidad de transferencia indicada. Un valor típico del tiempo de inactividad equivale al tiempo necesario para transmitir tres caracteres a la velocidad de transferencia indicada.

Por lo general, este tipo de condición inicial se utiliza si el protocolo indica un tiempo mínimo entre los mensajes y si el primer carácter del mensaje es una dirección o algo que haga referencia a un aparato en particular. Ello se adecúa especialmente si se debe implementar un protocolo que comprenda varios aparatos en el enlace de comunicación. En este caso, la operación Recibir mensaje disparará una interrupción sólo si se ha recibido un mensaje para la dirección indicada o para los aparatos especificados por el carácter inicial.

Configuración: il = 1, sc = 1, bk = 0, SMW90/SMW190 > 0, SMB88/SMB188 = carácter inicial

4. Detección de BREAK: Cuando los datos recibidos se conservan a un valor cero durante un tiempo superior al necesario para transmitir un carácter entero, se indicará una condición BREAK. El tiempo de transferencia de un carácter entero equivale al tiempo total para transmitir los bits de inicio, de datos, de paridad y de parada. Si la operación Recibir mensaje se configura de manera que inicie un mensaje cuando se reciba una condición BREAK, todos los caracteres recibidos después de esa condición se depositarán en el búfer de mensajes. Todos los caracteres recibidos antes de la condición BREAK se ignorarán.

Por lo general, la detección de BREAK se utiliza como condición inicial si lo exige el protocolo en cuestión.

Configuración: il = 0, sc = 0, bk = 1, SMW90/SMW190 = no es relevante, SMB88/SMB188 = no es relevante

5. BREAK y carácter inicial: La operación Recibir mensaje se puede configurar de manera que comience a recibir caracteres tras haberse detectado una condición BREAK y, posteriormente, un carácter inicial en particular (en ese orden). Tras haberse detectado la condición BREAK, la función de recepción de mensajes buscará el carácter inicial indicado. Si se ha recibido algún carácter que no sea el carácter inicial, esta operación buscará de nuevo una condición BREAK, ignorando todos los caracteres recibidos antes de cumplirse la condición de BREAK y antes de haberse recibido el carácter inicial. El carácter inicial se deposita en el búfer de mensajes junto con los caracteres posteriores.

Configuración: il = 0, sc = 1, bk = 1, SMW90/SMW190 = no es relevante, SMB88/SMB188 = carácter inicial 6. Carácter cualquiera: La operación Recibir mensaje se puede configurar de manera que comience a recibir inmediatamente un carácter cualquiera o todos los caracteres, depositándolos luego en el búfer de mensajes. Este es un caso especial de la detección de inactividad. En este caso, el tiempo de inactividad (SMW90 ó SMW190) se pone a cero. Ello obliga a la operación Recibir mensaje a comenzar a recibir caracteres inmediatamente después de su ejecución.

Configuración: il = 1, sc = 0, bk = 0, SMW90/SMW190 = 0, SMB88/SMB188 = no es relevante

Si un mensaje comienza con un carácter cualquiera, el temporizador de mensajes se puede utilizar para medir el tiempo de espera (timeout) durante la recepción de mensajes. Ello es especialmente útil cuando el modo Freeport se utiliza para implementar el maestro o la sección "host" de un protocolo, siendo necesario utilizar un timeout si no se obtiene respuesta de un esclavo en un período de tiempo determinado. El temporizador de mensajes arrancará cuando se ejecute la operación Recibir mensaje, puesto que el tiempo de inactividad se había ajustado a cero. El temporizador de mensajes se detendrá tras transcurrir el tiempo de espera y finalizará la operación de recepción si no se ha cumplido ninguna otra condición final.

Configuración: il = 1, sc = 0, bk = 0, SMW90/SMW190 = 0, SMB88/SMB188 = no es relevante c/m = 1, tmr = 1, SMW92 = tiempo de espera del mensaje en milisegundos

La operación Recibir mensaje soporta varias formas de finalizar un mensaje. El mensaje puede terminar cuando se cumplan una o varias de las condiciones siguientes:

1. Detección del carácter final: El carácter final puede ser un carácter cualquiera utilizado para señalar el fin del mensaje. Tras encontrar la condición inicial, la operación Recibir mensaje comprobará cada carácter recibido para determinar si concuerda con el carácter final. Una vez recibido el carácter final, éste se deposita en el búfer de mensajes y se finaliza la recepción.

La detección del carácter final se utiliza generalmente con los protocolos ASCII en los que todos los mensajes terminan con un determinado carácter. La detección del carácter final se puede combinar con el temporizador entre caracteres, con el temporizador de mensajes, o bien con el contaje máximo de caracteres para terminar un mensaje.

Configuración: ec = 1, SMB89/SMB189 = carácter final

 Temporizador entre caracteres: El tiempo entre caracteres es el período medido desde el final de un carácter (el bit de parada) y el final del carácter siguiente (el bit de parada). Si el tiempo entre caracteres (incluyendo el segundo carácter) excede el número de milisegundos indicado en SMW92 ó SMW192, se finalizará la operación Recibir mensaje. El temporizador entre caracteres se inicializa cada vez que se recibe un carácter (v. fig. 6-12).

El temporizador entre caracteres se puede utilizar para terminar un mensaje en el caso de los protocolos que carezcan de un carácter final específico. Este temporizador se debe ajustar a un valor superior al tiempo necesario para transmitir un carácter a la velocidad de transferencia seleccionada, toda vez que el temporizador comprende siempre el tiempo para recibir un carácter entero (bit de inicio, bits de datos, paridad y bits de parada).

El temporizador entre caracteres se puede combinar con la detección del carácter final y el contaje máximo de caracteres para terminar un mensaje.

Configuración: c/m = 0, tmr = 1, SMW92/SMW192 = tiempo de espera en milisegundos

Figura 6-12 Utilizar el temporizador entre caracteres para finalizar la operación Recibir mensaje

3. Temporizador de mensajes: El temporizador de mensajes termina un mensaje tras haber transcurrido un tiempo determinado desde el comienzo del mismo. El temporizador de mensajes arrancará una vez que se hayan cumplido la condición o las condiciones iniciales para la recepción de mensajes y se detendrá tras haber transcurrido el número de milisegundos indicado en SMW92 ó SMW192 (v. fig. 6-13).

Por lo general, el temporizador de mensajes se utiliza si los aparatos que intervienen en la comunicación no pueden garantizar que no habrá intervalos de tiempo entre los caracteres, o bien si se utilizan módems. En este último caso, es posible utilizar un temporizador de mensajes para determinar el tiempo máximo admisible para recibir un mensaje una vez que este haya comenzado. Un valor típico para un temporizador de mensajes sería aproximadamente 1,5 veces mayor que el tiempo necesario para recibir el mensaje más largo posible a la velocidad de transferencia seleccionada.

El temporizador de mensajes se puede combinar con la detección del carácter final y el contaje máximo de caracteres para terminar un mensaje.

Configuración: c/m = 1, tmr = 1, SMW92/SMW192 = tiempo de espera en milisegundos

4. Número máximo de caracteres: Al configurar la operación Recibir mensaje es preciso indicar el número máximo de caracteres a recibir (SMB94 ó SMB194). Una vez alcanzado o excedido este valor, finalizará la recepción de mensajes. La operación Recibir mensaje exige que el usuario indique un contaje máximo de caracteres, aunque éste no se utilice como condición final. Ello se debe a que esta operación necesita conocer el tamaño máximo del mensaje recibido, de manera que no se sobrescriban los datos de usuario depositados después del búfer de mensajes.

El contaje máximo de caracteres se puede utilizar para terminar mensajes en el caso de los protocolos en los que se conozca la longitud del mensaje y donde dicha longitud sea siempre igual. El contaje máximo de caracteres se utiliza siempre en combinación con la detección del carácter final, el temporizador entre caracteres, o bien el temporizador de mensajes.

- 5. *Errores de paridad:* La operación Recibir mensaje se finalizará automáticamente si el hardware detecta un error de paridad en un carácter recibido. Los errores de paridad se detectan únicamente si la paridad se ha habilitado en SMB30 ó SMB130. Esta función no se puede inhibir.
- Terminación por el programa de usuario: El programa de usuario puede terminar la función de recepción de mensajes ejecutando otra operación Recibir mensaje con el bit de habilitación (EN) puesto a cero en SMB87 ó SMB187. Ello termina inmediatamente la recepción de mensajes.

Utilizar interrupciones de caracteres para recibir datos

Para disponer de una mayor flexibilidad en los protocolos soportados, los datos se pueden recibir también de forma controlada por interrupciones de caracteres. Cada carácter recibido genera una interrupción. El carácter recibido se deposita en SMB2 y el estado de la paridad (si se ha habilitado) se deposita en SM3.0. Ello sucede inmediatamente antes de ejecutarse la rutina de interrupción asociada al evento Recibir carácter. SMB2 es el búfer de recepción de caracteres en modo Freeport. Cada carácter recibido en modo Freeport se deposita en esa dirección para que el programa de usuario pueda acceder rápidamente a los valores. SMB3 se utiliza para el modo Freeport y contiene un bit de error de paridad que se activa si se detecta un error de ese tipo en un carácter recibido. Todos los demás bits del byte se reservan. Utilice el bit de paridad para rechazar el mensaje o para generar un acuse negativo del mensaje.

Si la interrupción de caracteres se utiliza a velocidades de transferencia elevadas (38,4 kbit/s a 115,2 kbit/s), el tiempo entre las interrupciones será muy breve. Por ejemplo, la interrupción de caracteres es de 260 microsegundos a 38,4 kbit/s, de 173 microsegundos a 57,6 kbit/s y de 86 microsegundos a 115,2 kbit/s. Vigile que las rutinas de interrupción sean muy cortas para evitar que se pierdan caracteres, o bien utilice la operación Recibir mensaje.

Consejo

SMB2 y SMB3 son compartidos por los puertos 0 y 1. Si, debido a la recepción de un carácter por el puerto 0, se ejecuta la rutina de interrupción asociada a ese evento (evento de interrupción 8), SMB2 contendrá el carácter recibido por el puerto 0, en tanto que SMB3 contendrá la paridad de ese carácter. Si, debido a la recepción de un carácter por el puerto 1, se ejecuta la rutina de interrupción asociada a ese evento (evento de interrupción 25), SMB2 contendrá el carácter recibido por el puerto 1, en tanto que SMB3 contendrá la paridad de ese carácter.

Ejemplo de operaciones de transmisión y recepción

Leer dirección de puerto y Ajustar dirección de puerto

La operación Leer dirección de puerto (GPA) lee la dirección de estación del puerto de la CPU S7-200 indicado en PORT y deposita el valor en la dirección indicada en ADDR.

La operación Ajustar dirección de puerto (SPA) ajusta la dirección de estación del puerto (PORT) al valor indicado en ADDR. La nueva dirección no se almacena de forma permanente. Tras desconectar y conectar de nuevo la alimentación de la CPU, el puerto afectado recuperará su dirección antigua (la que se había cargado junto con el bloque de sistema).

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0004 (intento de ejecutar una operación Ajustar dirección de puerto en una rutina de interrupción)

Tabla 6-14 Operandos válidos para las operaciones Leer dirección de puerto y Ajustar dirección de puerto

Entradas/salidas	Tipos de datos	Operandos
ADDR	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
		(Los valores de constante son aplicables sólo a la operación Ajustar dirección de puerto.)
PORT	BYTE	Constante para las CPUs 221, 222 y 224: 0 para las CPUs 224XP y 226: 0 ó 1

Operaciones de comparación

Comparar valores numéricos

Las operaciones de comparación se utilizan para comparar dos valores:

IN1 = IN2 IN1 >= IN2 IN1 <= IN2 IN1 > IN2 IN1 < IN2 IN1 <> IN2

Las comparaciones de bytes no llevan signo. Las comparaciones de enteros llevan signo. Las comparaciones de palabras dobles llevan signo. Las comparaciones de números reales llevan signo.

En KOP y FUP: Si la comparación es verdadera, la operación de comparación activa el contacto (KOP) o la salida (FUP).

En AWL: Si la comparación es verdadera, la operación de comparación carga un 1 en el nivel superior de la pila, o bien lo combina con Y u O.

Si se utilizan las operaciones de comparación IEC, es posible utilizar diversos tipos de datos para las entradas. No obstante, el tipo de datos de los dos valores de entrada deberá ser idéntico.

Nota

Las siguientes condiciones son errores fatales que detendrán inmediatamente la ejecución del programa en el S7-200:

- Detección de una dirección indirecta no válida (en todas las operaciones de comparación)
- Detección de un número real no válido (por ejemplo, NAN) (en la operación Comparar reales)

Para evitar estas condiciones de error, inicialice correctamente los punteros y los valores que contengan números reales antes de ejecutar las operaciones de comparación que utilicen estos valores.

Las operaciones de comparación se ejecutan sin tener en cuenta el estado de señal.

SIMATIC	IEC 1131			
	N1 ≔B	1	==B	FBD
	8 = -	==D <>D >=D <=D >D <=D >D <d< td=""><td>==R</td><td></td></d<>	==R	

SIMATIC			
STL	LDB= II AB= II OB= II	N1, IN2 N1, IN2 N1, IN2	
LDB=	LDW=	LDD=	LDR=
LDB<	LDW<	LDD<	LDR<
LDB>	LDW>	LDD>	LDR>
LDB<>	LDW<>	LDD<>	LDR<>
LDB<=	LDW<=	LDD<=	LDR<=
LDB>=	LDW>=	LDD>=	LDR>=
AB=	AW=	AD=	AR=
AB<	AW<	AD≺	AR<
AB>	AW>	AD>	AR>
AB<>	AW<>	AD<>	AR<>
AB<=	AW<=	AD<>	AR<=
AB>=	AW>=	AD<=	AR>=
08=	O₩=	OD=	OR=
08<	O₩<	OD<	OR<
08>	O₩>	OD>	OR>
08<>	O₩<>	OD<>	OR<=
08<=	O₩<=	OD<=	OR<=
08<=	O₩>=	OD>=	OR>=

Tabla 6-15	Operandos	válidos na	ara las i	oneraciones	d۵	comparación
1abia 0-15	Operandos	valiuus pa	al a las (operaciones	ue	comparación

Entradas/salidas	Tipos de datos	Operandos
IN1, IN2	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante
	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, constante
	REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, constante
OUT	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente

Comparar cadenas

La operación Comparar cadenas compara dos cadenas de caracteres ASCII:

IN1 = IN2 IN1 <> IN2

Si la comparación es verdadera, la operación de comparación activa el contacto (KOP) o la salida (FUP), o bien carga un 1 en el nivel superior de la pila, o lo combina con Y u O (AWL).

Nota

Las siguientes condiciones son errores fatales que detendrán inmediatamente la ejecución del programa en el S7-200:

- Detección de una dirección indirecta no válida (en todas las operaciones de comparación)
- Detección de una cadena que comprenda más de 254 caracteres (en la operación Comparar cadenas)
- Detección de una cadena cuya dirección inicial y longitud no quepan en el área de memoria indicada (en la operación Comparar cadenas)

Para evitar estas condiciones de error, inicialice correctamente los punteros y las direcciones que deban acoger cadenas ASCII antes de ejecutar las operaciones de comparación que utilicen estos valores. Vigile que el búfer reservado para una cadena ASCII se pueda depositar por completo en el área de memoria indicada.

Las operaciones de comparación se ejecutan sin tener en cuenta el estado de señal.

 Tabla 6-16
 Operandos válidos para la operación Comparar cadenas

Entradas/salidas	Tipos de datos	Operandos
IN1	STRING	VB, LB, *VD, *LD, *AC, constante
IN2	STRING	VB, LB, *VD, *LD, *AC
OUT	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente

SIMATIC IEC 1131

SIMATIC

STL		
	LDS=	IN1, IN2
	AS=	IN1, IN2
	OS=	IN1, IN2
	LDS<>	IN1, IN2
	AS<≻	IN1, IN2
	os<≻	IN1, IN2
·		

Operaciones de conversión

Operaciones de conversión normalizadas

Conversiones numéricas

Las operaciones Convertir byte en entero (BTI), Convertir entero en byte (ITB), Convertir entero en entero doble (ITD), Convertir entero doble en entero (DTI), Convertir entero doble en real (DTR), Convertir BCD en entero (BCDI) y Convertir entero en BCD (IBCD) convierten un valor de entrada IN en el formato indicado y almacenan el valor de salida en la dirección especificada por OUT. Por ejemplo, es posible convertir un valor de entero doble en un número real. También es posible convertir un entero en un número BCD y viceversa.

Redondear a entero doble y Truncar

La operación Redondear (ROUND) convierte un valor real (IN) en un valor de entero doble y deposita el resultado redondeado en la variable indicada por OUT.

La operación Truncar (TRUNC) convierte un número real (IN) en un entero doble y carga la parte del número entero del resultado en la variable indicada por OUT.

Segmento

La operación Segmento (SEG) sirve para generar una configuración binaria (OUT) que ilumina los segmentos de un indicador de siete segmentos.

SIMATIC IEC 1131	
LAD B_I EN ENO - IN OUT -	FBD - EN ENO - IN OUT
B_I I_B	BCD_1 I_BCD
I_DI DI_I	ROUND TRUNC
DI_R	SEG

SIMATIC	<u> </u>		
STL			
BTI ITB	IN, OUT IN, OUT	BCDI IBCD	OUT OUT
ITD DTI	IN, OUT IN, OUT	TRUNC ROUND	IN, OUT IN, OUT
DTR	IN, OUT	SEG	IN, OUT

Tabla 6-17 Operandos válidos para las operaciones de conversión normalizadas

Entradas/salidas	Tipos de datos	Operandos
IN	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
	WORD, INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, AC, *VD, *LD, *AC, constante
	DINT	ID, QD, VD, MD, SMD, SD, LD, HC, AC, *VD, *LD, *AC, constante
	REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, constante
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC
	WORD, INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
	DINT, REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Funcionamiento de las operaciones Convertir BCD en entero y Convertir entero en BCD

La operación Convertir BCD en entero (BCDI) convierte el valor decimal codificado en binario IN en un valor de entero y carga el resultado en la variable indicada por OUT. El rango válido de IN está comprendido entre 0 y 9999 BCD.

La operación Convertir entero en BCD (IBCD) convierte el valor entero de entrada IN en un valor BCD y carga el resultado en la variable indicada por OUT. El rango válido de IN está comprendido entre 0 y 9999 enteros.

Funcionamiento de la operación Convertir entero doble en real

La operación Convertir entero doble en real (DTR) convierte un entero de 32 bits con signo IN en un número real de 32 bits y deposita el resultado en la variable indicada por OUT.

Funcionamiento de la operación Convertir entero doble en entero

La operación Convertir entero doble en entero (DTI) convierte el valor de entero doble IN en un valor de entero y deposita el resultado en la variable indicada por OUT.

Si el valor a convertir es demasiado grande para ser representado en la salida, la marca de desbordamiento se activará y la salida no se verá afectada.

Funcionamiento de la operación Convertir entero en entero doble

La operación Convertir entero en entero doble (ITD) convierte el valor de entero IN en un valor de entero doble y deposita el resultado en la variable indicada por OUT. El signo se amplía.

Funcionamiento de la operación Convertir byte en entero

La operación Convertir byte en entero (BTI) convierte el valor de byte IN en un valor de entero y deposita el resultado en la variable indicada por OUT. El byte no tiene signo. Por tanto, no hay ampliación de signo.

Funcionamiento de la operación Convertir entero en byte

La operación Convertir entero en byte (ITB) convierte el valor de entero IN en un valor de byte y deposita el resultado en la variable indicada por OUT. Se convierten los valores comprendidos entre 0 y 255. Todos los demás valores producen un desbordamiento y la salida no se ve afectada.

Consejo

Para convertir un entero en un número real, utilice la operación Convertir entero en entero doble y luego la operación Convertir entero doble en real.

Condiciones de error que ponen ENO a 0:

- SM1.6 (BCD no válido)
- 0006 (direccionamiento indirecto)

Marcas especiales afectadas:

- SM1.6 (BCD no válido)
- Condiciones de error que ponen ENO a 0:
- 0006 (direccionamiento indirecto)

SM1.1 (desbordamiento)0006 (direccionamiento indirecto)

Condiciones de error que ponen

- Marcas especiales afectadas:

ENO a 0:

SM1.1 (desbordamiento)

Condiciones de error que ponen ENO a 0:

0006 (direccionamiento indirecto)

Condiciones de error que ponen ENO a 0:

0006 (direccionamiento indirecto)

Condiciones de error que ponen ENO a 0:

- SM1.1 (desbordamiento)
- 0006 (direccionamiento indirecto)
- Marcas especiales afectadas:
- SM1.1 (desbordamiento)

Funcionamiento de las operaciones Redondear a entero doble y Truncar

La operación Redondear (ROUND) convierte un número real (IN) en un valor de entero doble y deposita el resultado en la variable indicada por OUT. Si la fracción es 0,5 o superior, el número se redondeará al próximo entero superior.

La operación Truncar (TRUNC) convierte un número real (IN) en un entero doble y carga el resultado en la variable indicada por OUT. Sólo se convierte la parte entera del número real. La fracción se pierde. Condiciones de error que ponen ENO a 0:

- SM1.1 (desbordamiento)
- 0006 (direccionamiento indirecto)

Marcas especiales afectadas:

SM1.1 (desbordamiento)

Si el valor a convertir no es un número real válido o si es demasiado grande para ser representado en la salida, la marca de desbordamiento se activará y la salida no se verá afectada.

Funcionamiento de la operación Segmento

Con objeto de iluminar los segmentos de un indicador de siete segmentos, la operación Segmento (SEG) convierte el carácter (byte) indicado por IN para generar una configuración binaria (byte) en la dirección indicada por OUT.

Los segmentos iluminados representan el carácter depositado en el dígito menos significativo del byte de entrada. La figura 6-14 muestra la codificación del indicador de siete segmentos utilizado por la operación Segmento.

Condiciones de error que ponen ENO a 0:

0006 (direccionamiento indirecto)

(IN) LSD	Indicador	(OUT) -gfedcba
0	0	0011 1111
1	ł	00000110
2	2	0101 1011
3	3	0100 1111
4	닉	01100110
5	5	0110 1101
6	- 6	0111 1101
7		00000111

	f g b e c d	

(IN) LSD	Indicador	(OUT) -gfedcba
8	8	0111 1111
9	9	01100111
A	8	01110111
В	Ъ	0111 1100
С	E	0011 1001
D	9	0101 1110
E	E	0111 1001
F	Ę	01110001

Figura 6-14 Codificación de un indicador de siete segmentos

Operaciones de conversión ASCII

Los caracteres ASCII admisibles son los valores hexadecimales 30 a 39 y 41 a 46.

Convertir ASCII en hexadecimal y viceversa

La operación Convertir ASCII en hexadecimal (ATH) convierte un número LEN de caracteres ASCII, a partir del carácter IN, en dígitos hexadecimales, comenzando en OUT. La operación Convertir hexadecimal en ASCII (HTA) convierte los dígitos hexadecimales a partir del byte de entrada IN en caracteres ASCII, comenzando en OUT. El número de dígitos hexadecimales a convertir viene indicado por la longitud LEN.

Es posible convertir como máximo 255 caracteres ASCII, o bien dígitos hexadecimales. Introducción ASCII válida

Los caracteres ASCII válidos son los caracteres alfanuméricos 0 a 9 con un valor de código hexadecimal de 30 a 39, así como las mayúsculas A a F con un valor de código hexadecimal de 41 a 46.

Condiciones de error que ponen ENO a 0:

- SM1.7 (ASCII no válido) Sólo al convertir ASCII en hexadecimal
- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)

Marcas especiales afectadas:

SM1.7 (ASCII no válido)

Convertir valores numéricos en ASCII

Las operaciones Convertir entero en ASCII (ITA), Convertir entero doble en ASCII (DTA) y Convertir real en ASCII (RTA) convierten enteros, enteros dobles o números reales en caracteres ASCII.

Tabla 6-18 Operandos válidos para las operaciones de conversión ASCII

Entradas/salidas	Tipos de datos	Operandos
IN	BYTE	IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC
	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante
	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, constante
	REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, constante
LEN, FMT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

Funcionamiento de la operación Convertir entero en ASCII

La operación Convertir entero en ASCII (ITA) convierte un entero (IN) en un array de caracteres ASCII. El formato FMT indica la precisión de la conversión a la derecha del separador decimal, así como si éste debe aparecer en forma de coma o de punto. La conversión resultante se deposita en 8 bytes consecutivos comenzando en OUT.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- Formato no válido
- *nnn* > 5

El array de caracteres ASCII comprende siempre 8 caracteres.

SIMATIC / IEC1131

STL	ITA DTA RTA	IN, OUT, FMT IN, OUT, FMT IN, OUT, FMT	
	ATH HTA	IN, OUT, LEN IN, OUT, LEN	

La figura 6-15 describe el operando de formato (FMT) para la operación Convertir entero en ASCII. El tamaño del búfer de salida es siempre de 8 bytes. El campo *nnn* indica el número de dígitos a la derecha del separador decimal en el búfer de salida. El rango válido para el campo *nnn* está comprendido entre 0 y 5. Si se indican 0 dígitos a la derecha del separador decimal, el valor se visualizará sin separador. Si el valor *nnn* es mayor que 5, el búfer de salida se llenará con espacios ASCII. El bit *c* indica si se utiliza una coma (c = 1) o un punto decimal (c = 0) como separador entre el número entero y la fracción. Los 4 bits superiores deben ser "0".

La figura 6-15 muestra ejemplos de valores que se formatean utilizando un punto decimal (c=0) con tres dígitos a la derecha del mismo (nnn = 011). El búfer de salida se formatea conforme a las siguientes reglas:

- Los valores positivos se escriben sin signo en el búfer de salida.
- Los valores negativos se escriben precedidos de un signo menos (-) en el búfer de salida.
- Los ceros a la izquierda del separador decimal (con excepción del dígito adyacente al mismo) se suprimen.
- Los valores se justifican a la derecha en el búfer de salida.

FMT										
			Out							
MSB	LSB			+1	+2	+3	+4	+5	+6	+7
7 6 5 4 3 2 1	0	in=12				0		0	1	2
0 0 0 0 c n n	n	in=-123			-	0		1	2	3
c = coma (1) o punto (0) decimal		in=1234				1		2	3	4
nnn = dígitos a la derecha del sep	parador	in = -12345		-	1	2		3	4	5

Figura 6-15 Operando FMT para la operación Convertir entero en ASCII (ITA)

Funcionamiento de la operación Convertir entero doble en ASCII

La operación Convertir entero doble en ASCII (DTA) convierte un entero de 32 bits (IN) en un array de caracteres ASCII. El operando de formato FMT indica la precisión de conversión a la derecha del separador decimal. La conversión resultante se deposita en 12 bytes consecutivos comenzando en OUT.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- Formato no válido
- *nnn* > 5

El tamaño del búfer de salida es siempre de 12 bytes.

La figura 6-16 describe el operando de formato (FMT) para la operación Convertir entero doble en ASCII. El campo *nnn* indica el número de dígitos a la derecha del separador decimal en el búfer de salida. El rango válido para el campo *nnn* está comprendido entre 0 y 5. Si se indican 0 dígitos a la derecha del separador decimal, el valor se visualizará sin separador. Si el valor *nnn* es mayor que 5, el búfer de salida se llenará con espacios ASCII. El bit *c* indica si se utiliza una coma (c = 1) o un punto decimal (c = 0) como separador entre el número entero y la fracción. Los 4 bits superiores deben ser "0".

La figura 6-16 muestra ejemplos de valores que se formatean utilizando un punto decimal (c = 0) con cuatro dígitos a la derecha del mismo (nnn = 100). El búfer de salida se formatea conforme a las siguientes reglas:

- Los valores positivos se escriben sin signo en el búfer de salida.
- Los valores negativos se escriben precedidos de un signo menos (-) en el búfer de salida.
- Los ceros a la izquierda del separador decimal (con excepción del dígito adyacente al mismo) se suprimen.
- Los valores se justifican a la derecha en el búfer de salida.

Figura 6-16 Operando FMT para la operación Convertir entero doble en ASCII (DTA)

Funcionamiento de la operación Convertir real en ASCII

La operación Convertir real en ASCII (RTA) convierte un número real IN en caracteres ASCII. El formato FMT indica la precisión de la conversión a la derecha del separador decimal, así como si éste debe aparecer en forma de coma o de punto, y también el tamaño del búfer de salida.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- nnn > 5
- ssss < 3</p>

 ssss < número de caracteres en OUT

La conversión resultante se deposita en un búfer de salida que comienza en OUT.

El número (o longitud) de los caracteres ASCII resultantes corresponde al tamaño del búfer de salida, pudiendo indicarse en un rango comprendido entre 3 y 15 bytes o caracteres.

El formato de número real utilizado por la CPU S7-200 soporta 7 dígitos significativos como máximo. Si se intenta visualizar más de estos 7 dígitos, se producirá un error de redondeo.

La figura 6-17 describe el operando de formato (FMT) para la operación Convertir real en ASCII (RTA). El campo ssss indica el tamaño del búfer de salida. No es válido un tamaño de 0, 1 ó 2 bytes. El campo nnn indica el número de dígitos a la derecha del separador decimal en el búfer de salida. El rango válido para el campo nnn está comprendido entre 0 y 5. Si se indican 0 dígitos a la derecha del separador. El búfer de salida se rellena con espacios ASCII si los valores nnn son mayores que 5 o si el búfer es demasiado pequeño para almacenar el valor convertido. El bit c indica si se utiliza una coma (c = 1) o un punto decimal (c = 0) como separador entre el número entero y la fracción.

La figura 6-17 muestra ejemplos de valores que se formatean utilizando un punto decimal (c = 0) con un dígito a la derecha del mismo (nnn = 001) y un tamaño de búfer de seis bytes (ssss = 0110). El búfer de salida se formatea conforme a las siguientes reglas:

- Los valores positivos se escriben sin signo en el búfer de salida.
- Los valores negativos se escriben precedidos de un signo menos (-) en el búfer de salida.
- Los ceros a la izquierda del separador decimal (con excepción del dígito adyacente al mismo) se suprimen.
- Los valores a la derecha del separador decimal se redondean para que correspondan al número de dígitos indicado.
- El búfer de salida deberá ser por lo menos tres bytes más grande que el número de dígitos a la derecha del separador decimal.
- Los valores se justifican a la derecha en el búfer de salida.

Figura 6-17 Operando FMT para la operación Convertir real en ASCII (RTA)

Operaciones de conversión de cadenas

Convertir valores numéricos en cadenas

Las operaciones Convertir entero en cadena (ITS), Convertir entero doble en cadena (DTS) y Convertir real en cadena (RTS) convierten valores de enteros, enteros dobles o números reales (IN) en una cadena ASCII (OUT).

Funcionamiento de la operación Convertir entero en cadena

La operación Convertir entero en cadena (ITS) convierte un entero (IN) en una cadena ASCII de 8 caracteres de longitud. El formato (FMT) indica la precisión de la conversión a la derecha del separador decimal, así como si éste debe aparecer en forma de coma o de punto. La cadena resultante se escribe en 9 bytes consecutivos a partir de OUT. Para más información sobre el formato de cadenas, consulte el capítulo 4.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)
- Formato no válido (nnn > 5)

La figura 6-18 describe el operando de formato de la operación Convertir entero en cadena. La cadena resultante tiene siempre una longitud de 8 caracteres. El campo nnn indica el número de dígitos a la derecha del separador decimal en el búfer de salida. El rango válido para el campo nnn está comprendido entre 0 y 5. Si se indican 0 dígitos a la derecha del separador decimal, el valor se visualizará sin separador. Si el valor nnn es mayor que 5, resultará una cadena de 8 caracteres de espacios ASCII. El bit c indica si se utiliza una coma (c = 1) o un punto decimal (c = 0) como separador entre el número entero y la fracción. Los 4 bits superiores del formato deben ser "0".

La figura 6-18 muestra ejemplos de valores que se formatean utilizando un punto decimal (c = 0) con tres dígitos a la derecha del mismo (nnn = 011). El valor de OUT representa la longitud de la cadena.

La cadena resultante se formatea conforme a las siguientes reglas:

- Los valores positivos se escriben sin signo en el búfer de salida.
- Los valores negativos se escriben precedidos de un signo menos (-) en el búfer de salida.
- Los ceros a la izquierda del separador decimal (con excepción del dígito adyacente al mismo) se suprimen.
- Los valores se justifican a la derecha en la cadena resultante.

Tabla 6-19 Operandos válidos de las operaciones que convierten valores numéricos en cadenas

Entradas/salidas	Tipos de datos	Operandos
IN	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, *VD, *LD, *AC, constante
	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, constante
	REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, constante
FMT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
OUT	STRING	VB, LB, *VD, *LD, *AC

FMT										
		Out								
MSB L	SB		+1	+2	+3	+4	+5	+6	+7	+8
7 6 5 4 3 2 1 0) in=12	8				0		0	1	2
0 0 0 0 c n n r	in=-123	8				0		1	2	3
c = coma (1) o punto (0) decimal	in=1234	8				1		2	3	4
nnn = dígitos a la derecha del separa	ador in = -12345	8		-	1	2	-	3	4	5

Figura 6-18 Operando FMT para la operación Convertir entero en cadena

Funcionamiento de la operación Convertir entero doble en cadena

La operación Convertir entero doble en cadena (DTS) convierte un entero doble (IN) en una cadena ASCII de 12 caracteres de longitud. El formato (FMT) indica la precisión de la conversión a la derecha del separador decimal, así como si éste debe aparecer en forma de coma o de punto. La cadena resultante se escribe en 13 bytes consecutivos a partir de OUT. Para más información sobre el formato de cadenas, consulte el capítulo 4.

Condiciones de error que ponen ENO a 0:

0006 (direccionamiento indirecto)

- 0091 (operando fuera de rango)
- Formato no válido (nnn > 5)

La figura 6-19 describe el operando de formato de la operación Convertir entero en cadena. La cadena resultante tiene siempre una longitud de 8 caracteres. El campo nnn indica el número de dígitos a la derecha del separador decimal en el búfer de salida. El rango válido para el campo nnn está comprendido entre 0 y 5. Si se indican 0 dígitos a la derecha del separador decimal, el valor se visualizará sin separador. Si el valor nnn es mayor que 5, resultará una cadena de 12 caracteres de espacios ASCII. El bit c indica si se utiliza una coma (c = 1) o un punto decimal (c = 0) como separador entre el número entero y la fracción. Los 4 bits superiores del formato deben ser "0".

La figura 6-19 muestra también ejemplos de valores que se formatean utilizando un punto decimal (c = 0) con cuatro dígitos a la derecha del mismo (nnn = 100). El valor de OUT representa la longitud de la cadena. La cadena resultante se formatea conforme a las siguientes reglas:

- Los valores positivos se escriben sin signo en el búfer de salida.
- Los valores negativos se escriben precedidos de un signo menos (-) en el búfer de salida.
- Los ceros a la izquierda del separador decimal (con excepción del dígito adyacente al mismo) se suprimen.
- Los valores se justifican a la derecha en la cadena resultante.

FMI			Out	Out		Out	Out	Out	O U#	Out	Out		Out	Out	Out
MSB	LSB		Out	+1	+2	+3	+4	+5	+6	+7	+8	+9	+10	+11	+12
7 6 5 4 3	2 1 0	in=12	12						-	0		0	0	1	2
0 0 0 C	n n n	in = -1234567	12					1	2	3		4	5	6	7
c = coma (1) o punto (0) decimal nnn = dígitos a la derecha del separador															

Figura 6-19 Operando FMT para la operación Convertir entero doble en cadena

Funcionamiento de la operación Convertir real en cadena

La operación Convertir real en cadena (RTS) convierte un número real (IN) en una cadena ASCII. El formato (FMT) indica la precisión de la conversión a la derecha del separador decimal, así como si éste debe aparecer en forma de coma o de punto, y también la longitud de la cadena resultante.

La conversión resultante se deposita en una cadena que comienza en OUT. El formato indica la longitud de la cadena resultante, que puede comprender entre 3 y 15 caracteres. Para más información sobre el formato de cadenas, consulte el capítulo 4.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)
- Formato no válido: nnn > 5 ssss < 3 ssss < número de caracteres necesarios

El formato de número real utilizado por la CPU S7-200 soporta 7 dígitos significativos como máximo. Si se intenta visualizar más de estos 7 dígitos, se producirá un error de redondeo.

La figura 6-20 describe el operando de formato de la operación Convertir real en cadena. El campo ssss indica la longitud de la cadena resultante. No es válido un tamaño de 0, 1 ó 2 bytes. El campo nnn indica el número de dígitos a la derecha del separador decimal en el búfer de salida. El rango válido para el campo nnn está comprendido entre 0 y 5. Si se indican 0 dígitos a la derecha del separador. La cadena resultante se rellena con caracteres de espacios ASCII si nnn es mayor que 5 o si la cadena resultante es demasiado pequeña para almacenar el valor convertido. El bit c indica si se utiliza una coma (c = 1) o un punto decimal (c = 0) como separador entre el número entero y la fracción.

La figura 6-20 muestra ejemplos de valores que se formatean utilizando un punto decimal (c = 0) con un dígito a la derecha del mismo (nnn = 001) y una cadena de 6 caracteres de longitud (ssss = 0110). El valor de OUT representa la longitud de la cadena. La cadena resultante se formatea conforme a las siguientes reglas:

- Los valores positivos se escriben sin signo en el búfer de salida.
- Los valores negativos se escriben precedidos de un signo menos (-) en el búfer de salida.
- Los ceros a la izquierda del separador decimal (con excepción del dígito adyacente al mismo) se suprimen.
- Los valores a la derecha del separador decimal se redondean para que correspondan al número de dígitos indicado.
- □ La cadena resultante deberá ser por lo menos tres bytes más grande que el número de dígitos a la derecha del separador decimal.
- Los valores se justifican a la derecha en la cadena resultante.

FMT	•											_			
									Out						
MS	В						LSB			+1	+2	+3	+4	+5	+6
_7	6	5	4	3	2	1	0	in = 1234.5	6	1	2	3	4		5
s	s	s	s	с	n	n	n	in = -0.0004	6				0		0
SSS	s = lo	onaitu	ıd de	la ca	dena	resu	Iltante	in = -3.67526	6			-	3		7
c =	coma	a (1) o	o pun	to (0) dec	imal		in = 1.95	6				2		0
nnr	i = dig	gitos	a la c	derec	ha de	el sep	barador								

Figura 6-20 Operando FMT para la operación Convertir real en cadena

Convertir subcadenas en valores numéricos

Las operaciones Convertir subcadena en entero (STI), Convertir subcadena en entero doble (STD) y Convertir subcadena en real (STR) convierten un valor de cadena (IN), a partir del offset INDX, en un entero, un entero doble o un número real (OUT).

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)
- 009B (índice = 0)
- SM1.1 (desbordamiento)

Las operaciones Convertir subcadena en entero y Convertir subcadena en entero doble convierten cadenas que tengan el formato siguiente:

[espacios] [+ ó -] [dígitos 0 - 9]

La operación Convertir subcadena en real convierten cadenas que tengan el formato siguiente: [espacios] [+ \acute{o} -] [dígitos 0 - 9] [. \acute{o} ,] [dígitos 0 - 9]

Por lo general, el valor de INDX se pone a "1", lo que inicia la conversión del primer carácter de la cadena. INDX se puede ajustar a otros valores para iniciar la conversión en diferentes puntos de la cadena. Esto se puede utilizar si la cadena de entrada contiene texto que no pertenezca al número a convertir. Por ejemplo, si la cadena de entrada es "Temperatura: 77,8", el valor de INDX se debe ajustar a 13 para omitir la palabra "Temperatura:" al comienzo de la cadena.

La operación Convertir subcadena en real no convierte cadenas que utilicen una notación científica o formas exponenciales de números reales. La operación no causa un error de rebase del límite superior (SM1.1), sino que convierte la cadena en un número real hasta el exponencial y termina luego la conversión. Por ejemplo, la cadena '1.234E6' se convierte sin errores en el valor real 1.234.

La conversión finaliza al alcanzarse el final de la cadena o cuando se detecte el primer carácter no válido. Los caracteres no válidos son todos aquellos que no sean dígitos (0 - 9).

La marca especial de rebase del límite superior (SM1.1) se activará si de la conversión resulta un número entero que sea demasiado grande para el valor de salida. Por ejemplo, la operación Convertir subcadena en entero activará esa marca de error si la cadena de entrada produce un valor que sea mayor que 32767 o menor que -32768.

La marca especial de rebase del límite superior (SM1.1) se activará también si no es posible efectuar una conversión, debido a que la cadena de entrada no contiene un valor válido. Por ejemplo, si la cadena de entrada es 'A123', la operación de conversión activará la marca especial SM1.1 (rebase del límite superior) y el valor de salida permanecerá inalterado.

Tabla 6-20 Operandos válidos de las operaciones que convierten subcadenas en valores numéricos

Entradas/salidas	Tipos de datos	Operandos
IN	STRING	IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC, constante
INDX	BYTE	VB, IB, QB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
OUT	INT	VW, IW, QW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC
	DINT, REAL	VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Cadenas de entrada v para enteros y enteros	álidas s dobles	Cadenas de entrada para números reales	válidas	Cadenas de entrada no válidas
Cadena de entrada	Entero resultante	Cadena de entrada	Real resultante	Cadena de entrada
'123'	123	'123'	123.0	'A123'
·-00456'	-456	'-00456'	-456.0	6.7
'123.45'	123	'123.45'	123.45	'++123'
'+2345'	2345	·+2345'	2345.0	'+-123
'000000123ABCD'	123	'00.00000123'	0.00000123	ʻ+ 123'

Figura 6-21 Ejemplos de cadenas de entrada válidas y no válidas

Codificar y Decodificar

Codificar

La operación Codificar (ENCO) escribe el número del bit menos significativo de la palabra de entrada IN en el medio byte menos significativo (4 bits) del byte de salida OUT.

Decodificar

La operación Decodificar (DECO) activa el bit de la palabra de salida OUT. Este bit corresponde al número de bit representado por el medio byte menos significativo (4 bits) del byte de entrada IN. Todos los demás bits de la palabra de salida se ponen a 0.

Marcas especiales y ENO

Las siguientes condiciones afectan a ENO en las operaciones Codificar y Decodificar.

Condiciones de error que ponen ENO a 0:

0006 (direccionamiento indirecto)

Tabla 6-21	Operandos válidos para las operaciones Codificar y Decodificar
------------	--

Entradas/salidas	Tipos de datos	Operandos
IN	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC
	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

Ejemplo de las operaciones Codificar y Decod	dificar
Network 1 I3.1 AC2-IN OUT-VW4D EN ENO EN ENO EN ENO	Network 1 //AC2 contiene bits de error. //1º La operación DECO activa // el bit en VW40 // que corresponde a este // código de error. //2º La operación ENCO convierte // el bit menos significativo en un // código de error // que se almacena en VB50. LD I3.1 DECO AC2
	ENCO AC3, VB50
AC2 3	AC3 15 9 0 1000 0010 0000 0000
15 DECO 3 0	ENCO
VW40 0000 0000 0000 1000	VB50 9

Operaciones de contaje

Operaciones de contaje (SIMATIC)

Incrementar contador

La operación Incrementar contador (CTU) empieza a contar adelante a partir del valor actual cuando se produce un flanco positivo en la entrada de contaje adelante (CU). Si el valor actual (Cxx) es mayor o igual al valor de preselección PV, se activa el bit de contaje Cxx. El contador se inicializa cuando se activa la entrada de desactivación (R) o al ejecutarse la operación Poner a 0. El contador se detiene cuando el valor de contaje alcance el valor límite superior (32.767).

Funcionamiento en AWL:

- Entrada de desactivación: valor superior de la pila
- Entrada de contaje adelante: valor cargado en el segundo nivel de la pila

Decrementar contador

La operación Decrementar contador (CTD) empieza a contar atrás a partir del valor actual cuando se produce un flanco negativo en la entrada de contaje atrás (CD). Si el valor actual Cxx es igual a 0, se activa el bit de contaje Cxx. El contador desactiva el bit de contaje Cxx y carga el valor actual con el valor de preselección (PV) cuando se activa la entrada de carga LD. El contador se detiene al alcanzar el valor cero y el bit de contaje Cxx se activa.

Funcionamiento en AWL:

- Entrada de carga: valor superior de la pila
- Entrada de contaje atrás: valor cargado en el segundo nivel de la pila

Incrementar/decrementar contador

La operación Incrementar/decrementar contador (CTUD) empieza a contar adelante cuando se produce un flanco positivo en la entrada de contaje adelante (CU), y empieza a contar atrás cuando se produce un flanco positivo en la entrada de contaje atrás (CD). El valor actual Cxx del contador conserva el contaje actual. El valor de preselección PV se compara con el valor actual cada vez que se ejecuta la operación de contaje.

Cuando se alcanza el valor máximo (32.767), el siguiente flanco positivo en la entrada de contaje adelante invertirá el contaje hasta alcanzar el valor mínimo (-32.768). Igualmente, cuando se alcanza el valor mínimo (-32.768), el siguiente flanco positivo en la entrada de contaje atrás invertirá el contaje hasta alcanzar el valor máximo (32.767).

Si el valor actual (Cxx) es mayor o igual al valor de preselección PV, se activa el bit de contaje Cxx. En caso contrario, se desactiva el bit. El contador se inicializa cuando se activa la entrada de desactivación (R) o al ejecutarse la operación Poner a 0. El contador adelante/atrás se detiene al alcanzar el valor de preselección (PV).

Funcionamiento en AWL:

- Entrada de desactivación: valor superior de la pila
- Entrada de contaje atrás: valor cargado en el segundo nivel de la pila
- Entrada de contaje adelante: valor cargado en el tercer nivel de la pila

Tabla 6-22 Operandos válidos para las operaciones de contaje SIMATIC

Entradas/salidas	Tipos de datos	Operandos
Схх	WORD	Constante (C0 a C255)
CU, CD, LD, R	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
PV	INT	IW, QW, VW, MW, SMW, SW, LW, T, C, AC, AIW, *VD, *LD, *AC, constante

Consejo

Puesto que cada contador dispone sólo de un valor actual, no se puede asignar un mismo número a varios contadores. (Las operaciones Incrementar contador, Incrementar/decrementar contador y Decrementar contador acceden a un mismo valor actual).

Cuando se inicializa un contador con la operación Poner a 0, se desactivan tanto el bit de contaje como el valor actual del contador. El número del contador se debe utilizar para direccionar tanto el valor actual como el bit de ese contador.

Tabla 0-25 Funcionalmento de las operaciones de contaj	Tabla 6-23	Funcionamiento	de las	operaciones	de conta	je
--	------------	----------------	--------	-------------	----------	----

Tipos de datos	Funcionamiento	Bit de contaje	Alimentación/primer ciclo
СТU	CU incrementa el valor actual. El valor actual se sigue incrementando hasta alcanzar 32.767.	El bit de contaje se activa si: valor actual >= valor de preselección	El bit de contaje está desactivado. El valor actual se puede conservar. ¹
CTUD	CU incrementa el valor actual. CD decrementa el valor actual. El valor actual se sigue incrementando o decrementando hasta que se inicialice el contador.	El bit de contaje se activa si: valor actual >= valor de preselección	El bit de contaje está desactivado. El valor actual se puede conservar. ¹
СТD	CD decrementa el valor actual hasta que éste alcance 0.	El bit de contaje se activa si: valor actual >= 0	El bit de contaje está desactivado. El valor actual se puede conservar. ¹

¹ Es posible ajustar que se memorice el valor actual del contador. Para más información sobre el respaldo de la memoria de la CPU S7-200, consulte el capítulo 4.

Operaciones de contaje (IEC)

Contador ascendente

La operación Contador ascendente (CTU) cuenta adelante desde el valor actual hasta el valor prefijado (PV) al producirse un flanco positivo en la entrada de contaje adelante (CU). Si el valor actual (CV) es mayor o igual al valor prefijado, se activa el bit de contaje (Q). El contador se inicializa al activarse la entrada de desactivación (R). El contador ascendente se detiene al alcanzar el valor prefijado.

Contador descendente

La operación Contador descendente (CTD) empieza a contar atrás desde el valor prefijado (PV) cuando se produce un flanco positivo en la entrada de contaje atrás (CD). Si el valor actual (CV) es igual a cero, se activa el bit de salida del contador (Q). El contador se inicializa y carga el valor actual en el valor prefijado cuando se habilita la entrada de carga (LD). El contador descendente se detiene al alcanzar el valor cero.

Contador ascendente/descendente

La operación Contador ascendente/descendente (CTUD) cuenta adelante o atrás desde el valor actual (CV) al producirse un flanco positivo en la entrada de contaje adelante (CU) o de contaje atrás (CD), respectivamente. La salida ascendente (QU) se activa cuando el valor actual (CV) es igual al valor prefijado. La salida descendente (QD) se activa cuando el valor actual (CV) es igual al valor prefijado. La salida descendente (QD) se activa cuando el valor actual (CV) es igual a cero. El contador carga el valor actual en el valor prefijado (PV) cuando se habilita la entrada de carga (LD). De forma similar, el contador se inicializa y carga el valor actual con 0 cuando se habilita la desactivación (R). El contador se detiene cuando alcanza el valor prefijado, o bien 0.

 Tabla 6-24
 Operandos válidos para las operaciones de contaje IEC

Entradas/salidas	Tipos de datos	Operandos
Схх	CTU, CTD, CTUD	Constante (C0 a C255)
CU, CD, LD, R	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
PV	INT	IW, QW, VW, MW, SMW, SW, LW, AC, AIW, *VD, *LD, *AC, constante
Q, QU, QD	BOOL	I, Q, V, M, SM, S, L
CV	INT	IW, QW, VW, MW, SW, LW, AC, *VD, *LD, *AC

Consejo

Puesto que cada contador dispone sólo de un valor actual, no se puede asignar un mismo número a varios contadores. (Los contadores ascendentes, descendentes y ascendentes-descendentes acceden a un mismo valor actual).

Operaciones con contadores rápidos

Definir modo para contador rápido

La operación Definir modo para contador rápido (HDEF) selecciona el modo de operación de un contador rápido en particular (HSCx). La selección de modo define el reloj, el sentido de contaje, así como las funciones de arranque y puesta a 0 del contador rápido.

Por cada contador sólo se puede ejecutar una operación Definir modo para contador rápido (HDEF).

Condiciones de error que ponen ENO a 0:

- 0003 (conflicto de entradas)
- 0004 (operación no válida en una interrupción)
- 000A (redefinición de HSC)

Activar contador rápido

La operación Activar contador rápido (HSC) configura y controla el funcionamiento del contador rápido direccionado, basándose en el estado de las marcas especiales del mismo. El parámetro N indica el número del contador rápido.

Los contadores rápidos se pueden configurar para 12 modos de operación diferentes (v. tabla 6-26).

Todos los contadores disponen de entradas que soportan funciones tales como relojes, control del sentido, puesta a 0 y arranque. Para los contadores de dos fases, ambos relojes pueden funcionar a máxima frecuencia. Los contadores A/B permiten elegir una velocidad simple (1x) o cuádruple (4x) para el contaje. Todos los contadores funcionan a velocidades máximas sin interferir entre sí.

Condiciones de error que ponen ENO a 0:

- 0001 (HSC antes de HDEF)
- 0005 (operaciones HSC/PLS simultáneas)

Tabla 6-25 Operandos válidos para las operaciones con contadores rápidos

Entradas/salidas	Tipos de datos	Operandos
HSC, MODE	BYTE	Constante
Ν	WORD	Constante

Los ejemplos de programación del CD de documentación contienen programas que utilizan contadores rápidos (consulte los ejemplos 4 y 29).

Los contadores rápidos cuentan eventos rápidos que no se pueden controlar durante el ciclo del S7-200. La frecuencia máxima de un contador rápido depende del modelo de CPU S7-200. Para más información al respecto, consulte el anexo A.

Consejo

Las CPUs 221 y 222 soportan los contadores de velocidad cuádruple. HSC0, HSC3, HSC4 y HSC5. Estas CPUs no soportan los contadores HSC1 y HSC2.

Las CPUs 224, 224XP y 226 soportan seis contadores rápidos: HSC0 a HSC5.

Los contadores rápidos se utilizan habitualmente como accionamiento para temporizadores que funcionan impulsados por un árbol que gira a un régimen constante y provisto de un encoder incremental. Éste último provee un número determinado de valores de contaje por giro, así como un impulso de puesta a "0" una vez por giro. El reloj (o relojes) y el impulso de puesta a "0" del encoder suministran las entradas para el contador rápido.

El primero de los valores predeterminados se carga en el contador y las salidas deseadas se activan para el intervalo de tiempo en que el valor actual del contador es menor que el valor predeterminado. El contador se ajusta para que una interrupción se active cuando el contaje actual sea igual al predeterminado o cuando el contador se ponga a 0.

Cuando el valor actual es igual al predeterminado y se presenta un evento de interrupción, entonces se carga un nuevo valor predeterminado y se activa el siguiente estado de señal para las salidas. Si se produce un evento de interrupción porque el contador se ha inicializado, entonces se ajusta el primer valor predeterminado y los primeros estados de las salidas, repitiéndose el ciclo.

Puesto que las interrupciones se producen a una velocidad muy inferior a la de los contadores rápidos, es posible implementar un control preciso de las operaciones rápidas con un impacto relativamente bajo en el ciclo total del sistema de automatización. La posibilidad de asociar interrupciones a rutinas de interrupción permite cargar nuevos valores predeterminados en una rutina de interrupción separada, lo cual simplifica el control del estado. (Altenativamente, todos los eventos de interrupción se pueden ejecutar en una sola rutina de interrupción.)

Descripción de las operaciones con contadores rápidos

Todos los contadores funcionan de la misma manera en el mismo modo de operación. Hay cuatro tipos básicos de contadores, a saber: contadores de fase simple con control interno del sentido de contaje, contadores de fase simple con control externo del sentido de contaje, contadores de dos fases con 2 entradas de reloj, así como contadores A/B. Es preciso tener en cuenta que no todos los contadores soportan todos los modos. Todos los contadores se pueden utilizar sin entrada de puesta a 0 y sin entrada de arranque, con entrada de puesta a 0 pero sin entrada de arranque.

- Activando la entrada de puesta a 0 se borra el valor actual del contador hasta que esa entrada se desactive de nuevo.
- Cuando se activa la entrada de arranque, se habilita el contador. Si se desactiva esa entrada se mantiene el valor actual del contador, ignorándose los eventos de reloj.
- Si se activa la entrada de puesta a 0 mientras está desactivada la entrada del arranque, se ignorará la activación de la entrada de puesta a 0, con lo que no se modificará el valor actual. Si la entrada de arranque se activa mientras está activada la entrada de puesta a 0, el valor actual se borrará.

Antes de utilizar un contador rápido es preciso usar la operación HDEF (Definir modo para contador rápido) con objeto de seleccionar el modo del contador. Utilice la marca del primer ciclo SM0.1 (este bit se activa sólo en el primer ciclo y se desactiva posteriormente) para llamar a la subrutina que contiene la operación HDEF.

Programar un contador rápido

El asistente de operaciones HSC se puede utilizar para configurar el contador. El asistente utiliza las informaciones siguientes: tipo y modo del contador, valor predeterminado y valor actual del contador, así como sentido de contaje inicial. Para iniciar el asistente, elija el comando de menú **Herramientas > Asistente de operaciones** y, a continuación, seleccione el asistente HSC.

Para programar un contador rápido es preciso realizar las siguientes tareas básicas:

- Definir el contador y el modo.
- Ajustar el byte de control.
- Ajustar el valor actual (valor inicial).
- Ajustar el valor predeterminado (valor de destino).
- Asociar y habilitar la rutina de interrupción.
- Activar el contador rápido.

Definir el modo del contador y las entradas

Utilice la operación Definir modo para contador rápido para seleccionar el modo del contador y las entradas.

La tabla 6-26 muestra las entradas correspondientes al reloj, el control del sentido, la puesta a 0 y las funciones de arranque de los contadores rápidos. Una misma entrada no se puede utilizar para dos funciones diferentes. Sin embargo, cualquier entrada que no se esté utilizando en el modo actual del contador rápido se puede usar para otro fin. Por ejemplo, si HSC0 se está utilizando en modo 1 (que utiliza las entradas I0.0 e I0.2), I0.1 se podrá utilizar para interrupciones de flanco o para HSC3.

Consejo

Tenga en cuenta que todos los modos de HSC0 (excepto el modo 12) utilizan siempre I0.0 y que todos los modos de HSC4 usan siempre I0.3. Por tanto, estas entradas nunca estarán disponibles para otros fines cuando se estén utilizando esos contadores.

Mode	Descripción	Entradas			
	HSC0	10.0	10.1	10.2	
	HSC1	10.6	10.7	l1.0	l1.1
	HSC2	l1.2	l1.3	11.4	l1.5
	HSC3	10.1			
	HSC4	10.3	10.4	10.5	
	HSC5	10.4			
0	Contador de fase simple con control	Reloj			
1	interno del sentido de contaje	Reloj		Puesta a 0	
2	-	Reloj		Puesta a 0	Arranque
3	Contador de fase simple con control	Reloj	Sentido		
4	externo del sentido de contaje	Reloj	Sentido	Puesta a 0	
5		Reloj	Sentido	Puesta a 0	Arranque
6	Contador de dos fases con 2 entradas	Reloj adelante	Reloj atrás		
7	de reloj	Reloj adelante	Reloj atrás	Puesta a 0	
8	-	Reloj adelante	Reloj atrás	Puesta a 0	Arranque
9	Contador A/B	Reloj A	Reloj B		
10	-	Reloj A	Reloj B	Puesta a 0	
11	-	Reloj A	Reloj B	Puesta a 0	Arranque
12	HSC0 y HSC3 son los únicos que soportan el modo 12.				
	HSC0 cuenta el número de impulsos que salen de Q0.0.				
	HSC3 cuenta el número de impulsos que salen de Q0.1.				

Tabla 6-26 Entradas de los contadores rápidos

Modos de los contadores rápidos (ejemplos)

Los siguientes cronogramas (figuras 6-22 a 6-26) muestran cómo cada contador funciona conforme a su categoría.

Figura 6-23 Ejemplo del funcionamiento de los modos 3, 4 ó 5

Si se utilizan los modos de contaje 6, 7 u 8 y ocurre un flanco positivo tanto en la entrada de reloj de contaje adelante como en la de contaje atrás en menos de 0,3 microsegundos, puede ser que el contador rápido considere simultáneos ambos eventos. En este caso, el valor actual permanecerá inalterado y tampoco cambiará el sentido de contaje. Si entre el flanco positivo de la entrada de contaje adelante y el flanco positivo de la entrada de contaje atrás transcurren más de 0,3 microsegundos, el contador rápido recibirá ambos eventos por separado. En ninguno de ambos casos se produce un error.

Figura 6-24 Ejemplo del funcionamiento de los modos 6, 7 u 8

Figura 6-25 Ejemplo del funcionamiento de los modos 9, 10 u 11 (contador A/B, velocidad simple)

Valor actual cargado a 0, valor predeterminado cargado a 9, sentido inicial de contaje: adelante. Bit de habilitación del contador: habilitado

Figura 6-26 Ejemplo del funcionamiento de los modos 9, 10 u 11 (contador A/B, velocidad cuádruple)

Puesta a 0 y arranque

El funcionamiento de las entradas de puesta a 0 y de arranque es aplicable a todos los modos que utilizan esas entradas (v. fig. 6-27). En los diagramas de las entradas de puesta a 0 y de arranque se ha programado la actividad alta para ambas entradas.

Figura 6-27 Ejemplos del funcionamiento con puesta a 0 y sin arranque

Cuatro contadores tienen tres marcas de control que se utilizan para configurar el estado activo de las entradas de puesta a 0 y de arranque, así como para seleccionar la velocidad simple o cuádruple (ésto sólo en los contadores A/B). Estas marcas están depositadas en el byte de control del respectivo contador y se emplean solamente cuando se ejecuta la operación HDEF. La tabla 6-27 muestra esas marcas.

Consejo

Antes de poder ejecutar la operación HDEF es preciso ajustar las tres marcas de control al estado deseado. De lo contrario, el contador adoptará la configuración predeterminada del modo de contaje elegido.

Una vez ejecutada la operación HDEF, ya no se podrá modificar el ajuste de los contadores, a menos que el S7-200 cambie a modo STOP.

 Tabla 6-27
 Nivel de actividad de las entradas de puesta a 0 y de arranque, marcas para elegir la velocidad simple o cuádruple

HSC0	HSC1	HSC2	HSC4	Descripción (sólo cuando se ejecuta HDEF)		
SM37.0	SM47.0	SM57.0	SM147.0	Bit de control de nivel de actividad para puesta a 0 ¹ : 0 = entrada de puesta a 0 (actividad alta) 1 = entrada de puesta a 0 (actividad baja)		
	SM47.1	SM57.1		Bit de control de nivel de actividad para arranque ¹ : 0 = arranque (actividad alta) 1 = arranque (actividad baja)		
SM37.2	SM47.2	SM57.2	SM147.2	Velocidad de contaje de los contadores A/B: 0 = velocidad cuádruple 1 = velocidad simple		

1 El ajuste estándar de las entradas de puesta a 0 y de arranque es de actividad alta, y la velocidad de contaje es la cuádruple (es decir, la frecuencia del reloj de entrada multiplicada por cuatro).

Ajustar el byte de control

Una vez definido el contador y el modo de contaje es preciso programar los parámetros dinámicos del mismo. Cada contador rápido tiene un byte de control que permite realizar las siguientes acciones:

- Habilitar o inhibir el contador.
- Controlar el sentido (sólo en los modos 0, 1 y 2), o bien el sentido de contaje inicial (en los demás modos).
- Cargar el valor actual.
- Cargar el valor predeterminado.

El byte de control, los valores actuales asignados y los valores predeterminados se comprueban al ejecutarse la operación HSC. La tabla 6-28 describe cada una de las marcas del byte de control.

HSC0	HSC1	HSC2	HSC3	HSC4	HSC5	Descripción
SM37.3	SM47.3	SM57.3	SM137.3	SM147.3	SM157.3	Bit de control para el sentido de contaje: 0 = atrás 1 = adelante
SM37.4	SM47.4	SM57.4	SM137.4	SM147.4	SM157.4	Escribir el sentido de contaje en el contador rápido: 0 = no actualizar 1 = actualizar sentido
SM37.5	SM47.5	SM57.5	SM137.5	SM147.5	SM157.5	Escribir el nuevo valor predeterminado en el contador rápido: 0 = no actualizar 1 = actualizar el valor predeterminado
SM37.6	SM47.6	SM57.6	SM137.6	SM147.6	SM157.6	Escribir el nuevo valor actual en el contador rápido: 0 = no actualizar 1 = actualizar el valor actual
SM37.7	SM47.7	SM57.7	SM137.7	SM147.7	SM157.7	Habilitar el contador rápido: 0 = Inhibir el contador rápido 1 = Habilitar el contador rápido

Tabla 6-28 Bits de estado para HSC0, HSC1, HSC2, HSC3, HSC4 y HSC5

Ajustar los valores actuales y predeterminados

Todos los contadores rápidos disponen de un valor actual y de un valor predeterminado de 32 bits. Ambos son valores enteros con signo. Para cargar un nuevo valor actual o predeterminado en el contador rápido es preciso ajustar el byte de control y los bytes de marcas que contienen los valores actuales y/o predeterminados, así como ejecutar la operación HSC (Activar contador rápido) para transferir los nuevos valores al contador rápido. En la tabla 6-29 figuran los bytes de marcas especiales que contienen los nuevos valores y los valores predeterminados.

Además de los bytes de control y de los bytes que contienen los nuevos valores predeterminados, también se puede leer el valor actual de cada uno de los contadores rápidos, utilizando el tipo de datos HC (valor actual del contador rápido) seguido del número de contador (0, 1, 2, 3, 4 ó 5), como muestra la tabla 6-29. Ello permite acceder directamente al valor actual para operaciones de lectura. Por el contrario, este valor sólo se puede escribir utilizando la operación HSC.

 Tabla 6-29
 Nuevos valores actuales y predeterminados de los contadores HSC0, HSC1, HSC2, HSC3, HSC4 y HSC5

Valor a cargar	HSC0	HSC1	HSC2	HSC3	HSC4	HSC5
Nuevo valor actual	SMD38	SMD48	SMD58	SMD138	SMD148	SMD158
Nuevo valor predeterminado	SMD42	SMD52	SMD62	SMD142	SMD152	SMD162

Tabla 6-30 Valores actuales de los contadores HSC0, HSC1, HSC2, HSC3, HSC4 y HSC5

Valor	HSC0	HSC1	HSC2	HSC3	HSC4	HSC5
Valor actual	HC0	HC1	HC2	HC3	HC4	HC5

Direccionamiento de los contadores rápidos (HC)

Para acceder al valor de contaje del contador rápido, se indica la dirección del mismo (utilizando el identificador HC) y el número del contador (por ejemplo, HC0). El valor actual del contador rápido es de sólo lectura, pudiéndose acceder al mismo sólo en formato de palabra doble de 32 bits, como muestra la figura 6-28.

Asociar interrupciones

Todos los modos de los contadores soportan un evento de interrupción cuando el valor actual del HSC es igual al valor de preselección cargado. Los modos que utilizan una entrada de puesta a 0 externa soportan una interrupción que se ejecuta cuando se activa esa entrada. Todos los modos de los contadores (con excepción de los modos 0, 1 y 2) soportan una interrupción que se ejecuta cuando se produce un cambio del sentido de contaje. Cada una de estas condiciones se puede habilitar o inhibir por separado. En el apartado "Operaciones de interrupción" se describe detalladamente cómo utilizar las interrupciones.

Nota

Puede ocurrir un error fatal si se intenta cargar un nuevo valor actual, o bien inhibir y habilitar de nuevo el contador rápido desde la rutina de interrupción asociada a ese evento.

Byte de estado

Todos los contadores rápidos disponen de un byte para marcas de estado. Éstas indican el sentido de contaje actual y si el valor actual es igual o mayor que el valor predeterminado. La tabla 6-31 muestra las marcas de estado de los contadores rápidos.

Consejo

Las marcas de estado son válidas únicamente mientras se está ejecutando la rutina de interrupción para el contador rápido. El estado del contador rápido se supervisa con objeto de habilitar las interrupciones para los eventos que puedan afectar a la operación que se está ejecutando.

Tabla 6-31 Marcas de estado de los contadores HSC0, HSC1, HSC2, HSC3, HSC4 y HSC5

HSC0	HSC1	HSC2	HSC3	HSC4	HSC5	Descripción
SM36.0	SM46.0	SM56.0	SM136.0	SM146.0	SM156.0	No utilizado
SM36.1	SM46.1	SM56.1	SM136.1	SM146.1	SM156.1	No utilizado
SM36.2	SM46.2	SM56.2	SM136.2	SM146.2	SM156.2	No utilizado
SM36.3	SM46.3	SM56.3	SM136.3	SM146.3	SM156.3	No utilizado
SM36.4	SM46.4	SM56.4	SM136.4	SM146.4	SM156.4	No utilizado
SM36.5	SM46.5	SM56.5	SM136.5	SM146.5	SM156.5	Bit de estado del sentido de contaje actual: 0 = atrás 1 = adelante
SM36.6	SM46.6	SM56.6	SM136.6	SM146.6	SM156.6	El valor actual es igual al bit de estado del valor predeterminado: 0 = diferente 1 = igual
SM36.7	SM46.7	SM56.7	SM136.7	SM146.7	SM156.7	El valor actual es mayor que el bit de estado del valor predeterminado: 0 = menor o igual 1 = mayor que

Ejemplos de secuencias de inicialización de los contadores rápidos

HSC1 se utiliza como contador modelo en las descripciones siguientes de las secuencias de inicialización y funcionamiento. En las explicaciones acerca de la inicialización se supone que el sistema de automatización S7-200 se encuentra en modo RUN y que, por consiguiente, la marca del primer ciclo es verdadera. En otro caso se deberá tener en cuenta que la operación HDEF sólo puede ejecutarse una vez por cada contador rápido, tras haber cambiado a modo RUN. Si la operación HDEF se ejecuta por segunda vez en un contador rápido, se producirá un error en el tiempo de ejecución. Los ajustes del contador permanecerán entonces tal y como se configuraron con la primera operación HDEF que se ejecutó para el contador en cuestión.

Consejo

A continuación se describe cómo modificar individualmente el sentido de contaje, el valor actual o el valor predeterminado de los contadores rápidos. No obstante, todos o sólo algunos de estos ajustes se pueden cambiar también en ese mismo orden, definiendo el valor de SMB47 de forma apropiada y ejecutando luego la operación HSC.

Modos de inicialización 0, 1 ó 2

Para inicializar HSC1 como contador adelante/atrás de fase simple con control interno del sentido de contaje (modos 0, 1 ó 2), proceda de la manera siguiente:

- 1. Con la marca del primer ciclo, llame a una subrutina para ejecutar la inicialización. Puesto que se utiliza una llamada a subrutina, los siguientes ciclos ya no llaman a la misma, con lo cual se acorta el tiempo de ciclo y el programa queda mejor estructurado.
- 2. Cargue la marca SMB47 en la subrutina de inicialización conforme a la operación de control deseada. Por ejemplo,

SMB47 = 16#F8

Resultados: Se habilita el contador. Se escribe un nuevo valor actual. Se escribe un nuevo valor predeterminado. Se ajusta el sentido de contaje adelante. Se ajusta la actividad alta de las entradas de arranque y de puesta a 0.

- 3. Ejecute la operación HDEF con la entrada HSC puesta a "1" y la entrada MODE con uno de los ajustes siguientes: "0" para puesta a 0 o arranque no externos, "1" para puesta a 0 externa y sin arranque, o bien "2" para puesta a 0 y arranque externos.
- 4. Cargue el valor actual deseado en SMD48 (valor de palabra doble) (cargue 0 para borrar la marca).
- 5. Cargue el valor predeterminado deseado en SMD52 (valor de palabra doble).
- Para averiguar si el valor actual es igual al predeterminado, programe una interrupción asociando el evento de interrupción CV = PV (evento 13) a una rutina de interrupción. En el apartado "Operaciones de interrupción" se describe detalladamente cómo procesar las interrupciones.
- 7. Para poder detectar una puesta a "0" externa, programe una interrupción asociando el evento de interrupción Puesta a 0 externa (evento 15) a una rutina de interrupción.
- 8. Ejecute la operación Habilitar todos los eventos de interrupción (ENI) para habilitar las interrupciones.
- 9. Ejecute la operación HSC para que el sistema de automatización S7-200 programe el contador HSC1.
- 10. Finalice la subrutina.

Modos de inicialización 3, 4 ó 5

Para inicializar HSC1 como contador adelante/atrás de fase simple con control externo del sentido de contaje (modos 3, 4 ó 5), proceda de la manera siguiente:

- 1. Con la marca del primer ciclo, llame a una subrutina para ejecutar la inicialización. Puesto que se utiliza una llamada a subrutina, los siguientes ciclos ya no llaman a la misma, con lo cual se acorta el tiempo de ciclo y el programa queda mejor estructurado.
- 2. Cargue la marca SMB47 en la subrutina de inicialización conforme a la operación de control deseada. Por ejemplo,

SMB47 = 16#F8

- Resultados: Se habilita el contador. Se escribe un nuevo valor actual. Se escribe un nuevo valor predeterminado. Se ajusta el sentido inicial de contaje adelante. Se ajusta la actividad alta de las entradas de arranque y de puesta a 0.
- 3. Ejecute la operación HDEF con la entrada HSC puesta a "1" y la entrada MODE con uno de los ajustes siguientes: "3" para puesta a 0 o arranque no externos, "4" para puesta a 0 externa y sin arranque, o bien "5" para puesta a 0 y arranque externos.
- 4. Cargue el valor actual deseado en SMD48 (valor de palabra doble) (cargue 0 para borrar la marca).
- 5. Cargue el valor predeterminado deseado en SMD52 (valor de palabra doble).
- Para averiguar si el valor actual es igual al predeterminado, programe una interrupción asociando el evento de interrupción CV = PV (evento 13) a una rutina de interrupción. En el apartado "Operaciones de interrupción" se describe detalladamente cómo procesar las interrupciones.
- 7. Para poder detectar un cambio del sentido de contaje, programe una interrupción asociando el evento de interrupción de cambio de sentido (evento 14) a una rutina de interrupción.
- 8. Para poder detectar una puesta a "0" externa, programe una interrupción asociando el evento de interrupción Puesta a 0 externa (evento 15) a una rutina de interrupción.
- 9. Ejecute la operación Habilitar todos los eventos de interrupción (ENI) para habilitar las interrupciones.
- 10. Ejecute la operación HSC para que el sistema de automatización S7-200 programe el contador HSC1.
- 11. Finalice la subrutina.

Modos de inicialización 6, 7 u 8

Para inicializar HSC1 como contador adelante/atrás de dos fases con relojes adelante/atrás (modos 6, 7 u 8), proceda de la manera siguiente:

- 1. Con la marca del primer ciclo, llame a una subrutina para ejecutar la inicialización. Puesto que se utiliza una llamada a subrutina, los siguientes ciclos ya no llaman a la misma, con lo cual se acorta el tiempo de ciclo y el programa queda mejor estructurado.
- 2. Cargue la marca SMB47 en la subrutina de inicialización conforme a la operación de control deseada. Por ejemplo,

SMB47 = 16#F8

- Resultados: Se habilita el contador. Se escribe un nuevo valor actual. Se escribe un nuevo valor predeterminado. Se ajusta el sentido inicial de contaje adelante. Se ajusta la actividad alta de las entradas de arranque y de puesta a 0.
- 3. Ejecute la operación HDEF con la entrada HSC puesta a "1" y la entrada MODE con uno de los ajustes siguientes: "6" para puesta a 0 o arranque no externos, "7" para puesta a 0 externa y sin arranque, o bien "8" para puesta a 0 y arranque externos.
- 4. Cargue el valor actual deseado en SMD48 (valor de palabra doble) (cargue 0 para borrar la marca).
- 5. Cargue el valor predeterminado deseado en SMD52 (valor de palabra doble).
- Para averiguar si el valor actual es igual al predeterminado, programe una interrupción asociando el evento de interrupción CV = PV (evento 13) a una rutina de interrupción. En el apartado "Operaciones de interrupción" se describe detalladamente cómo procesar las interrupciones.
- 7. Para poder detectar un cambio del sentido de contaje, programe una interrupción asociando el evento de interrupción de cambio de sentido (evento 14) a una rutina de interrupción.
- 8. Para poder detectar una puesta a "0" externa, programe una interrupción asociando el evento de interrupción Puesta a 0 externa (evento 15) a una rutina de interrupción.
- 9. Ejecute la operación Habilitar todos los eventos de interrupción (ENI) para habilitar las interrupciones.
- 10. Ejecute la operación HSC para que el sistema de automatización S7-200 programe el contador HSC1.
- 11. Finalice la subrutina.

Modos de inicialización 9, 10 u 11

Para inicializar HSC1 como contador A/B (modos 9, 10 u 11), proceda de la manera siguiente:

- 1. Con la marca del primer ciclo, llame a una subrutina para ejecutar la inicialización. Puesto que se utiliza una llamada a subrutina, los siguientes ciclos ya no llaman a la misma, con lo cual se acorta el tiempo de ciclo y el programa queda mejor estructurado.
- Cargue la marca SMB47 en la subrutina de inicialización conforme a la operación de control deseada.

ole):
Resultados:
Se habilita el contador.
Se escribe un nuevo valor actual.
Se escribe un nuevo valor predeterminado.
Se ajusta el sentido inicial de contaje adelante.
Se ajusta la actividad alta de las entradas de arranque y de
puesta a 0.
druple):
Resultados:
Se habilita el contador.

Se escribe un nuevo valor actual. Se escribe un nuevo valor predeterminado. Se ajusta el sentido inicial de contaje adelante. Se ajusta la actividad alta de las entradas de arranque y de puesta a 0.

- 3. Ejecute la operación HDEF con la entrada HSC puesta a "1" y la entrada MODE con uno de los ajustes siguientes: "9" para puesta a 0 o arranque no externos, "10" para puesta a 0 externa y sin arranque, o bien "11" para puesta a 0 y arranque externos.
- 4. Cargue el valor actual deseado en SMD48 (valor de palabra doble) (cargue 0 para borrar la marca).
- 5. Cargue el valor predeterminado deseado en SMD52 (valor de palabra doble).
- Para averiguar si el valor actual es igual al predeterminado, programe una interrupción asociando el evento de interrupción CV = PV (evento 13) a una rutina de interrupción. En el apartado "Operaciones de interrupción" se describe detalladamente cómo procesar las interrupciones.
- 7. Para poder detectar un cambio del sentido de contaje, programe una interrupción asociando el evento de interrupción de cambio de sentido (evento 14) a una rutina de interrupción.
- 8. Para poder detectar una puesta a "0" externa, programe una interrupción asociando el evento de interrupción Puesta a 0 externa (evento 15) a una rutina de interrupción.
- 9. Ejecute la operación Habilitar todos los eventos de interrupción (ENI) para habilitar las interrupciones.
- 10. Ejecute la operación HSC para que el sistema de automatización S7-200 programe el contador HSC1.
- 11. Finalice la subrutina.

Modo de inicialización 12

Para inicializar HSC0 con objeto de contar impulsos generados por PTO0 (modo 12), proceda de la manera siguiente:

- 1. Con la marca del primer ciclo, llame a una subrutina para ejecutar la inicialización. Puesto que se utiliza una llamada a subrutina, los siguientes ciclos ya no llaman a la misma, con lo cual se acorta el tiempo de ciclo y el programa queda mejor estructurado.
- 2. Cargue la marca SMB37 en la subrutina de inicialización conforme a la operación de control deseada. Por ejemplo,

SMB37 = 16#F8

- Resultados: Se habilita el contador. Se escribe un nuevo valor actual. Se escribe un nuevo valor predeterminado. Se ajusta el sentido de contaje adelante. Se ajusta la actividad alta de las entradas de arranque y de puesta a 0.
- 3. Ejecute la operación HDEF con la entrada HSC puesta a "0" y la entrada MODE puesta a "12".
- 4. Cargue el valor actual deseado en SMD38 (valor de palabra doble) (cargue 0 para borrar la marca).
- 5. Cargue el valor predeterminado deseado en SMD42 (valor de palabra doble).
- Para averiguar si el valor actual es igual al predeterminado, programe una interrupción asociando el evento de interrupción CV = PV (evento 13) a una rutina de interrupción. En el apartado "Operaciones de interrupción" se describe detalladamente cómo procesar las interrupciones.
- 7. Ejecute la operación Habilitar todos los eventos de interrupción (ENI) para habilitar las interrupciones.
- 8. Ejecute la operación HSC para que el sistema de automatización S7-200 programe el contador HSC0.
- 9. Finalice la subrutina.

Cambiar el sentido en los modos 0, 1, 2 ó 12

Para configurar el cambio de sentido de HSC1 como contador de fase simple con control interno del sentido de contaje (modos 0,1, 2 ó 12), proceda de la manera siguiente:

1. Cargue SMB47 para escribir la dirección deseada:

SMB47 = 16#90	Habilita el contador. Ajusta el sentido de contaje atrás.
SMB47 = 16#98	Habilita el contador. Aiusta el sentido de contaie adelante

2. Ejecute la operación HSC para que el sistema de automatización S7-200 programe el contador HSC1.

Cargar nuevo valor actual (en cualquier modo)

Si se modifica el valor actual, el contador se inhibirá automáticamente. Mientras está inhibido el contador, no cuenta ni tampoco se generan interrupciones.

Para modificar el valor actual del contador HSC1 (en cualquier modo):

1. Cargue SMB47 para escribir el valor actual deseado:

SMB47 = 16#C0 Habilita el contador. Escribe el nuevo valor actual.

- 2. Cargue el valor actual deseado en SMD48 (valor de palabra doble) (cargue 0 para borrar la marca).
- 3. Ejecute la operación HSC para que el sistema de automatización S7-200 programe el contador HSC1.

Cargar nuevo valor predeterminado (en cualquier modo)

Para modificar el valor predeterminado de HSC1 (en cualquier modo):

1. Cargue SMB47 para escribir el valor predeterminado deseado:

SMB47 = 16#A0 Habilita el contador. Escribe el nuevo valor predeterminado.

- 2. Cargue el valor predeterminado deseado en SMD52 (valor de palabra doble).
- 3. Ejecute la operación HSC para que el sistema de automatización S7-200 programe el contador HSC1.

Inhibir un contador rápido (en cualquier modo)

Para inhibir el contador rápido HSC1 (en cualquier modo):

1. Cargue SMB47 para inhibir el contador:

SMB47 = 16#00 Inhibe el contador.

2. Ejecute la operación HSC para inhibir el contador.

Salida de impulsos

La operación Salida de impulsos (PLS) se utiliza para controlar las funciones Tren de impulsos (PTO) y Modulación por ancho de impulsos (PWM) disponibles en las salidas rápidas (Q0.0 y Q0.1).

El asistente de control de posición mejorado ofrece la posibilidad de crear operaciones personalizadas para la aplicación que simplifican las tareas de programación, permitiendo aprovechar las nuevas funciones de las CPUs S7-200. Para más información acerca del asistente de control de posición, consulte el capítulo 9.

La operación PLS antigua se puede seguir utilizando para crear aplicaciones de movimiento. No obstante, sólo las operaciones creadas con el asistente de control de posición mejorado soportan la rampa lineal del PTO.

PTO ofrece una onda cuadrada (con un ciclo de trabajo de 50%), pudiendo el usuario controlar el tiempo de ciclo y el número de impulsos.

SIMATIC / IEC1131						
LAD PLS - EN ENO - Q0.X	FBD PLS EN ENO -Q0.X					
SIMATIC						
STL PLS	Q0.X					

PWM ofrece una salida continua con un ciclo de trabajo variable, pudiendo el usuario controlar el tiempo de ciclo y el ancho de impulsos.

El S7-200 dispone de dos generadores PTO/PWM que crean trenes de impulsos rápidos, o bien formas de onda moduladas por ancho de impulsos. Uno de estos generadores está asignado a las salida digital Q0.0 y, el otro, a la salida digital Q0.1. Una marca especial (SM) almacena los siguientes datos para cada uno de los generadores: un byte de control (8 bits), un valor de contaje de impulsos (valor de 32 bits sin signo), así como un valor de tiempo de ciclo y un valor de ancho de impulsos (valores de 16 bits sin signo).

Los generadores PTO/PWM y la imagen del proceso comparten el uso de las salidas Q0.0 y Q0.1. Cuando está activa una función PTO o PWM en Q0.0 o Q0.1, el generador PTO/PWM controla la salida e inhibe el uso normal de la misma. La forma de onda de la salida no se ve afectada por el estado de la imagen del proceso, ni por el valor forzado de la salida o la ejecución de las operaciones directas de salida. Si el generador PTO/PWM está desactivado, el control de la salida retornará a la imagen del proceso. Ésta determina los estados inicial y final de la forma de onda de la salida, para que la forma de onda comience y termine en un nivel alto o bajo.

Tabla 6-32 Oper	andos válidos	para la o	peración S	Salida de	impulsos
-----------------	---------------	-----------	------------	-----------	----------

Entradas/salidas	Tipos de datos	Operandos			
Q0.X	WORD	Constante: 0 (= Q0.0)	o bien,	1 (= Q0.1)	

Consejo

Antes de habilitar las operaciones PTO o PWM, ajuste a "0" el valor de la imagen del proceso de Q0.0 y Q0.1.

El ajuste estándar de los bits de control, del tiempo de ciclo, del ancho de impulsos y de los valores de contaje es 0.

Las salidas PTO/PWM requieren una carga mínima de 10% de la carga nominal para poder garantizar transiciones idóneas de "off" a "on", y viceversa.

Los ejemplos de programación del CD de documentación contienen programas que utilizan la operación PLS para las funciones PTO/PWM (consulte los ejemplos 7, 22, 23, 30 y 50).

Tren de impulsos (PTO)

PTO ofrece una salida en cuadratura (con un ciclo de trabajo de 50%) para un número determinado de impulsos y un tiempo de ciclo determinado (v. fig. 6-29) La función Tren de impulsos (PTO) puede producir uno o varios trenes de impulsos (utilizando un perfil de impulsos). El número de impulsos y el tiempo de ciclo pueden indicarse en incrementos en microsegundos o milisegundos.

□ Número de impulsos: 1 a 4.294.967.295

 $\hfill \hfill \hfill$

Un número impar de microsegundos o milisegundos del tiempo de ciclo (por ejemplo, 75 ms) causa una distorsión del ciclo de trabajo.

Figura 6-29 Tren de impulsos (PTO)

En la tabla 6-33 figuran los límites del contaje de impulsos y del tiempo de ciclo.

Tabla 6-33 Contaje de impulsos y tiempo de ciclo en la función PTO

Contaje de impulsos/tiempo de ciclo	Reacción
Tiempo de ciclo < 2 unidades de tiempo	El tiempo de ciclo se ajusta a 2 unidades de tiempo.
Contaje de impulsos = 0	El contaje de impulsos se ajusta a 1 impulso.

La operación PTO permite efectuar un "pipelining", es decir, concatenar o canalizar los trenes de impulsos. Tras haber finalizado el tren de impulsos activo, comenzará inmediatamente la salida de un nuevo tren de impulsos. Así se garantiza la continuidad de los trenes de impulsos subsiguientes.

Utilizar el asistente de control de posición

El asistente de control de posición procesa automáticamente el 'pipelining' monosegmento y multisegmento de los impulsos PTO, la modulación por ancho de impulsos y la configuración de las marcas especiales. Además, crea una tabla de perfiles. La información contenida aquí se suministra a título de referencia. Es recomendable que utilice el asistente de control de posición. Para más información acerca de este asistente, consulte el capítulo 9.

Pipelining monosegmento de impulsos PTO

En este modo, el usuario debe actualizar las direcciones de las marcas especiales para el siguiente tren de impulsos. Tras haber arrancado el segmento PTO inicial, el usuario debe modificar inmediatamente las direcciones de las marcas especiales conforme a lo requerido para la segunda forma de onda, y ejecutar nuevamente la operación PLS. Los atributos del segundo tren de impulsos se conservan en una "pipeline" hasta finalizar el primer tren de impulsos. En la "pipeline" sólo se puede almacenar un registro. Tras haber finalizado el primer tren de impulsos, comenzará la salida de la segunda forma de onda y la "pipeline" quedará libre para acoger un nuevo tren de impulsos. Este proceso se puede repetir entonces para ajustar las características del siguiente tren de impulsos.

Entre los trenes de impulsos se producen transiciones suaves, a menos que cambie la base de tiempo o si el tren de impulsos activo finaliza antes de que un nuevo tren de impulsos sea capturado al ejecutarse la operación PLS.

Pipelining multisegmento de impulsos PTO

En este modo, el S7-200 lee automáticamente las características de todos los trenes de impulsos en una tabla de perfiles almacenada en la memoria de variables (memoria V). Las marcas especiales utilizadas en este modo son el byte de control, el byte de estado y el offset inicial de la tabla de perfiles en la memoria V (SMW168 ó SMW178). La base de tiempo se puede indicar en microsegundos o milisegundos, pero la selección será aplicable a todos los valores de tiempo de ciclo en la tabla de perfiles, no pudiendo modificarse durante la ejecución del perfil. Al ejecutarse la operación PLS se inicia el modo multisegmento.

Todos los registros de segmentos tienen una longitud de 8 bytes, comprendiendo un valor de tiempo de ciclo de 16 bits, un valor delta de tiempo de ciclo de 16 bits y un valor de contaje de impulsos de 32 bits. La tabla 6-34 muestra el formato de la tabla de perfiles. El tiempo de ciclo se puede incrementar o decrementar automáticamente programando una cantidad determinada para cada impulso. Este tiempo se prolonga o se acorta programando en el campo delta un valor positivo o negativo, respectivamente, y permanece inalterado si se programa el valor "0".

Mientras se está ejecutando el perfil PTO, el número del segmento activo actualmente se indica en SMB166 (ó SMB176).

Offset de bytes	Segmento	Descripción de los registros de la tabla
0		Número de segmentos: 1 a 255 ¹
1	#1	Tiempo de ciclo inicial (2 a 65.535 unidades de la base de tiempo)
3	~	Tiempo de ciclo delta por impulso (valor con signo) (-32.768 a 32.767 unidades de la base de tiempo)
5	-	Contaje de impulsos (1 a 4.294.967.295)
9	#2	Tiempo de ciclo inicial (2 a 65.535 unidades de la base de tiempo)
11	~	Tiempo de ciclo delta por impulso (valor con signo) (-32.768 a 32.767 unidades de la base de tiempo)
13]	Contaje de impulsos (1 a 4.294.967.295)
(Continúa)	#3	(Continúa)

Tabla 6-34	Formato de la tabla de	perfiles para la	función PTO	multiseamento
1abla 6-34	Formato de la tabla de	pernies para la	Tuncion PTO	muitisegmen

1 Si se introduce el valor 0 para el número de segmentos, se producirá un error no fatal y no se generará una salida PTO.

Modulación por ancho de impulsos (PWM)

La función PWM ofrece un tiempo de ciclo fijo con un ciclo de trabajo variable (v. fig. 6-30). El tiempo de ciclo y el ancho de impulsos pueden indicarse en incrementos de microsegundos o milisegundos.

Tiempo de ciclo: 10 μs a 65.535 μs, o bien 2 ms a 65.535 ms

(PWM)

- ☐ Tiempo de ancho de impulsos: 0
 - 0 μs a 65.535 μs, o bien 0 ms a 65.535 ms

Como muestra la tabla 6-35, si el ancho de impulsos se ajusta a un valor igual al tiempo de ciclo (con lo que el ciclo de trabajo es de 100 por ciento), la salida permanecerá activada continuamente. Si el ancho de impulsos es cero, el ciclo de trabajo (relación impulso-pausa) será de 0 por ciento y se desactivará la salida.

Tabla 6-35 Tiempo de ancho de impulsos y tiempo de ciclo y su efecto en la función PWM

Tiempo de ancho de impulsos / tiempo de ciclo	Reacción
Tiempo de ancho de impulsos >= valor de tiempo de ciclo	Ciclo de trabajo = 100%: la salida permanece activada continuamente.
Tiempo de ancho de impulsos = 0	Ciclo de trabajo = 0%: se desactiva la salida.
Tiempo de ciclo < 2 unidades de tiempo	El tiempo de ciclo se ajusta a 2 unidades de tiempo.

Hay dos maneras diferentes de cambiar las características de una forma de onda PWM:

- Actualización síncrona: Si no es necesario cambiar la base de tiempo, se utiliza la actualización síncrona. En este caso, el cambio de la forma de onda se efectúa en el límite de un ciclo, ofreciendo una transición suave.
- Actualización asíncrona: Generalmente, el ancho de impulsos cambia en tanto que el tiempo de ciclo permanece constante en la función PWM, por lo que no es necesario cambiar la base de tiempo. No obstante, si es preciso modificar la base de tiempo del generador PTO/PWM, se utiliza una actualización asíncrona. Ésta inhibe el generador PTO/PWM instantáneamente, de forma asíncrona a la forma de onda PWM. Ello puede provocar fluctuaciones no deseadas en los equipos controlados. Por tanto, se recomienda la actualización síncrona de las formas de ondas PWM. Elija una base de tiempo que se adecúe para todos los valores previstos para el tiempo de ciclo.

Consejo

El bit de actualización PWM (SM67.4 ó SM77.4) en el byte de control indica el tipo de actualización utilizado cuando la operación PLS se ejecuta para invocar cambios.

Si modifica la base de tiempo se efectuará en todo caso una actualización asíncrona, sin importar el estado de esta marca especial.

Utilizar marcas especiales para configurar y controlar las operaciones PTO/PWM

La operación PLS lee los datos almacenados en las marcas especiales indicadas y programa el generador PTO/PWM conforme a ello. SMB67 controla PTO 0 ó PWM 0, en tanto que SMB77 controla PTO 1 ó PWM 1. En la tabla 6-36 se describen los registros utilizados para controlar las funciones PTO/PWM. Mediante la tabla 6-37 es posible determinar rápidamente el valor que debe depositarse en el registro de control PTO/PWM para solicitar la operación deseada.

Para cambiar las características de una forma de onda PTO o PWM es preciso modificar las direcciones en el área de marcas especiales (incluyendo el byte de control) y ejecutar luego la operación PLS. La generación de una forma de onda PTO o PWM se puede inhibir en cualquier momento, poniendo a "0" el bit de habilitación PTO/PWM del byte de control (SM67.7 ó SM77.7) y ejecutando luego la operación PLS.

El bit de inactividad PTO (SM66.7 ó SM76.7) en el byte de estado indica si se ha completado el tren de impulsos programado. Además, tras finalizarse un tren de impulsos se puede llamar a una rutina de interrupción. (Consulte a este respecto las descripciones de las operaciones de comunicación e interrupción.) Si se utiliza el pipeling multisegmento, la rutina de interrupción se invoca tras completarse la tabla de perfiles.

Las siguientes condiciones activan SM66.4 (ó SM76.4) y SM66.5 (ó SM76.5):

- Si indica un valor delta del tiempo de ciclo que produzca un tiempo de ciclo no válido al cabo de un determinado número de impulsos, se generará un desbordamiento aritmético que finalizará la función PTO, con lo cual la marca de error de cálculo delta (SM66.4 ó SM76.4) se pondrá a 1. La salida retornará al control de la imagen del proceso.
- □ Si un perfil PTO que se esté ejecutando se interrumpe manualmente, la marca de interrupción anormal por el usuario (SM66.5 ó SM76.5) se pondrá a 1.
- Si intenta cargar la "pipeline" mientras está llena, la marca de desbordamiento PTO (SM66.6 ó SM76.6) se pondrá a 1. Para poder detectar los desbordamientos siguientes, esta marca se deberá poner a "0" manualmente tras haberse detectado un desbordamiento. Al pasar a RUN, la marca se vuelve a poner a 0.

Consejo

Si desea cargar un nuevo valor de contaje (SMD72 ó SMD82), de ancho de impulsos (SMW70 ó SMW80), o bien de tiempo de ciclo (SMW68 ó SMW78), deberá cargar tanto estos valores como el registro de control antes de ejecutar la operación PLS. Si desea utilizar la función PTO multisegmento, también deberá cargar el offset inicial (SMW168 ó SMW178) de la tabla de perfiles y los valores de ésta antes de ejecutar la operación PLS.

Q0.0	Q0.1	Bits de estado
SM66.4	SM76.4	Interrupción anormal del perfil PTO (error de cálculo delta): 0 = sin error 1 = interrupción
SM66.5	SM76.5	Interrupción anormal del perfil PTO causada por el usuario: 0 = sin interrupción 1 = interrupción
SM66.6	SM76.6	Desbordamiento positivo/negativo del "pipeline" PTO: 0 = sin desbordamiento 1 = desbordamiento positivo/negativo
SM66.7	SM76.7	PTO inactivo: 0 = PTO activo 1 = PTO inactivo
Q0.0	Q0.1	Bits de control
SM67.0	SM77.0	Actualizar el tiempo de ciclo PTO/PWM: 0 = no actualizar 1 = actualizar
SM67.1	SM77.1	Actualizar el tiempo de ancho de impulsos PWM: 0 = no actualizar 1 = actualizar
SM67.2	SM77.2	Actualizar el valor de contaje de impulsos de PTO: 0 = no actualizar 1 = actualizar contaje
SM67.3	SM77.3	Elegir la base de tiempo PTO/PWM: $0 = 1 \ \mu s/ciclo;$ $1 = 1 \ ms/ciclo$
SM67.4	SM77.4	Actualización PWM: 0 = asíncrona 1 = síncrona
SM67.5	SM77.5	Función PTO monosegmento/multisegmento:0 = monosegmento1 = multisegmento
SM67.6	SM77.6	Elegir el modo PTO/PWM 0 = PTO 1 = PWM
SM67.7	SM77.7	Habilitar PTO/PWM: 0 = inhibir 1 = habilitar
Q0.0	Q0.1	Otros registros PTO/PWM
SMW68	SMW78	Tiempo de ciclo PTO/PWM rango: 2 a 65.535
SMW70	SMW80	Valor del ancho de impulsos PWM rango: 0 a 65.535
SMD72	SMD82	Valor de contaje de impulsos PTO rango: 1 a 4.294.967.295
SMB166	SMB176	Número del segmento que se está ejecutando Sólo en el modo multisegmento PTO
SMW168	SMW178	Dirección inicial de la tabla de perfiles (offset de bytes a partir de V0)
SMB170	SMB180	Byte de estado del perfil lineal
SMB171	SMB181	Byte de resultado del perfil lineal
SMD172	SMD182	Registro de frecuencia en modo manual

Tabla 6-36 Marcas especiales de los registros de control PTO / PWM

Tabla 6-37 Referencias del byte de control PTO/PWM

Registro de		Resultado de la operación PLS						
control (valor hex.)	Habilitar	Modo	Segmento PTO	Actualización PWM	Base de tiempo	Contaje de impulsos	Ancho de impulsos	Tiempo de ciclo
16#81	Sí	PTO	Monosegmento		1 μs/ciclo			Cargar
16#84	Sí	PTO	Monosegmento		1 μs/ciclo	Cargar		
16#85	Sí	PTO	Monosegmento		1 μs/ciclo	Cargar		Cargar
16#89	Sí	PTO	Monosegmento		1 ms/ciclo			Cargar
16#8C	Sí	PTO	Monosegmento		1 ms/ciclo	Cargar		
16#8D	Sí	PTO	Monosegmento		1 ms/ciclo	Cargar		Cargar
16#A0	Sí	PTO	Multisegmento		1 μs/ciclo			
16#A8	Sí	PTO	Multisegmento		1 ms/ciclo			
16#D1	Sí	PWM		Síncrona	1 μs/ciclo			Cargar
16#D2	Sí	PWM		Síncrona	1 μs/ciclo		Cargar	
16#D3	Sí	PWM		Síncrona	1 μs/ciclo		Cargar	Cargar
16#D9	Sí	PWM		Síncrona	1 ms/ciclo			Cargar
16#DA	Sí	PWM		Síncrona	1 ms/ciclo		Cargar	
16#DB	Sí	PWM		Síncrona	1 ms/ciclo		Cargar	Cargar

Calcular los valores de la tabla de perfiles

El pipelining multisegmento que ofrecen los generadores PTO/PWM se puede utilizar para numerosas aplicaciones, en particular para el control de motores paso a paso.

Por ejemplo, la función PTO se puede usar con un perfil de impulsos para controlar un motor paso a paso, de manera que éste acelere, marche a una velocidad constante y desacelere luego. También se puede emplear en secuencias más complicadas, definiendo un perfil de impulsos que puede comprender hasta 255 segmentos, correspondiendo cada uno de ellos a una función de aceleración, marcha constante o desaceleración.

La figura 6-31 muestra los valores de la tabla de perfiles necesarios para generar una forma de onda de salida con objeto de acelerar un motor paso a paso (segmento #1), permitir que funcione a una velocidad constante (segmento #2) y desacelerarlo luego (segmento #3).

Figura 6-31 Diagrama frecuencia/tiempo

En el presente ejemplo, la frecuencia de impulsos inicial y final es de 2 kHz, la frecuencia de impulsos máxima es de 10 kHz y se requieren 4000 impulsos para alcanzar el número deseado de revoluciones del motor. Puesto que los valores de la tabla de perfiles se expresan en términos de período (tiempo de ciclo) y no de frecuencia, es preciso convertir los valores de frecuencia dados en valores de tiempo de ciclo. Por tanto, el tiempo de ciclo inicial y final es de 500 μ s, en tanto que el tiempo de ciclo correspondiente a la frecuencia máxima es de 100 μ s. Durante la etapa de aceleración del perfil de salida, la frecuencia máxima de impulsos se debe alcanzar en aproximadamente 200 impulsos. La etapa de desaceleración del perfil se debe finalizar en aproximadamente 400 impulsos.

La siguiente fórmula sencilla se puede utilizar para calcular el valor delta del tiempo de ciclo de un segmento dado que utiliza el generador PTO/PWM para ajustar el tiempo de ciclo de cada impulso:

Tiempo de ciclo delta de un segmento = | End_CT_{seq} - Init_CT_{seq} | / Cantidad_{seq}

donde: End_ CT_{seg} = tiempo de ciclo final de este segmento Init_ CT_{seg} = tiempo de ciclo inicial de este segmento Cantidad_{seg} = cantidad de impulsos de este segmento

Utilizando esta fórmula se calculan los valores del tiempo de ciclo para la aplicación de ejemplo:

Segmento 1 (aceleración): Tiempo de ciclo delta = -2

Segmento 2 (velocidad constante): Tiempo de ciclo delta = 0

Segmento 3 (desaceleración): Tiempo de ciclo delta = 1

Suponiendo que la tabla de perfiles se encuentra almacenada en la memoria V (comenzando en V500), los valores utilizados para generar la forma de onda deseada figuran en la tabla 6-38. Es posible incluir operaciones en el programa, con objeto de cargar estos valores en la memoria V, o bien definir los valores del perfil en el bloque de datos. Tabla 6-38 Valores de la tabla de perfiles

Dirección	Valor	Descripción		
VB500	3	Número total de segme	ntos	
VW501	500	Tiempo de ciclo inicial		
VW503	-2	Tiempo de ciclo delta inicial	Segmento 1	
VD505	200	Número de impulsos		
VW509	100	Tiempo de ciclo inicial		
VW511	0	Tiempo de ciclo delta	Segmento 2	
VD513	3400	Número de impulsos		
VW517	100	Tiempo de ciclo inicial		
VW519	1	Tiempo de ciclo delta	Segmento 3	
VD521	400	Número de impulsos		

Para determinar si son aceptables las transiciones entre los segmentos de formas de ondas, es preciso definir el tiempo de ciclo del último impulso de un segmento. A menos que el tiempo de ciclo delta sea 0, es preciso calcular dicho tiempo de ciclo, puesto que este valor no se indica en el perfil. Utilice la fórmula siguiente para calcular el tiempo de ciclo del último impulso:

Tiempo de ciclo del último impulso de un segmento = Init_CT_{seg} + (delta_{seg} * (cantidad_{seg} - 1))

donde: Init_CT_{seq} = tiempo de ciclo inicial de este segmento

Delta_{seq} = valor delta del tiempo de ciclo de este segmento

Cantidad_{sea} = cantidad de impulsos de este segmento

Aunque el ejemplo simplificado descrito arriba sirve de introducción a la materia, es posible que en una aplicación real se necesiten perfiles de formas de ondas más complejos. Recuerde que el tiempo de ciclo delta sólo se puede indicar en forma de número entero en microsegundos o milisegundos. Asimismo, considere que en cada impulso se modifica el tiempo de ciclo.

El efecto de estos dos puntos es que el cálculo del valor delta del tiempo de ciclo para un determinado segmento podría exigir una aproximación iterativa. Puede ser necesaria cierta flexibilidad en el valor del tiempo de ciclo final o en el número de impulsos para un determinado segmento.

La duración de un segmento de perfil puede ser útil a la hora de determinar los valores correctos para la tabla de perfiles. Utilice la fórmula siguiente para calcular la duración de un segmento dado:

Duración del segmento = cantidad_{seg} * (Init_CT + ((Delta_{seg}/2) * (cantidad_{seg} - 1)))

donde: Cantidad_{seq} = cantidad de impulsos de este segmento

Init_CT_{seq} = tiempo de ciclo inicial de este segmento

Deltasea = valor delta del tiempo de ciclo de este segmento

Operaciones aritméticas

Operaciones de sumar, restar, multiplicar y dividir

Sumar	Restar	
IN1 + IN2 = OUT FUP	IN1 - IN2 = OUT	КОР у
IN1 + OUT = OUT	OUT - IN1 = OUT	AWL

Las operaciones Sumar enteros (+I) y Restar enteros (-I) suman/restan dos enteros de 16 bits, arrojando un resultado de 16 bits. Las operaciones Sumar enteros dobles (+D) y Restar enteros dobles (-D) suman/restan dos enteros de 32 bits, arrojando un resultado de 32 bits. Las operaciones Sumar reales (+R) y Restar reales (-R) suman/restan dos números reales de 32 bits, dando como resultado un número real de 32 bits.

Multiplicar	Dividir	
IN1 * IN2 = OUT	IN1 / IN2 = OUT	КОР у
IN1 * OUT = OUT	OUT / IN1 = OUT	AWL

Las operaciones Multiplicar enteros (*I) y Dividir enteros (/I) multiplican o dividen dos enteros de 16 bits, respectivamente, arrojando un resultado de 16 bits. (En la división no se conserva un resto.) Las operaciones Multiplicar enteros dobles (*D) y Dividir enteros dobles (/D) multiplican o dividen dos enteros de 32 bits, respectivamente, arrojando un resultado de 32 bits. (En la división no se conserva un resto.) Las operaciones Multiplicar reales (*R) y Dividir reales (/R) multiplican o dividen dos números reales de 32 bits, respectivamente, dando como resultado un número real de 32 bits.

SIMATIC IEC 1131 LBD FBD ADD_I ADD_I EN ENO EN ENO IN1 OUT IN1 OUT IN2 IN2 ADD_1 ADD_DI ADD_R SUB_DI SUB_1 SUB_R MUL_1 MUL_DI MUL_R DIV_1 DIV_DI DIV_R

SIMILITIC				
STL	+I	IN1, C	ОЛТ	
	+ 	+D -D *D /D	+R -R *R ∕R	

Marcas especiales y ENO

SM1.1 indica errores de desbordamiento y valores no válidos. Si se activa SM1.1, el estado de SM1.0 y de SM1.2 no será válido y no se alterarán los operandos de entrada originales. Si SM1.1 y SM1.3 no se activan, la operación aritmética habrá finalizado con un resultado válido, y tanto SM1.0 como SM1.2 contendrán un estado válido. Si se activa SM1.3 durante una operación de división, permanecerán inalterados los demás bits aritméticos de estado.

Condiciones de error que ponen ENO a 0:

- SM1.1 (desbordamiento)
- Marcas especiales afectadas
- SM1.0 (cero)
- SM1.1 (desbordamiento, valor no válido generado durante la operación o parámetro de entrada no válido)
- SM1.3 (división por cero)
- 0006 (direccionamiento indirecto)
- SM1.2 (negativo)
- SM1.3 (división por cero)

Entradas/salidas	Tipos de datos	Operandos
IN1, IN2	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *AC, *LD, constante
	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, constante
	REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, constante
OUT	INT	IW, QW, VW, MW, SMW, SW, LW, T, C, AC, *VD, *AC, *LD
	DINT, REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Tabla 6-39	Operandos válidos	nara las operaciones	de sumar restar	multiplicar v dividir
Tabla 0-39	Operations validos	para las operaciones	ue sumai, restai,	multiplical y ulviuli

Los números reales (o números en coma flotante) se representan en el formato descrito en la norma ANSI/IEEE 754-1985 (precisión sencilla). Para obtener más información al respecto, consulte esa norma.

Ejemplo de operaciones aritméticas con núm	neros reales
Network 1	Network 1
	LD I0.0 +R AC1, AC0 *R AC1, VD100 /R VD10, VD200
AC1-IN1 OUT-VD100 VD100-IN2	
Sumar Multiplic	icar Dividir
4000.0 + 6000.0 = 10000.0 400.0) * 200.0 = 80000.0 4000.0 / 41.0 = 97.5609
AC1 AC0 AC0 AC1	VD100 VD100 VD200 VD10 VD200

Multiplicar enteros a enteros dobles y Dividir enteros con resto

Multiplicar enteros a enteros dobles

IN1 * IN2 = OUT	KOP y FUP
IN1 * OUT = OUT	AWL

La operación Multiplicar enteros a enteros dobles (MUL) multiplica dos números enteros de 16 bits, arrojando un producto de 32 bits. En la operación AWL de multiplicación, la palabra menos significativa (16 bits) del OUT de 32 bits se utiliza como uno de los factores.

Dividir enteros con resto

IN1 / IN2 = OUT KOP y FUP OUT / IN1 = OUT AWL

La operación Dividir enteros con resto (DIV) divide dos números enteros de 16 bits, arrojando un resultado de 32 bits, compuesto por un resto de 16 bits (la palabra más significativa) y un cociente de 16 bits (la palabra menos significativa).

En la operación AWL de división, la palabra menos significativa (16 bits) del OUT de 32 bits se utiliza como dividendo.

Marcas especiales y ENO

En las operaciones Multiplicar enteros a enteros dobles y Dividir enteros con resto, las marcas especiales indican errores y valores no válidos. Si se activa SM1.3 (división por cero) durante una operación de división, permanecerán inalterados los demás bits aritméticos de estado. En otro caso, todos los bits aritméticos de estado soportados contendrán el estado válido al finalizar la operación aritmética.

Condiciones de error que ponen ENO a 0:

- SM1.1 (desbordamiento)
- SM1.3 (división por cero)
- 0006 (direccionamiento indirecto)

Marcas especiales afectadas

- SM1.0 (cero)
- SM1.1 (desbordamiento)
- SM1.2 (negativo)
- SM1.3 (división por cero)

Tabla 6-40 Operandos válidos para las operaciones Multiplicar enteros a enteros dobles y Dividir enteros con resto

Entradas/salidas	Tipos de datos	Operandos
IN1, IN2	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante
OUT	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Nota: VD100 contiene VW100 y VW102, en tanto que VD200 contiene VW200 y VW202.

Operaciones con funciones numéricas

Seno, Coseno y Tangente

Las operaciones Seno (SIN), Coseno (COS) y Tangente (TAN) evalúan la función trigonométrica del valor del ángulo IN y depositan el resultado en OUT. El valor del ángulo de entrada se indica en radianes.

SIN (IN) = OUT COS (IN) = OUT TAN (IN) = OUT

Para convertir un ángulo de grados a radianes, utilice la operación Multiplicar reales (MUL_R (*R)), con objeto de multiplicar el ángulo en grados por 1,745329E-2 (aproximadamente por $\pi/180$).

Logaritmo natural y Exponente natural

La operación Logaritmo natural (LN) calcula el logaritmo natural del valor de IN y deposita el resultado en OUT.

La operación Exponente natural (EXP) ejecuta el cálculo exponencial de la constante "e" elevada a la potencia del valor de IN y deposita el resultado en OUT.

LN (IN) = OUT EXP (IN)= OUT

Para obtener el logaritmo con base 10 del logaritmo natural, divida el logaritmo natural por 2,302585 (que es aproximadamente el logaritmo natural de 10).

Para elevar un número real cualquiera a la potencia de otro número real, incluyendo exponentes fraccionarios, combine la operación Exponente natural con la operación Logaritmo natural. Por ejemplo, para elevar X a la potencia de Y, introduzca la operación siguiente: EXP (Y * LN (X)).

Raíz cuadrada

La operación Raíz cuadrada (SQRT) extrae la raíz cuadrada de un número real de 32 bits (IN), dando como resultado un número real de 32 bits (OUT), como muestra la ecuación siguiente:

SQRT (IN)= OUT

Para obtener otras raíces: 5 elevado al cubo = $5^3 = EXP(3^*LN(5)) = 125$ Raíz cúbica de $125 = 125^{(1/3)} = EXP((1/3)^*LN(125)) = 5$ Raíz cúbica de 5 elevado al cubo = $5^{(3/2)} = EXP(3/2^*LN(5)) = 125$

11,18034

Marcas especiales y ENO para las operaciones con funciones numéricas

En todas las operaciones descritas en esta página, SM1.1 se utiliza para indicar errores de rebase y valores no válidos. Si se activa SM1.1, el estado de SM1.0 y de SM1.2 no será válido y no se alterarán los operandos de entrada originales. Si SM1.1 y SM1.2 no se activan durante una operación de división, la operación aritmética habrá finalizado con un resultado válido, y tanto SM1.0 como SM1.2 contendrán un estado válido.

C	ondiciones de error que	Marcas especiales afectadas				
po	onen ENO a 0:	 SM1.0 (cero) 				
•	SM1.1 (desbordamiento)	 SM1.1 (desbordamiento) 				
•	0006 (direccionamiento indirecto)	 SM1.2 (negativo) 				

Tabla 6-41 Operandos válidos para las funciones numéricas

Entradas/salidas	Tipos de datos	Operandos
IN	REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, constante
OUT	REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Los números reales (o números en coma flotante) se representan en el formato descrito en la norma ANSI/IEEE 754-1985 (precisión sencilla). Para obtener más información al respecto, consulte esa norma.

Incrementar y decrementar

Incrementar

IN + 1 = OUT OUT + 1 = OUT

KOP y FUP AWL

Decrementar

IN - 1 = OUT KOP y FUP OUT - 1 = OUT AWL

Las operaciones Incrementar y Decrementar suman/restan 1 al valor de la entrada IN y depositan el resultado en OUT.

Las operaciones Incrementar byte (INCB) y Decrementar byte (DECB) no llevan signo.

Las operaciones Incrementar palabra (INCW) y Decrementar palabra (DECW) llevan signo.

Las operaciones Incrementar palabra doble (INCD) y Decrementar palabra doble (DECD) llevan signo.

Condiciones de error que ponen ENO a 0:

- SM1.1 (desbordamiento)
- 0006 (direccionamiento indirecto)

Marcas especiales afectadas:

- SM1.0 (cero)
- SM1.1 (desbordamiento)
- SM1.2 (negativo) para operaciones con palabras y palabras dobles

Tabla 6 12	Oporandos válidos	nora los o	noracionae I	noromontar v	Docromontor
1abla 6-42	Operandos validos	para las o	peraciones i	ncrementar y	Decrementar

Entradas/salidas	Tipos de datos	Operandos
IN	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante
	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, constante
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Ejemplo Incrementar y decrementar

Regulación PID proporcional/integral/derivativa

La operación Regulación PID (PID) ejecuta el cálculo de un lazo de regulación PID en el LOOP referenciado, conforme a las informaciones de entrada y configuración definidas en TABLE (TBL).

Condiciones de error que ponen ENO a 0:

- SM1.1 (desbordamiento)
- 0006 (direccionamiento indirecto)

Marcas especiales afectadas:

SM1.1 (desbordamiento)

La operación PID (lazo de regulación con acción proporcional, integral, derivativa) sirve para ejecutar el cálculo PID. Para habilitar el cálculo PID, el primer nivel de la pila lógica (TOS) deberá estar a ON (circulación de corriente). Esta operación tiene dos operandos: una dirección TABLE que constituye la dirección inicial de la tabla del lazo y un número LOOP que es una constante comprendida entre 0 y 7.

SIMATIC / IEC1131	
LAD PID - EN ENO - - TBL - LOOP	FBD PID - EN ENO - TBL - LOOP
SIMATIC	
STL	
PID TE	SL, LOOP

Un programa sólo admite ocho operaciones PID. Si se utilizan dos o más operaciones PID con el mismo número de lazo (aunque tengan diferentes direcciones de tabla), los dos cálculos PID se interferirán mutuamente siendo impredecible el resultado.

La tabla del lazo almacena nueve parámetros que sirven para controlar y supervisar la operación del mismo. Incluye el valor actual y previo de la variable del proceso (valor real), la consigna, la salida o magnitud manipulada, la ganancia, el tiempo de muestreo, el tiempo de acción integral, el tiempo de acción derivativa y la suma integral (bias).

Para poder realizar el cálculo PID con el intervalo de muestreo deseado, la operación PID deberá ejecutarse bien dentro de una rutina de interrupción temporizada, o bien desde el programa principal, a intervalos controlados por un temporizador. El tiempo de muestreo debe definirse en calidad de entrada para la operación PID a través de la tabla del lazo.

La función de autosintonía se ha agregado a la operación PID. Para obtener una descripción detallada acerca de esta función, consulte el capítulo 15.El Panel de sintonía PID sólo funciona con los lazos PID creados con el asistente PID.

Tabla 6-43	Operandos válidos pa	ra la operación	Regulación PID
------------	----------------------	-----------------	----------------

Entradas/salidas	Tipos de datos	Operandos
TBL	BYTE	VB
LOOP	BYTE	Constante (0 a 7)

operaciones

STEP 7-Micro/WIN incorpora el asistente PID que ayuda a definir un algoritmo PID para un proceso de control de bucle cerrado. Elija el comando de menú Herramientas > Asistente de operaciones y seleccione PID en la ventana del asistente.

Consejo

La consigna de los límites inferior y superior debería corresponder a los límites inferior y superior de la variable del proceso.

Algoritmo PID

En modo estacionario, un regulador PID varía el valor de su salida para llevar a cero el error de regulación (e). El error es la diferencia entre el valor de consigna (SP) (el punto de trabajo deseado) y la variable del proceso (PV) (el punto de trabajo real). El principio de una regulación PID se basa en la ecuación que se indica a continuación y que expresa la salida M(t) como una función de un término proporcional, uno integral y uno derivativo:

Salida	=	término proporcional	+	término integral	+	término derivativo
M(t)	=	K _C * e	+	$\mathbf{K}_{\mathbf{C}} \int_{0}^{t} \mathbf{e} \mathbf{dt} + \mathbf{M}_{initial}$	+	K _C * de/dt
donde:	M _(t) K _C e M _{inicial}	es la salida del lazo es la ganancia del es el error de regul es el valor inicial de	o en f lazo lación e la sa	unción del tiempo (diferencia entre la consignational alida del lazo	na y la v	ariable de proceso)

Para poder implementar esta función de regulación en un sistema digital, la función continua deberá cuantificarse mediante muestreos periódicos del valor del error, calculándose seguidamente el valor de la salida. La ecuación que constituye la base de la solución en un sistema digital es:

Mn	=	K _c * e _n	+	$\mathbf{K}_{\mathbf{I}} * \sum_{1}^{n} \mathbf{e}_{\mathbf{X}} + \mathbf{M}_{inicial}$	+	K _D * (e _n -e _{n-1})
Salida	=	término proporcional	+	término integral	+	término derivativo
donde:	$\begin{array}{c} M_n \\ K_C \\ e_n \\ e_{n-1} \\ e_x \\ K_l \\ M_{inicial} \\ K_D \end{array}$	es el valor de salid es la ganancia del es el valor del erro es el valor previo o es el valor del erro es la constante pro es el valor inicial d es la constante pro	a del lazo r del l lel err r de r porci e la s	lazo calculado en el muestreo lazo en el muestreo n-ésimo ror de regulación (en el muest egulación en el muestreo x ional del término integral alida del lazo ional del término derivativo	o n-ésii reo (n-	no 1)-ésimo)

Para esta ecuación, el término integral se muestra en función de todos los términos del error, desde el primer muestreo hasta el muestreo actual. El término derivativo es una función del muestreo actual y del muestreo previo; mientras que el término proporcional sólo es función del muestreo actual. En un sistema digital no es práctico almacenar todos los muestreos del término del error, además de no ser necesario.

Puesto que un sistema digital debe calcular el valor de salida cada vez que se muestre el error, comenzando en el primer muestreo, basta con almacenar el valor previo del error y el valor previo del término integral. Debido a la naturaleza repetitiva de la solución basada en un sistema digital, es posible simplificar la ecuación a resolver en cada muestreo. La ecuación simplificada es:

Mn	=	K _c * e _n	+	K _i *	e _n + MX	+	K _D * (e _n -e _{n-1})	
Salida	=	término proporcional	+	térm	ino integral	+	término derivativo	
donde:	Mn	es el valor de salida	del la	azo ca	lculado en el muestreo	n-ésin	าด	
	K _C	es la ganancia del la	azo					
	e _n	es el valor del error	del la	zo en	el muestreo n-ésimo			
	e _{n - 1}	es el valor previo de	el erro	r de re	egulación (en el muestre	eo (n-1)-ésimo)	
	KI	es la constante proporcional del término integral						
	MX	es el valor previo del término integral (en el muestreo (n-1)-ésimo)						
	K _D	es la constante proporcional del término derivativo						

Para calcular el valor de salida del lazo, el S7-200 utiliza una forma modificada de la ecuación simplificada anterior. Esta ecuación modificada equivale a:

Mn	=	MPn	+	MIn	+	MD _n
Salida	=	término proporcional	+	término integral	+	término derivativo
donde:	Mn MP _n MI _n MDn	es el valor de salida es el valor del térmi es el valor del térmi es el valor del térmi	a del la no pro no int no de	azo calculado en el muestre oporcional de salida del lazo egral de salida del lazo en e rivativo de salida del lazo e	eo n-é o en e el mue n el m	simo I muestreo n-ésimo estreo n-ésimo nuestreo n-ésimo

Término proporcional de la ecuación PID

El término proporcional MP es el producto de la ganancia (K_C), la cual controla la sensibilidad del cálculo de la salida, y del error (e), que es la diferencia entre el valor de consigna (SP) y el valor real o de la variable del proceso (PV) para un instante de muestreo determinado. La ecuación que representa el término proporcional según la resuelve el S7-200 es la siguiente:

MPn	=	К _С	*	$(SP_n \operatorname{\text{-}} PV_n)$	
donde:	MPn K _C SP _n PV _n	es e es la es e es e	valor del t ganancia l valor de la l valor de la	término propo del lazo a consigna en a variable del	rcional de salida del lazo en el muestreo n-ésimo el muestreo n-ésimo proceso en el muestreo n-ésimo

Término integral de la ecuación PID

El término integral MI es proporcional a la suma del error a lo largo del tiempo. La ecuación que representa el término integral según la resuelve el S7-200 es la siguiente:

MIn	=	Kc	*	т _s	/ T _I	*	(SP _n - PV _n)	+ MX	
donde:	MI _n Kc		es el valor del término integral de salida del lazo en el muestreo n-ésimo es la ganancia del lazo						
	T _S T _I SP _n PV _n MX		es el tiemp es el perío es el valor es el valor (también lla	do de mue do de inte de la cor de la var del térmi amado su	estreo del la egración del signa en el iable del pro no integral uma integral	zo lazo (tambie muestreo n- ceso en el r en el muestre o "bias")	én llamado tiempo ésimo nuestreo n-ésimo eo (n-1)-ésimo	de acción integral)	

La suma integral o bias (MX) es la suma acumulada de todos los valores previos del término integral. Después de cada cálculo de MI_n se actualiza la suma integral con el valor de MI_n que puede ajustarse o limitarse (para más información, consulte la sección "Variables y rangos"). Por regla general, el valor inicial de la suma integral se ajusta al valor de salida ($M_{inicial}$) justo antes de calcular la primera salida del lazo. El término integral incluye también varias constantes tales como la ganancia (K_C), el tiempo de muestreo (T_S), que define el intervalo con que se recalcula periódicamente el valor de salida del lazo PID, y el tiempo de acción integral (T_1), que es un tiempo utilizado para controlar la influencia del término integral en el cálculo de la salida.

Término derivativo de la ecuación PID

El término derivativo MD es proporcional a la tasa de cambio del error. El S7-200 utiliza la ecuación siguiente para el término derivativo:

$$MD_n = K_C * T_D / T_S * ((SP_n - PV_n) - (SP_{n-1} - PV_{n-1}))$$

Para evitar cambios o saltos bruscos de la salida debidos a cambios de la acción derivativa o de la consigna, se ha modificado esta ecuación bajo la hipótesis de que la consigna es constante $(SP_n = SP_{n-1})$. En consecuencia, se calcula el cambio en la variable del proceso en lugar del cambio en el error, como puede verse a continuación:

MDn	=	Kc	*	TD	1	Τs	*		(SP _n - PV _n - SP _n + PV _{n - 1})
o simplific	ando:								
MDn	=	ĸc	*	TD	1	Τs	*		(PV _{n - 1} - PV _n)
donde:	MD _n K _C T _S T _D SP _n PV _{n-1} PV _n	1	es el val es la ga es el tien es el per es el val es el val es el val	lor del t nancia mpo de ríodo de lor de la lor de la lor de la	érmino d del lazo muestre e diferen a consigr a consigr a variable a variable	leriva eo del ciació na en na en e del j e del j	tivo de la l lazo ón de lazo el muesti el muesti proceso e proceso e	s; o (re en	alida del lazo en el muestreo n-ésimo también llamado tiempo de acción derivativa) o n-ésimo o n-1 el muestreo n-ésimo el muestreo (n-1)-ésimo

En lugar del error es necesario guardar la variable del proceso para usarla en el próximo cálculo del término derivativo. En el instante del primer muestreo, el valor de PV_{n-1} se inicializa a un valor igual a PV_n .

Seleccionar el tipo de regulación

En numerosos sistemas de regulación basta con utilizar una o dos acciones de regulación. Así, por ejemplo, puede requerirse únicamente regulación proporcional o regulación proporcional e integral. El tipo de regulación se selecciona ajustando correspondientemente los valores de los parámetros constantes.

Por tanto, si no se desea acción integral (sin "I" en el cálculo PID), entonces el tiempo de acción integral deberá ajustarse a infinito ("INF"). Incluso sin acción integral, es posible que el valor del término integral no sea "0", debido a que la suma integral MX puede tener un valor inicial.

Si no se desea acción derivativa (sin "D" en el cálculo PID), entonces el tiempo de acción derivativa deberá ajustarse a 0.0.

Si no se desea acción proporcional (sin "P" en el cálculo PID) y se desea regulación I o ID, entonces la ganancia deberá ajustarse a 0.0. Puesto que la ganancia interviene en las ecuaciones para calcular los términos integral y derivativo, si se ajusta a 0.0 resulta un valor de 1.0, que es el utilizado para calcular los términos integral y derivativo.

Convertir y normalizar las entradas del lazo

El lazo tiene dos variables o magnitudes de entrada, a saber: la consigna y la variable del proceso. La consigna es generalmente un valor fijo (por ejemplo, el ajuste de velocidad en el ordenador de abordo de un automóvil). La variable del proceso es una magnitud relacionada con la salida del lazo y que mide por ello el efecto que tiene la misma sobre el sistema regulado. En el ejemplo del ordenador de abordo, la variable del proceso sería la entrada al tacómetro que es una señal proporcional a la velocidad de giro de las ruedas.

Tanto la consigna como la variable del proceso son valores físicos que pueden tener diferente magnitud, rango y unidades de ingeniería. Para que la operación PID pueda utilizar esos valores físicos, éstos deberán convertirse en representaciones normalizadas en coma flotante.

El primer paso es convertir el valor físico de un valor entero de 16 bits en un valor en coma flotante o real. La siguiente secuencia de operaciones muestra cómo convertir un valor entero en un número real.

ITD	AIW0, AC0	//Convertir un valor de entrada en una palabra doble.
DTR	ACO, ACO	//Convertir un entero doble en un número real.

El próximo paso consiste en convertir el número real representativo del valor físico en un valor normalizado entre 0.0 y 1.0. La ecuación siguiente se utiliza para normalizar tanto la consigna como el valor de la variable del proceso.

R _{Norm}	= ((((R _{No norm} / Alcance) + Offset)							
donde:	R _{Norm} R _{No norm}	es la representación como número real normalizado del valor físico es la representación como número real no normalizado del valor físico							
	Offset	vale 0,0 para valores unipolares vale 0,5 para valores bipolares							
	Alcance	es la diferencia entre el máximo valor posible menos el mínimo valor posible: = 32.000 para valores unipolares (típico) = 64.000 para valores bipolares (típico)							

La siguiente secuencia de operaciones muestra la forma de normalizar el valor bipolar contenido en AC0 (cuyo alcance vale 64.000), continuando la secuencia previa:

/R	64000.0, AC0	// Normalizar el valor en el acumulador.
+R	0,5, AC0	// Desplazar el valor al rango entre 0.0 y 1.0.
MOVR	AC0, VD100	// Almacenar el valor normalizado en la tabla del lazo.

Convertir la salida del lazo en un valor entero escalado

La salida del lazo constituye la variable manipulada; en el caso del automóvil, la posición de la mariposa en el carburador. La salida del lazo es un valor real normalizado comprendido entre 0.0 y 1.0. Antes de que la salida del lazo pueda utilizarse para excitar una salida analógica, deberá convertirse en un valor escalado de 16 bits. Esta operación constituye el proceso inverso de convertir PV y SP en un valor normalizado. El primer paso es convertir la salida del lazo en un valor real escalado usando la fórmula siguiente:

R _{Scal}	= (N	M _n - Offset)	*	Alcance
donde:	R _{Scal} M _n	es el valor real es es el valor real no	calado rmaliz	o de la salida del lazo ado de la salida del lazo
	Offset	vale 0,0 para valo vale 0,5 para valo	ores ur ores bi	nipolares polares
	Alcance	es la diferencia er = 32.000 para val = 64.000 para val	ntre el ores u ores b	máximo valor posible menos el mínimo valor posible nipolares (típico) ipolares (típico)

La siguiente secuencia de operaciones muestra la forma de escalar la salida del lazo:

MOVR	VD108, AC0	//Transferir la salida del lazo al acumulador.
-R	0,5, AC0	//Incluir esta operación sólo si el valor es bipolar.
*R	64000.0, AC0	//Escalar el valor en el acumulador.

Seguidamente es necesario convertir el valor real escalado representativo de la salida del lazo en un entero de 16 bits. La secuencia siguiente muestra cómo efectuar esta conversión:

ROUND	AC0, AC0	//Convertir el número real en un entero doble.
DTI	ACO, LWO	//Convertir el valor en un entero de 16 bits.
MOVW	LW0, AQW0	//Escribir el valor en la salida analógica.

Lazos con acción positiva o negativa

El lazo tiene acción positiva si la ganancia es positiva y acción negativa si la ganancia es negativa. (En regulación I o ID, donde la ganancia vale 0.0, si se indica un valor positivo para el tiempo de acción integral y derivativa resulta un lazo de acción positiva y de acción negativa al indicarse valores negativos).

Variables y rangos

La variable del proceso y la consigna son magnitudes de entrada para el cálculo PID. Por tanto, la operación PID lee los campos definidos para estas variables en la tabla del lazo, pero no los modifica.

El valor de salida se genera al realizar el cálculo PID. Debido a ello, el campo en la tabla del lazo que contiene el valor de salida se actualiza cada vez que se termina un cálculo PID. El valor de salida está limitado entre 0.0 y 1.0. El usuario puede utilizar el campo de valor de salida en calidad de campo de entrada para indicar un valor de salida inicial cuando se conmute de control manual a automático (consulte también la sección "Modos").

Si se utiliza regulación integral, la suma integral es actualizada por el cálculo PID y el valor actualizado se utiliza como entrada para el siguiente cálculo PID. Si el valor de salida calculado se sale de rango (salida inferior a 0.0 o superior a 1.0), la suma integral se ajustará conforme a las fórmulas siguientes:

МХ	=	1.0 - (MP _n + MD _n)	si la salida calculada, M _n > 1.0			
o bien	ι,					
МХ	=	- (MP _n + MD _n)	si la salida calculada, M _n < 0.0			
donde:	MX MP _n MD _n M _n	es el valor de la suma integral ajustada es el valor del término proporcional de salida del lazo en el muestreo n-ésimo es el valor del término derivativo de la salida del lazo en el muestreo n-ésimo es el valor de la salida del lazo en el muestreo n-ésimo				

Si la suma integral se calcula de la forma descrita, mejorará la respuesta del sistema cuando la salida calculada retorne al rango adecuado. Es decir, la suma integral calculada se limita entre 0.0 y 1.0 y luego se escribe en el campo reservado para ella en la tabla del lazo cada vez que se finaliza un cálculo PID. El valor almacenado en la tabla del lazo se utiliza para el próximo cálculo PID.

A fin de evitar problemas con valores de la suma integral en determinadas aplicaciones, el usuario puede modificar el valor de la suma integral en la tabla del lazo antes de ejecutar la operación PID. Cualquier modificación manual de la suma integral deberá realizarse con gran precaución. En todo caso, el valor de la suma integral escrito en la tabla del lazo deberá ser un número real comprendido entre 0,0 y 1,0.

En la tabla del lazo se mantiene un valor de comparación de la variable del proceso para su uso en la parte de acción derivativa del cálculo PID. El usuario no deberá modificar este valor.

Modos

Los lazos PID del S7-200 no incorporan el control del modo de operación. El cálculo PID sólo se ejecuta si circula corriente hacia el cuadro PID. Por ello resulta el modo "automático" cuando se ejecuta cíclicamente el cálculo PID. Resulta el modo "manual" cuando no se ejecuta el cálculo PID.

La operación PID tiene un bit de historial de circulación de corriente similar a una operación de contador. La operación utiliza este bit para detectar una transición de "0" a "1" de la circulación de la corriente. Cuando se detecta la transición, la operación ejecutará una serie de acciones a fin de asegurar un cambio sin choques entre control manual y automático. Para evitar choques en la transición al modo automático, el valor de la salida ajustado manualmente deberá entregarse en calidad de entrada a la operación PID (escrita en la entrada para M_n en la tabla del lazo) antes de conmutar a modo automático. La operación PID ejecuta las siguientes acciones con los valores de la tabla del lazo a fin de asegurar un cambio sin choques entre control manual y automático cuando se detecta una transición de la circulación de corriente de "0" a "1":

- \Box Ajustar la consigna (SP_n) = variable de proceso (PV_n)
- \Box Ajustar la variable del proceso antigua (PV_{n-1}) = variable del proceso (PV_n)
- \Box Ajustar la suma integral (MX) = valor de salida (M_n)

El estado por defecto de los bits de historial PID es "activado". Este estado se establece en el arranque o cada vez que haya una transición de modo STOP a RUN en el sistema de automatización. Si circula corriente hacia el cuadro PID la primera vez que se ejecuta tras entrar en el modo RUN, entonces no se detectará ninguna transición de la circulación de corriente y, por consecuencia, no se ejecutarán las acciones destinadas a evitar choques en el cambio de modo.

Alarmas y operaciones especiales

La operación PID es simple, pero ofrece grandes prestaciones para ejecutar cálculos PID. Si se precisan funciones de postprocesamiento (tales como funciones de alarma o cálculos especiales en base a las variables de lazo), ello deberá implementarse utilizando las operaciones básicas soportadas por el S7-200 en cuestión.

Condiciones de error

A la hora de compilar, la CPU generará un error de compilación (error de rango) y la compilación fallará si los operandos correspondientes a la dirección inicial o al número de lazo PID en la tabla del lazo están fuera de rango.

La operación PID no comprueba si todos los valores de entrada en la tabla del lazo respetan los límites de rango. Es decir, el usuario deberá vigilar que la variable del proceso y la consigna (al igual que la suma integral y la variable del proceso previa, si se utilizan como entradas) sean números reales comprendidos entre 0.0 y 1.0.

Si se detecta algún error al ejecutar las operaciones aritméticas del cálculo PID se activará la marca SM1.1 (desbordamiento o valor no válido) y se finalizará la ejecución de la operación PID. (La actualización de los valores de salida en la tabla del lazo podría ser incompleta, por lo que se deberán descartar estos valores y corregir el valor de entrada que ha provocado el error matemático antes de volver a ejecutar la operación de regulación PID.)

Tabla del lazo

La tabla del lazo tiene 80 bytes de longitud y el formato que muestra la tabla 6-44:

Offset	Campo	Formato	Tipos de datos	Descripción
0	Variable del proceso (PV _n)	REAL	IN	Contiene la variable del proceso que debe estar escalada entre 0.0 y 1.0.
4	Consigna (SP _n)	REAL	IN	Contiene la consigna que debe estar escalada entre 0.0 y 1.0.
8	Salida (M _n)	REAL	IN/OUT	Contiene la salida calculada, escalada entre 0.0 y 1.0.
12	Ganancia (K _C)	REAL	IN	Contiene la ganancia, que es una constante proporcional. Puede ser un número positivo o negativo.
16	Tiempo de muestreo (T _S)	REAL	IN	Contiene el tiempo de muestreo en segundos. Tiene que ser un número positivo.
20	Tiempo de acción integral (T _I)	REAL	IN	Contiene el tiempo de acción integral en minutos. Tiene que ser un número positivo.
24	Tiempo de acción derivativa (T _D)	REAL	IN	Contiene el tiempo de acción derivativa en minutos. Tiene que ser un número positivo.
28	Suma integral (MX)	REAL	IN/OUT	Contiene el valor de la suma integral entre 0.0 y 1.0.
32	Variable del proceso previa (PV _{n-1})	REAL	IN/OUT	Contiene el valor almacenado de la variable de proceso al ejecutar por última vez la instrucción PID.
36 a 79	Reservados para variables de autosintonía. Para más detalles, consulte la tabla 15-1.			

Tabla 6-44 Tabla del lazo
Operaciones de interrupción

Habilitar todos los eventos de interrupción e Inhibir todos los eventos de interrupción

La operación Habilitar todos los eventos de interrupción (ENI) habilita la ejecución de todos los eventos asociados. La operación Inhibir todos los eventos de interrupción (DISI) inhibe la ejecución de todos los eventos asociados.

Las interrupciones se inhiben cuando la CPU pasa a modo RUN. En modo RUN es posible habilitar el procesamiento de las interrupciones con la operación Habilitar todos los eventos de interrupción. Ejecutando la operación Inhibir todos los eventos de interrupción se inhibe el procesamiento de las interrupciones. No obstante, los eventos de interrupción activos se siguen poniendo en la cola de espera.

Condiciones de error que ponen ENO a 0:

 0004 (intento de ejecutar una operación ENI, DISI o HDEF en una rutina de interrupción)

Retorno condicionado desde rutina de interrupción

La operación Retorno condicionado desde rutina de interrupción (CRETI) finaliza una rutina en función de la combinación lógica precedente.

Asociar interrupción

La operación Asociar interrupción (ATCH) asocia el número de una rutina de interrupción INT a un evento de interrupción EVNT, habilitando así éste último.

Condiciones de error que ponen ENO a 0:

• 0002 (conflicto de asignación de entradas a un contador rápido)

Desasociar interrupción

La operación Desasociar interrupción (DTCH) desasocia un evento de interrupción EVNT de todas las rutinas de interrupción, deshabilitando así el evento.

Borrar evento de interrupción

La operación Borrar evento de interrupción elimina todos los eventos de interrupción del tipo EVNT de la cola de interrupciones. Utilice esta operación para eliminar de la cola de interrupciones los eventos de interrupción indeseados. Si esta operación se utiliza para borrar eventos de interrupción falsos, es recomendable desasociar el evento en cuestión antes de borrar los eventos de la cola de interrupciones. De lo contrario, los nuevos eventos se agregarán a la cola tras haberse ejecutado la operación.

El ejemplo muestra un contador rápido A/B que utiliza la operación CLR_EVNT para borrar interrupciones. Si un sensor paso a paso troceador de luz se ha detenido en una posición límite entre un paso de claro a oscuro, las vibraciones leves de la máquina podrían generar interrupciones indeseadas antes de que se pueda cargar el nuevo valor de preselección.

Entradas/salidas	Tipos de datos	Operandos	
INT	BYTE	Constante (0 a 127)	
EVNT	BYTE	Constante CPU 221 y CPU 222: CPU 224: CPU 224XP y CPU 226:	0 a 12, 19 a 23 y 27 a 33 0 a 23 y 27 a 33 0 a 33

Funcionamiento de las operaciones Asociar interrupción y Desasociar interrupción

Antes de poder llamar a una rutina de interrupción es preciso establecer un enlace entre el evento de interrupción y la parte del programa que se desee ejecutar cuando se presente el evento. La operación Asociar interrupción sirve para asignar el evento de interrupción (indicado por el número de evento) a una parte del programa (indicada por el número de la rutina de interrupción). También es posible asociar varios eventos de interrupción a una única rutina de interrupción. Por el contrario, no se puede asociar un sólo evento a distintas rutinas.

Cuando se asocia un evento a una rutina de interrupción, se habilita automáticamente el evento. Si se inhiben todos los eventos de interrupción, cada vez que se presente la interrupción se pondrá en cola de espera hasta que las interrupciones se habiliten de nuevo (utilizando para ello la operación Habilitar todos los eventos de interrupción), o bien hasta que se desborde la cola de espera de interrupciones.

También es posible inhibir ciertos eventos de interrupción, eliminando la asociación entre el evento y la correspondiente rutina mediante la operación Desasociar interrupción. Esta operación retorna la interrupción a un estado inactivo o ignorado. La tabla 6-46 muestra los diferentes tipos de eventos de interrupción.

Evento	Descripción		CPU 221 CPU 222	CPU 224	CPU 224XP CPU 226
0	10.0	Flanco positivo	Sí	Sí	Sí
1	10.0	Flanco negativo	Sí	Sí	Sí
2	10.1	Flanco positivo	Sí	Sí	Sí
3	10.1	Flanco negativo	Sí	Sí	Sí
4	10.2	Flanco positivo	Sí	Sí	Sí
5	10.2	Flanco negativo	Sí	Sí	Sí
6	10.3	Flanco positivo	Sí	Sí	Sí
7	10.3	Flanco negativo	Sí	Sí	Sí
8	Puerto 0	Recibir carácter	Sí	Sí	Sí
9	Puerto 0	Transmisión finalizada	Sí	Sí	Sí
10	Interrupción tempo	orizada 0 SMB34	Sí	Sí	Sí
11	Interrupción tempo	orizada 1 SMB35	Sí	Sí	Sí
12	HSC0	CV=PV (valor actual = valor predeterminado)	Sí	Sí	Sí
13	HSC1	CV=PV (valor actual = valor predeterminado)		Sí	Sí
14	HSC1	Cambio de sentido		Sí	Sí
15	HSC1	Puesto a 0 externamente		Sí	Sí
16	HSC2	CV=PV (valor actual = valor predeterminado)		Sí	Sí
17	HSC2	Cambio de sentido		Sí	Sí
18	HSC2	Puesto a 0 externamente		Sí	Sí
19	PLS0	Interrupción Valor de contaje de impulsos PTO	Sí	Sí	Sí
20	PLS1	Interrupción Valor de contaje de impulsos PTO	Sí	Sí	Sí
21	Interrupción tempo	orizador T32 CT=PT	Sí	Sí	Sí

Tabla 6-46 Eventos de interrupción

Evento	Descripción		CPU 221 CPU 222	CPU 224	CPU 224XP CPU 226
22	Interrupción te	emporizador T96 CT=PT	Sí	Sí	Sí
23	Puerto 0	Recepción de mensajes finalizada	Sí	Sí	Sí
24	Puerto 1	Recepción de mensajes finalizada			Sí
25	Puerto 1	Recibir carácter			Sí
26	Puerto 1	Transmisión finalizada			Sí
27	HSC0	Cambio de sentido	Sí	Sí	Sí
28	HSC0	Puesto a 0 externamente	Sí	Sí	Sí
29	HSC4	CV=PV (valor actual = valor predeterminado)	Sí	Sí	Sí
30	HSC4	Cambio de sentido	Sí	Sí	Sí
31	HSC4	Puesto a 0 externamente	Sí	Sí	Sí
32	HSC3	CV=PV (valor actual = valor predeterminado)	Sí	Sí	Sí
33	HSC5	CV=PV (valor actual = valor predeterminado)	Sí	Sí	Sí

Tabla 6-46	Eventos	de inte	rrupción,	continuación
------------	---------	---------	-----------	--------------

Procesar rutinas de interrupción en el S7-200

Las rutinas de interrupción se ejecutan como respuesta a un evento interno o externo asociado. Tras haberse ejecutado la última operación de la rutina de interrupción, el control retorna al programa principal. Para salir de la rutina se puede ejecutar una operación Retorno condicionado desde rutina de interrupción (CRETI). En la tabla 6-47 se indican algunas reglas y restricciones para utilizar rutinas de interrupción en el programa.

Tabla 6-47 Reglas y restricciones para utilizar rutinas de interrupción

Reglas

El procesamiento de interrupciones permite reaccionar rápidamente ante determinados eventos internos o externos. Las rutinas de interrupción se deben estructurar de forma que - una vez ejecutadas determinadas tareas - devuelvan el control al programa principal.

Para ello es conveniente crear rutinas de interrupción cortas con indicaciones precisas, de manera que se puedan ejecutar rápidamente sin interrumpir otros procesos durante períodos demasiado largos. Si no se observan estas medidas, es posible que se produzcan estados imprevistos que podrían afectar a los equipos controlados por el programa principal. Al utilizar interrupciones, conviene atenerse al lema de "cuanto más breve, mejor".

Restricciones

Las operaciones Inhibir todos los eventos de interrupción (DISI), Habilitar todos los eventos de interrupción (ENI), Definir modo para contador rápido (HDEF) y Finalizar programa principal (END) no se pueden utilizar en las rutinas de interrupción.

Soporte del sistema durante las interrupciones

Puesto que las interrupciones pueden afectar a la lógica de los contactos, las bobinas y los acumuladores, el sistema almacena la pila lógica, los acumuladores y las marcas especiales (SM) que indican el estado de los acumuladores y las operaciones, volviéndolos a cargar posteriormente. De este modo se evitan perturbaciones en el programa principal causadas por derivaciones a rutinas de interrupción o desde ellas.

Compartir datos entre el programa principal y las rutinas de interrupción

El programa principal y una o varias rutinas de interrupción pueden compartir datos. Puesto que no es posible saber con anterioridad cuándo el S7-200 generará una interrupción, es recomendable limitar el número de variables utilizadas tanto por la rutina de interrupción como en otra parte del programa. Los problemas de coherencia de los datos compartidos pueden ser ocasionados por las acciones de las rutinas de interrupción, al interrumpir éstas la ejecución de las operaciones del programa principal. Utilice la tabla de variables locales de la rutina de interrupción para garantizar que ésta utilice únicamente la memoria temporal, de manera que no se sobrescriban los datos utilizados en ninguna otra parte del programa.

Hay diversas técnicas de programación que se pueden utilizar para garantizar que el programa principal y las rutinas de interrupción compartan los datos correctamente. Estas técnicas restringen la forma de acceder a las direcciones compartidas en la memoria o evitan que se interrumpan las secuencias de operaciones que utilicen direcciones compartidas.

- En un programa AWL que comparta sólo una variable: Si los datos compartidos representan una sola variable en formato de byte, palabra o palabra doble, y el programa se ha escrito en AWL, los resultados intermedios de operaciones con datos compartidos sólo se podrán almacenar en direcciones o en acumuladores que no se compartan.
- En un programa KOP que comparta sólo una variable: Si los datos compartidos representan una sola variable en formato de byte, palabra o palabra doble, y el programa se ha escrito en KOP, es preciso acceder a las direcciones compartidas utilizando las operaciones de transferencia (MOVB, MOVW, MOVDW, MOVR). En tanto que numerosas operaciones KOP comprenden secuencias de instrucciones AWL que se pueden interrumpir, estas operaciones de transferencia equivalen a una sola instrucción AWL, cuya ejecución no se ve afectada por los eventos de interrupción.
- En un programa AWL o KOP que comparta varias variables: Si los datos compartidos representan varios bytes, palabras o palabras dobles contiguas, la ejecución de la rutina de interrupción se puede controlar con las operaciones Habilitar todos los eventos de interrupción (ENI) e Inhibir todos los eventos de interrupción (DISI). Las interrupciones se deben inhibir en aquel punto del programa principal donde figuran las operaciones que acceden a las direcciones compartidas. Una vez ejecutadas todas las operaciones que utilicen las direcciones compartidas, se deberán habilitar de nuevo las interrupciones. Mientras esté inhibida la interrupción no se podrá ejecutar la rutina correspondiente. Por tanto, no será posible acceder entonces a las direcciones compartidas. Sin embargo, esta técnica de programación puede causar que se ignoren los eventos de interrupción.

Llamar a subrutinas desde rutinas de interrupción

Desde una rutina de interrupción se puede llamar a un nivel de anidado de subrutinas. Los acumuladores y la pila lógica son compartidos por la rutina de interrupción y por la subrutina invocada.

Interrupciones soportadas por el S7-200

El S7-200 soporta los siguientes tipos de rutinas de interrupción:

- Interrupciones del puerto de comunicación: El S7-200 genera eventos que le permiten al programa controlar el puerto de comunicación.
- Interrupciones de E/S: El S7-200 genera eventos para los diferentes cambios de estado de diversas entradas y salidas. Estos eventos le permiten al programa reaccionar a los contadores rápidos, a las salidas de impulsos, o bien a los flancos positivos o negativos en las entradas.
- Interrupciones temporizadas: El S7-200 genera eventos que le permiten al programa reaccionar a determinados intervalos.

Interrupciones del puerto de comunicación:

El programa puede controlar el puerto serie de comunicación del S7-200. La comunicación a través de este puerto se denomina modo Freeport (comunicación programable por el usuario). En modo Freeport, el programa define la velocidad de transferencia, los bits por carácter, la paridad y el protocolo. Las interrupciones de transmisión y recepción permiten controlar la comunicación mediante el programa. Para obtener más información al respecto, consulte la descripción de las operaciones Transmitir mensaje y Recibir mensaje.

Interrupciones de E/S

Las interrupciones de E/S abarcan interrupciones al producirse flancos positivos y negativos, interrupciones de los contadores rápidos, así como interrupciones de salidas de impulsos. El S7-200 puede generar una interrupción en los flancos positivos y/o negativos de una entrada (bien sea I0.0, I0.1, I0.2, o bien I0.3). Los eventos Flanco positivo y Flanco negativo se pueden capturar para cada una de dichas entradas. Estos eventos también sirven para indicar una condición que requiera atención inmediata en cuanto se produzca el evento.

Las interrupciones de los contadores rápidos permiten responder rápidamente a condiciones tales como: a) el valor actual ha alcanzado el valor predeterminado, b) el sentido de contaje ha cambiado de forma inversa al sentido de giro del árbol de accionamiento y c) el contador se ha puesto a "0" externamente. Todos estos eventos de los contadores rápidos permiten reaccionar ante eventos que no se puedan controlar durante el tiempo de ciclo del sistema de automatización.

Las interrupciones de salida de impulsos avisan inmediatamente cuándo ha finalizado la salida del número indicado de impulsos. Por lo general, las salidas de impulsos se utilizan para controlar motores paso a paso.

Todas estas interrupciones se habilitan asociando una rutina de interrupción al evento de E/S en cuestión.

Interrupciones temporizadas

Las interrupciones temporizadas comprenden también las de los temporizadores T32/T96. Estas interrupciones se utilizan para indicar tareas que deban ejecutarse cíclicamente. El tiempo de ciclo se incrementa en intervalos de 1 ms, abarcando desde 1 ms hasta 255 ms. El tiempo de ciclo de la interrupción temporizada 0 se debe escribir en SMB34, y el de la interrupción temporizada 1, en SMB35.

Cada vez que termina la temporización, el evento de interrupción temporizado transfiere el control a la rutina de interrupción correspondiente. Por lo general, las interrupciones temporizadas se utilizan para controlar el muestreo de las entradas analógicas o para ejecutar un bucle PID en intervalos regulares.

Asociando un evento de interrupción temporizado a una rutina de interrupción, se habilita el evento e inmediatamente se empieza a temporizar. Durante ese proceso, el sistema captura el valor del tiempo de ciclo, de forma que los cambios siguientes en SMB34 y SMB35 no lo pueden alterar. Para poder modificar el tiempo de ciclo se deberá cambiar el valor del mismo y reasociar luego la rutina de interrupción al evento de la interrupción temporizada. Al reasociar la rutina de interrupción, la función borra los tiempos acumulados de la asociación anterior, con lo cual se vuelve a temporizar a partir del nuevo valor.

Una vez habilitada, la interrupción temporizada funciona de forma continua, ejecutando la rutina asociada cada vez que transcurre el intervalo de tiempo indicado. La interrupción temporizada se inhibe saliendo del modo RUN o desasociándola de la rutina correspondiente. Si se ejecuta la operación Inhibir todos los eventos de interrupción, se siguen generando interrupciones temporizadas, pero se ponen en cola de espera (hasta que se habiliten nuevamente o hasta llenarse la cola).

Las interrupciones de los temporizadores T32 y T96 permiten reaccionar una vez transcurrido un determinado intervalo de tiempo. Estas interrupciones se soportan únicamente en T32 y T96, siendo éstos temporizadores como retardo a la conexión (TON) con resolución de 1 ms. Por lo demás, T32 y T96 disponen de las funciones habituales. Una vez habilitada la interrupción, la rutina asociada se ejecutará cuando el valor actual del temporizador activo sea igual a su valor de preselección al actualizar el S7-200 el temporizador de 1 ms. Estas interrupciones se habilitan asociando una rutina de interrupción a los eventos de interrupción T32/T96.

Prioridades de las interrupciones y colas de espera

El S7-200 procesa las interrupciones según su prioridad dentro de su respectivo grupo de prioridad. Sólo se ejecuta una rutina de interrupción en cada caso. Cuando se comienza a ejecutar una rutina de interrupción, ésta se procesa hasta el final. No puede ser interrumpida por otra, ni siquiera por una rutina de mayor prioridad. Las interrupciones que aparezcan mientras se esté ejecutando otra interrupción se ponen en cola de espera para ser procesadas posteriormente.

La tabla 6-48 muestra las tres colas de espera y el número máximo de interrupciones que pueden acoger.

Cola de espera	CPU 221, CPU 222, CPU 224	CPU 224XP y CPU 226
Interrupciones de comunicación	4	8
Interrupciones de E/S	16	16
Interrupciones temporizadas	8	8

Tabla 6-48 Número máximo de interrupciones en las colas de espera

Es posible que se presenten más interrupciones de las que puede acoger la cola de espera. Por esta razón, el sistema dispone de marcas de desbordamiento que indican qué eventos de interrupción no se han podido acoger en la cola de espera. La tabla 6-49 muestra las marcas de desbordamiento correspondientes. Estas sólo se pueden utilizar en una rutina de interrupción, porque se desactivan tras vaciarse la cola de espera y al reanudar la ejecución del programa principal.

En la tabla 6-50 figuran todas las interrupciones, sus prioridades y los números de los eventos asociados.

Tabla 6-49 Marcas de desbordamiento de la cola de espera

Descripción (0 = sin desbordamiento, 1 = desbordamiento)	Marca especial
Interrupciones de comunicación	SM4.0
Interrupciones de E/S	SM4.1
Interrupciones temporizadas	SM4.2

Tabla 6-50	Prioridades	de los eventos	de interrupción

Evento	Descripc	ión	Prioridad	Grupo de prioridad
8	Puerto 0	Recibir carácter	Comunicación	0
9	Puerto 0	Transmisión finalizada	Prioridad más alta	0
23	Puerto 0	Recepción de mensajes finalizada		0
24	Puerto 1	Recepción de mensajes finalizada		1
25	Puerto 1	Recibir carácter		1
26	Puerto 1	Transmisión finalizada		1
19	PLS0	Interrupción Valor de contaje de impulsos PTO	Digital	0
20	PLS1	Interrupción Valor de contaje de impulsos PTO	Prioridad media	1
0	10.0	Flanco positivo		2
2	10.1	Flanco positivo		3
4	10.2	Flanco positivo		4
6	10.3	Flanco positivo		5
1	10.0	Flanco negativo		6
3	10.1	Flanco negativo		7
5	10.2	Flanco negativo		8
7	10.3	Flanco negativo		9
12	HSC0	CV=PV (valor actual = valor predeterminado)		10
27	HSC0	Cambio de sentido		11
28	HSC0	Puesto a 0 externamente		12
13	HSC1	CV=PV (valor actual = valor predeterminado)		13
14	HSC1	Cambio de sentido		14
15	HSC1	Puesto a 0 externamente		15
16	HSC2	CV=PV (valor actual = valor predeterminado)		16
17	HSC2	Cambio de sentido		17
18	HSC2	Puesto a 0 externamente		18
32	HSC3	CV=PV (valor actual = valor predeterminado)		19
29	HSC4	CV=PV (valor actual = valor predeterminado)		20
30	HSC4	Cambio de sentido		21
31	HSC4	Puesto a 0 externamente		22
33	HSC5	CV=PV (valor actual = valor predeterminado)		23
10	Interrupci	ón temporizada 0 SMB34	Temporización	0
11	Interrupci	ón temporizada 1 SMB35	Prioridad más	1
21	Interrupci	ón temporizador T32 CT=PT	vaja	2
22	Interrupci		3	

Operaciones lógicas

Operaciones de invertir

Invertir byte, Invertir palabra e Invertir palabra doble

Las operaciones Invertir byte (INVB), Invertir palabra (INVW) e Invertir palabra doble (INVD) forman el complemento a 1 de la entrada IN y cargan el resultado en la dirección de la memoria OUT.

Condiciones de error que ponen ENO a 0:

0006 (direccionamiento indirecto)

Marcas especiales afectadas:

SM1.0 (cero)

Tabla 6-51 Operandos válidos para las operaciones de invertir

Entradas/salidas	Tipos de datos	Operandos
IN	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante
	DWORD	ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, constante
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC
	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
	DWORD	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Ejemplo de la operación Invertir Network 1 Network 1 LD 14.0 14.0 INV_W INVW AC0 ΕN ENO K Invertir palabra AC0 1101 0111 1001 0101 OUT-ACO ACO-IN Complemento AC0 0010 1000 0110 1010

Operaciones de combinación con Y, O y O-exclusiva

Combinación Y con bytes, con palabras y con palabras dobles

Las operaciones Combinación Y con bytes (ANDB), Combinación Y con palabras (ANDW) y Combinación Y con palabras dobles (ANDD) combina los bits correspondientes de dos valores de entrada IN1 e IN2 mediante Y, y cargan el resultado en una dirección de la memoria OUT.

Combinación O con bytes, con palabras y con palabras dobles

Las operaciones Combinación O con bytes (ORB), Combinación O con palabras (ORW) y Combinación O con palabras dobles (ORD) combinan los bits correspondientes de dos valores de entrada IN1 e IN2 mediante O y cargan el resultado en una dirección de la memoria OUT.

Combinación O-exclusiva con bytes, con palabras o con palabras dobles

Las operaciones Combinación O-exclusiva con bytes (XROB), Combinación O-exclusiva con palabras (XORW) y Combinación O-exclusiva con palabras dobles (XORD) combinan los bits correspondientes de dos valores de entrada (IN1 e IN2) mediante O-exclusiva y cargan el resultado en una dirección de la memoria OUT.

Marcas especiales y ENO

En todas las operaciones descritas en esta página, las condiciones siguientes afectan a las marcas especiales y a ENO:

Condiciones de error que ponen ENO a 0:

0006 (direccionamiento indirecto)

Marcas especiales afectadas:

SM1.0 (cero)

Tabla 6-52 Operandos válidos para las operaciones de combinación con Y, O y O-exclusiva			
Entradas/salidas	Tipos de datos	Operandos	
IN1, IN2	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante	
	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante	
	DWORD	ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, constante	
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD	
	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *AC, *LD	
	DWORD	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD	

Ejemplo Oper	Ejemplo Operaciones de combinación con Y, O y O-exclusiva			
Network 1		Network 1		
		LD I4.0 ANDW AC1, AC0 ORW AC1, VW100 XORW AC1, AC0		
	ACO-IN2	Combinación Y con palabras Combinación O con palabras		
_		AC1 0001 1111 0110 1101 AND AC0 1101 0011 1110 0110 igual a AC0 0001 0011 0110 0100 VW100 1101 1010 1000 igual a VW100 1101 1111 1110 1101		
		Combinación O-exclusiva con palabras AC1 0001 1111 0110 1101 XOR AC0 0001 0011 0110 0100 igual a AC0 0000 1100 0000 1001		

Operaciones de transferencia

Transferir bytes, palabras, palabras dobles y números reales

Las operaciones Transferir byte (MOVB), Transferir palabra (MOVW), Transferir palabra doble (MOVD) y Transferir real (MOVR) transfieren un valor de una dirección (IN) a una nueva dirección (OUT) sin modificar el valor original.

Si desea crear un puntero, utilice la operación Transferir palabra doble. Para más información, consulte la descripción de los punteros y el direccionamiento indirecto en el capítulo 4.

En el caso de la operación IEC Transferir (MOVE), los tipos de los datos de entrada y salida pueden ser diferentes, pero su tamaño debe ser igual.

Condiciones de error que ponen ENO a 0:

0006 (direccionamiento indirecto)

SIMATIC IEC 1131

Tabla 6-53 Operandos válidos para las operaciones de transferencia

Entradas/salidas	Tipos de datos	Operandos	
IN	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante	
	WORD, INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *AC, *LD, constante	
	DWORD, DINT	ID, QD, VD, MD, SMD, SD, LD, HC, &VB, &IB, &QB, &MB, &SB, &T, &C, &SMB, &AIW, &AQW, AC, *VD, *LD, *AC, constante,	
	REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, constante	
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC	
	WORD, INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC	
	DWORD, DINT, REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC	

Transferir bytes directamente (lectura y escritura)

Las operaciones de transferencia directa de bytes permiten transferir directamente un byte entre la E/S física y una dirección de la memoria.

La operación Lectura y transferencia directa de bytes (BIR) lee la entrada física (IN) y escribe el resultado en la dirección de la memoria (OUT), sin actualizar la imagen del proceso.

La operación Escritura y transferencia directa de bytes (BIW) lee los datos de la dirección de la memoria (IN) y los escribe en una salida física (OUT), así como en la correspondiente dirección de la imagen del proceso.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- Imposible acceder al módulo de ampliación

SIMATIC			
STL	BIR BIW	IN, OUT IN, OUT	

Tabla 6-54 Opera	ndos válidos r	para la opera	ción Lectura y	transferencia	directa de bytes
------------------	----------------	---------------	----------------	---------------	------------------

Entradas/salidas	Tipos de datos	Operandos	
IN	BYTE	IB, *VD, *LD, *AC	
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC	

Tabla 6-55 Operandos válidos para la operación Escritura y transferencia directa de bytes

Entradas/salidas	Tipos de datos	Operandos
IN	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
OUT	BYTE	QB, *VD, *LD, *AC

Operaciones de transferencia en bloque

Transferir bytes, palabras y palabras dobles en bloque

Las operaciones Transferir bytes en bloque (BMB), Transferir palabras en bloque (BMW) y Transferir palabras dobles en bloque (BMD) transfieren una determinada cantidad de datos a una nueva dirección de la memoria, transfiriendo el número de bytes, palabras o palabras dobles N a partir de la dirección de entrada IN hasta un nuevo bloque que comienza en la dirección de salida OUT.

N puede estar comprendido entre 1 y 255.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)

SIMATIC IEC 1131 LAD FBD BLKMOV_B BLKMOV_B ΕN ENO ΕN ENO IN OUT IN OUT _ Ν Ν BLKMOV_B BLKMOV_W BLKMOV_D

Tabla 6-56 Operandos válidos para las operaciones de transferencia en bloque

Entradas/salidas	Tipos de datos	Operandos
IN	BYTE	IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC
	WORD, INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, *VD, *LD, *AC
	DWORD, DINT	ID, QD, VD, MD, SMD, SD, LD, *VD, *LD, *AC
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC
	WORD, INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AQW, *VD, *LD, *AC
	DWORD, DINT	ID, QD, VD, MD, SMD, SD, LD, *VD, *LD, *AC
Ν	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, constante, *VD, *LD, *AC

Operaciones de control del programa

Fin condicionado

La operación Fin condicionado (END) finaliza el ciclo actual en función de la combinación lógica precedente. Esta operación se puede utilizar en el programa principal, mas no en subrutinas ni en rutinas de interrupción.

STOP

La operación STOP finaliza la ejecución del programa haciendo que la CPU S7-200 cambie de RUN a STOP.

Si la operación STOP se ejecuta en una rutina de interrupción, ésta se finalizará inmediatamente ignorando las interrupciones pendientes. Las demás acciones en el ciclo actual se completan, incluyendo la ejecución del programa principal. El cambio de RUN a STOP se produce al final del ciclo actual.

Borrar temporizador de vigilancia

La operación Borrar temporizador de vigilancia (WDR) redispara el temporizador de vigilancia de la CPU S7-200 para prolongar el tiempo de ciclo sin que se indique un error de vigilancia.

Esta operación se debe utilizar con gran precaución. Si se utilizan bucles para que no finalice el ciclo o para prolongarlo excesivamente, es posible que no se ejecuten los procesos siguientes hasta completar el ciclo:

- Comunicación (excepto modo Freeport)
- Actualización de las entradas y salidas (exceptuando el control directo de las E/S)
- Actualización de los valores forzados
- Actualización de las marcas especiales (no se actualizan las marcas SM0 y SM5 a SM29)
- Tareas de diagnóstico en el tiempo de ejecución
- □ Los temporizadores con resolución de 10 ms y 100 ms no contarán correctamente los ciclos que excedan los 25 segundos.
- Operación STOP si se utiliza en una rutina de interrupción
- Los módulos de ampliación dotados con salidas digitales también incorporan un temporizador de vigilancia que desactiva las salidas si el S7-200 no escribe en el módulo. Utilice una operación de escritura directa en cada módulo de ampliación dotado con salidas digitales para conservar las salidas correctas en los tiempos de ciclo largos. Consulte el ejemplo que le sigue a esta descripción.

Consejo

Si es previsible que el tiempo de ciclo durará más de 500 ms o que la actividad de interrupción aumentará de manera que el ciclo principal quede interrumpido más de 500 ms, es preciso utilizar la operación WDR para redisparar el temporizador de vigilancia.

Cuando utilice la operación Borrar temporizador de vigilancia (WDR), es recomendable que programe también una operación de escritura directa en un byte de salida (QB) de todos los módulos de ampliación para poner a "0" los temporizadores de vigilancia de todos ellos.

Si utiliza la operación Borrar temporizador de vigilancia para poder ejecutar un programa que tenga un tiempo de ciclo prolongado y el selector de modos de operación se pone en posición STOP, el S7-200 cambiará a modo STOP al cabo de 1,4 segundos.

FOR y NEXT

Las operaciones FOR y NEXT repiten un bucle del programa un número determinado de veces. Toda operación FOR exige una operación NEXT. Los bucles FOR/NEXT pueden anidarse (insertar un bucle FOR/NEXT dentro de otro) hasta una profundidad de ocho niveles.

La operación FOR ejecuta las operaciones que se encuentren entre FOR y NEXT. Es preciso indicar el valor del índice o el contaje actual del bucle (INDX), el valor inicial (INIT) y el valor final (FINAL).

La operación NEXT marca el final del bucle FOR.

Condiciones de error que ponen ENO a 0:

0006 (direccionamiento indirecto)

Al habilitar el bucle FOR/NEXT, éste se ejecutará hasta finalizar las iteraciones, a menos que el usuario cambie el valor final dentro del bucle. Los valores se pueden modificar mientras se ejecute el bucle FOR/NEXT. Si se vuelve a habilitar el bucle, éste copiará el valor inicial (INIT) en el valor actual de contaje del bucle (IDX).

La operación FOR/NEXT se desactivará automáticamente la próxima vez que se habilite.

2	ыматіс			_
ſ	STL			
		FOR NEXT	INDX, INIT, FINAL	
1				

Ejemplo: si el valor INIT = 1 y si el valor FINAL = 10, las operaciones que se encuentren entre FOR y NEXT se ejecutarán 10 veces, incrementando el valor de contaje INDX en 1, 2, 3, ...10.

Si el valor inicial es mayor que el valor final, no se ejecutará el bucle. Tras ejecutarse las operaciones que se encuentran entre FOR y NEXT, se incrementará el valor de INDX y el resultado se comparará con el valor final. Si INDX es mayor que el valor final, finalizará el bucle.

Si el primer nivel de la pila es 1 cuando el programa comienza el bucle FOR/NEXT, seguirá siendo 1 cuando el programa salga del bucle.

Tabla 6-57 Operandos válidos para las operaciones FOR y NEXT

Entradas/salidas	Tipos de datos	Operandos
INDX	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
INIT, FINAL	INT	VW, IW, QW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante

Operaciones de salto

La operación Saltar a meta (JMP) deriva la ejecución del programa a la meta indicada N.

La operación Definir meta (LBL) indica la dirección de la meta de salto N.

La operación Saltar a meta se puede utilizar en el programa principal, en las subrutinas o en las rutinas de interrupción. La operación de salto y la meta correspondiente deben encontrarse siempre en el mismo segmento lógico (es decir, bien sea en el programa principal, en la subrutina, o bien en la rutina de interrupción).

Desde el programa principal no se puede saltar a una meta que se encuentre en una subrutina o en una rutina de interrupción. Tampoco es posible saltar desde una subrutina o una rutina de interrupción a una meta que se encuentre fuera de ella.

La operación Saltar a meta se puede utilizar en un segmento SCR, pero la correspondiente operación Definir meta debe encontrarse en ese mismo segmento SCR.

Tabla 6-58 Operandos válidos para las operaciones de salto

Entradas/salidas	Tipos de datos	Operandos
Ν	WORD	Constante (0 a 255)

Ejemplo de la operación Saltar a meta			
Network 1 SM0.2 4	Network 1 //Si no se han perdido datos remanentes, //saltar a LBL4		
┝─┤ / ┝───(JMP)	LDN SM0.2 JMP 4		
	Network 2		
Network 2	LBL 4		
4			

Operaciones del relé de control secuencial (SCR)

Las operaciones del relé de control secuencial (SCR) ofrecen un método de control de estado sencillo pero eficaz que se adapta naturalmente a los programas KOP, FUP y AWL.

Siempre que la aplicación comprenda una secuencia de operaciones que se deban repetir una y otra vez, los relés se control secuencial (SCRs) se pueden utilizar para estructurar el programa, de manera que éste corresponda directamente a la aplicación. Ello permite programar y comprobar la aplicación de forma más rápida y sencilla.

La operación Cargar relé de control secuencial (LSCR) carga el valor del bit S indicado por la operación N en la pila del relé de control secuencial (pila SCR) y en la pila lógica.

El segmento SCR se activa o se desactiva en función del resultado de la pila SCR. El valor de la pila SCR se copia en el nivel superior de la pila lógica, pudiéndose conectar directamente los cuadros y las bobinas a la barra de alimentación izquierda sin necesidad de interconectar un contacto.

Restricciones

Al utilizar los relés de control secuencial es preciso tener en cuenta las restricciones siguientes:

- Un mismo bit S no se puede utilizar en más de una rutina. Por ejemplo, si S0.1 se utiliza en el programa principal, no se podrá utilizar además en una subrutina.
- No es posible saltar hacia adentro ni hacia afuera de un segmento SCR. No obstante, las operaciones Saltar a meta y Definir meta se pueden utilizar para saltar segmentos SCR, o bien en un segmento SCR.
- En un segmento SCR no se puede utilizar la operación END.

Tabla 6-59 Operandos válidos para las operaciones del relé de control secuencial

Entradas/salidas	Tipos de datos	Operandos
S_BIT	BOOL	S

La figura 6-32 muestra la pila SCR y la pila lógica, así como los efectos de la operación Cargar relé de control secuencial. Tenga en cuenta lo siguiente al utilizar las operaciones del relé de control secuencial:

- La operación Cargar relé de control secuencial (LSCR) indica el comienzo de un segmento SCR, en tanto que la operación Fin del relé secuencial (SCRE) señala el fin de un segmento SCR. La ejecución de todas las operaciones que se encuentren entre la operación LSCR y la operación SCRE depende del valor de la pila SCR. Las operaciones que se encuentren entre la operación SCRE y la siguiente operación LSCR no dependen del valor de la pila SCR.
- La operación Transición del relé secuencial (SCRT) permite transferir el control de un segmento SCR activo a otro segmento SCR.

Si la operación SCRT se ejecuta con circulación de corriente, se desactiva el bit S del segmento activo actualmente y se activa el bit S del segmento direccionado. Al desactivarse el bit S del segmento activo, ello no tiene efecto alguno en la pila SCR cuando se ejecuta la operación Transición del relé secuencial. Por consiguiente, el segmento SCR permanece excitado hasta que se finaliza.

Figura 6-32 Efectos de la operación LSCR en la pila lógica

La operación Fin condicionado del relé secuencial (CSCRE) permite salir de un segmento SCR activo sin ejecutar las operaciones que se encuentran entre las operaciones Fin condicionado del relé secuencial y Fin del relé secuencial. La operación CSCRE no afecta ningún bit S ni tampoco la pila SCR.

En el ejemplo siguiente, S0.1 se activa con la marca especial SM0.1 (marca del primer ciclo). S0.1 será entonces la etapa 1 activa en el primer ciclo. Una vez transcurrido un retardo de 2 segundos, T37 provoca una transición a la etapa 2. Esta transición desactiva el segmento SCR (S0.1) de la primera etapa y activa el segmento SCR (S0.2) de la segunda etapa.

Ejemplo de operaciones de control secuencial					
Network 1	Network 1	//En el primer ciclo, activar la etapa 1.			
SM0.1 S0.1	LD SN	10.1			
	5 50	.1, 1			
	Network 2	//Comienzo del área de control de la etapa 1.			
S0.1	LSCR S0	.1			
SCR					
	Network 3	//Controlar las señales de la calle # 1:			
Network 3		//1º Activar: Encender la luz roja. //2º Desactivar: Anagar la luz amarilla y la luz verde			
SM0.0 Q0.4		//3º Arrancar un temporizador de 2 segundos.			
	LD SM	10.0			
Q0.5	S QO	0.4, 1			
	TON T3	7. +20			
+20 <mark>-PT 100 ms</mark>	Network 4	//Transición a la etapa 2 después de un retardo //de 2 segundos.			
Network 4	LD T3	37			
T37 \$0.2	SCRT S0	.2			
	Notwork 5	//Ein del área SCP para la atopa 1			
	SCRE	In the area SCR para la etapa 1.			
Network 5	OUNE				
(SCRE)	Network 6	//Comienzo del área de control de la etapa 2.			
	LSCR S0	.2			
Notwork C					
S0.2	Network 7	//Controlar las señales de la calle # 2: //1º Activar: Encender la luz verde			
SCR		//2º Arrancar un temporizador de 25 segundos.			
	LD SM	10.0			
Network 7	S QO).2, 1 			
SM0.0 Q0.2	TON 13	8, +250			
	Network 8	//Transición a la etapa 3 después de un retardo			
		//de 25 segundos.			
	LD T3	38			
+2504P1 100 ms	SCRT SO	.3			
	Network 9	//Fin del área SCR nara la etana 2			
	SCRE				
Network 9					
I					

Dividir cadenas secuenciales

En numerosas aplicaciones es necesario dividir una cadena secuencial en dos o más cadenas. Si una cadena secuencial se divide en varias cadenas, es preciso activar simultáneamente todas las nuevas cadenas secuenciales, como muestra la figura 6-33.

Figura 6-33 División de una cadena secuencial

La división de cadenas secuenciales se puede implementar en un programa SCR, activando varias operaciones SCRT con una misma condición de transición, como muestra el ejemplo siguiente.

Convergir cadenas secuenciales

Algo similar a la división de cadenas secuenciales ocurre cuando dos o varias cadenas secuenciales deban convergir en una sola. Todas las cadenas secuenciales se deben terminar antes de poder ejecutar la siguiente etapa. La figura 6-34 muestra la convergencia de dos cadenas secuenciales.

La convergencia de cadenas secuenciales se puede implementar en un programa SCR creando una transición de la etapa L a la etapa L', y de la etapa M a la etapa M'. Si los bits SCR que representan L' y M' son verdaderos, se podrá habilitar la etapa N como lo muestra el siguiente ejemplo.

Figura 6-34 Convergencia de una cadena secuencial

En otras situaciones, una cadena secuencial se puede dirigir a una de varias cadenas secuenciales posibles, dependiendo de la primera condición de transición que sea verdadera. La figura 6-35 muestra esa situación en un programa SCR equivalente.

Figura 6-35 Dirigir una cadena secuencial a otra, dependiendo de la condición de transición

Ejemplo de transiciones condicionadas		
Network 1	Network 1 //Comienzo del área de control de la etapa L.	
S3.4	LSCR S3.4	
	Network 2 //Transición a la etapa M.	
Network 2	LD M2.3 SCRT S3.5	
	Network 3 //Transición a la etapa N.	
Network 3	LD 13.3 SCRT S6.5	
13.3 S6.5 → ↓ → → (SCRT)	Network 4 //Fin del área SCR para la etapa L. SCRE	
Network 4		
(SCR B)		
1		

LED de diagnóstico

El LED de diagnóstico está apagado si el valor del parámetro de entrada IN es "0". Este LED se enciende (en color amarillo) si el valor del parámetro de entrada IN es mayor que "0".

El diodo luminoso (LED) "SF/ DIAG" se puede configurar para que se encienda en color amarillo cuando las condiciones especificadas en el bloque de sistema sean verdaderas o cuando la operación DIAG_LED se ejecute con un parámetro IN que no sea "0".

Opciones en el bloque de sistema para configurar el LED:

- □ EI LED "SF/ DIAG" se debe encender (en amarillo) cuando un elemento se fuerce en la CPU.
- □ EI LED "SF/ DIAG" se debe encender (en amarillo) cuando ocurra un error de E/S en un módulo.

Desactive ambas opciones si desea que la operación DIAG_LED sea la única que controle la iluminación del LED "SF/ DIAG". Si se produce un fallo del sistema (SF) en la CPU, el LED se encenderá en color rojo.

Tabla 6-60 Operandos válidos para la operación LED de diagnóstico

Entradas/salidas	Tipos de datos	Operandos
IN	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, constante, *VD, *LD, *AC

SIMATIC / IEC 1131

Operaciones de desplazamiento y rotación

Desplazar a la derecha y Desplazar a la izquierda

Las operaciones de desplazamiento desplazan el valor de entrada IN a la derecha o a la izquierda tantas posiciones como indique el valor de desplazamiento N y cargan el resultado en la salida OUT.

Las operaciones de desplazamiento se rellenan con ceros cada vez que se desplaza un bit. Si el valor de desplazamiento (N) es mayor o igual al valor máximo permitido (8 en las operaciones con bytes, 16 en las operaciones con palabras y 32 en las operaciones con palabras dobles), se desplazará el valor máximo permitido para la operación en cuestión. Si el valor de desplazamiento es mayor que 0, la marca de desbordamiento (SM1.1) adoptará el valor del último bit desplazado hacia afuera. La marca cero (SM1.0) se activará si el resultado de la operación de desplazamiento es cero.

Las operaciones de desplazamiento de bytes no llevan signo. En el caso de las operaciones con palabras v con palabras dobles, el bit de signo se desplaza cuando se utilizan tipos de datos con signo.

Condiciones de error que ponen ENO a 0:

Marcas especiales afectadas: SM1.0 (cero)

- 0006 (direccionamiento indirecto)
- SM1.1 (desbordamiento)

Rotar a la derecha y Rotar a la izquierda

Las operaciones de rotación rotan el valor de entrada (IN) a la derecha o a la izquierda tantas posiciones como indique el valor de desplazamiento (N) y cargan el resultado en la dirección de la memoria (OUT). La rotación es circular.

Si el valor de desplazamiento es mayor o igual al valor máximo permitido (8 en las operaciones con bytes, 16 en las operaciones con palabras y 32 en las operaciones con palabras dobles), el S7-200 ejecutará una operación módulo en el valor de desplazamiento para obtener un valor válido antes de ejecutarse la rotación. De ello resulta un valor de desplazamiento de 0 a 7 en las operaciones con bytes, de 0 a 15 en las operaciones con palabras y de 0 a 31 en las operaciones con palabras dobles.

Si el valor de desplazamiento es igual a 0, no se rotará el valor. Si se ejecuta la rotación, el valor del último bit rotado se copiará en la marca de desbordamiento (SM1.1).

Si el valor de desplazamiento no es un entero múltiplo de 8 (en las operaciones con bytes), de 16 (en las operaciones con palabras) o de 32 (en las operaciones con palabras dobles), el último bit rotado se copiará en la marca de desbordamiento (SM1.1). La marca cero (SM1.0) se activará si el valor a rotar es igual a cero.

Las operaciones de desplazamiento de bytes no llevan signo. En el caso de las operaciones con palabras y con palabras dobles, el bit de signo se desplaza cuando se utilizan tipos de datos con signo.

Condiciones de error que ponen ENO a 0:

- Marcas especiales afectadas: SM1.0 (cero)
- 0006 (direccionamiento indirecto)

SIMATIC IEC 1131 LAD FBD SHR B SHR B EN ENO EN ENO IN OUT IN OUT Ν Ν SHR_B SHL_B SHR_DW SHL_DW SHR_W SHL_W ROR_W ROR_B ROR DW ROLEW ROL_B ROL_DW

STL				1
SRB	OUT, N	RRB	OUT, N	
SLB	OUT, N	RLB	OUT, N	
SRW	OUT, N	RRW	OUT, N	
SLW	OUT, N	RLW	OUT, N	
SRD	OUT, N	RRD	OUT, N	
SLD	OUT, N	RLD	OUT, N	
<u> </u>				

a ao tao 1

Entradas/salidas	Tipos de datos	Operandos
IN	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante
	DWORD	ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, constante
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC
	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
	DWORD	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC
Ν	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante

Tabla 6-61 (Operandos	válidos	para las	operaciones	de de	splazamiento	y rotación
--------------	-----------	---------	----------	-------------	-------	--------------	------------

Registro de desplazamiento

La operación Registro de desplazamiento desplaza un valor al registro de desplazamiento. La operación Registro de desplazamiento permite secuenciar y controlar fácilmente el flujo de productos o de datos. Esta operación se debe utilizar para desplazar todo el registro un bit en cada ciclo.

La operación Registro de desplazamiento desplaza el valor de DATA al registro de desplazamiento. S_BIT señala el bit menos significativo de este registro. N indica la longitud del registro y el sentido de desplazamiento (valor positivo = N, valor negativo = -N).

Los bits desplazados por la operación Registro de desplazamiento se depositan en la marca de desbordamiento (SM1.1).

El registro de desplazamiento está definido por el bit menos significativo (S_BIT) y por el número de bits indicados por la longitud (N).

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)
- 0092 (error en campo de contaje)

Marcas especiales afectadas:

SM1.1 (desbordamiento)

Tabla 6-62	Operandos válidos	para la operación	Registro de desp	lazamiento

Entradas/salidas	Tipos de datos	Operandos
DATA, S_BIT	BOOL	I, Q, V, M, SM, S, T, C, L
Ν	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante

SIMATIC / IEC 1131 LAD FBD SHRB - EN ENO - - - EN ENO -- DATA - S_BIT - N

SIMATIC			
STL			
	SHRB	DATA, S_BIT, N	
<u> </u>			

La dirección del bit más significativo del registro de desplazamiento (MSB.b) se calcula con la ecuación siguiente:

MSB.b = [(byte de S BIT) + ([N] - 1 + (bit de S BIT)) / 8].[resto de la división por 8]

Por ejemplo, si S_BIT es V33.4 y N es 14, el bit MSB.b será V35.1.

MSB.b = V33 + ([14] - 1 +4)/8 = V33 + 17/8 = V33 + 2 con un resto "1" = V35.1

Si el valor de desplazamiento es negativo, es decir, si la longitud (N) indicada es negativa, los datos de entrada se desplazarán desde el bit menos significativo (S_BIT) al bit más significativo del registro de desplazamiento. Los datos desplazados se depositan en la marca de desbordamiento (SM1.1).

Si el valor de desplazamiento es positivo, es decir, si la longitud (N) indicada es positiva, los datos de entrada (DATA) se desplazarán desde el bit más significativo al bit menos significativo (indicado por S_BIT) del registro de desplazamiento. Los datos desplazados se depositan en la marca de desbordamiento (SM1.1).

El registro de desplazamiento puede tener una longitud máxima de 64 bits (positiva o negativa). La figura 6-36 muestra el desplazamiento de bits de un valor N positivo y de un valor N negativo.

Invertir bytes de una palabra

La operación Invertir bytes de una palabra intercambia el byte más significativo y el byte menos significativo de una palabra IN.

Condiciones de error que ponen ENO a 0:

0006 (direccionamiento indirecto)

Tabla 6-63 Operandos válidos para la operación Invertir bytes de una palabra

Entradas/salidas	Tipos de datos	Operandos
IN	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC

Ejemplo de la operación Invertir bytes de una palabra		
Network 1		Network 1
		LD I2.1 SWAP VW50
	D6 C3 VW	V50 C3 D6 → VW50 C3 D6

Operaciones con cadenas

Longitud de cadena

La operación Longitud de cadena (SLEN) indica la longitud de la cadena especificada por IN.

Copiar cadena

La operación Copiar cadena (SCPY) copia la cadena indicada por IN en la cadena indicada por OUT.

Concatenar cadena

La operación Concatenar cadena (SCAT) cuelga la cadena indicada por IN al final de la cadena indicada por OUT.

Marcas especiales y ENO

Las condiciones siguientes afectan a ENO en las operaciones Longitud de cadena, Copiar cadena y Concatenar cadena.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (error de rango)

Tabla 6-64 Operandos válidos para la operación Longitud de cadena

Entradas/salidas	Tipos de datos	Operandos
IN	STRING	VB, LB, *VD, *LD, *AC, cadena de constante
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

Tabla 6-65 Operandos válidos para las operaciones Copiar cadena y Concatenar cadena

Entradas/salidas	Tipos de datos	Operandos
IN	STRING	VB, LB, *VD, *LD, *AC, cadena de constante
OUT	STRING	VB, LB, *VD, *AC, *LD

SIMATIC / IEC1131

SIMATIC			
STL	SLEN SCPY SCAT	IN, OUT IN, OUT IN, OUT	

Ejemplo de las operaciones Concatenar cadena, Copiar cadena y Longitud de cadena					
Network 1 IO.0 ID.0 I	Network 1 //1º Colgar la cadena en "WORLD" // a la cadena en VB0. //2º Copiar la cadena en VB0 // a la nueva cadena en VB100. //3º Leer la longitud de la cadena // que comienza en VB100. //30				
	LD I0.0 SCAT "WORLD", VB0 STRCPY VB0, VB100 STRLEN VB100, AC0				
Antes de ejecutar el programa VB0 VB6					
6 'H' 'E' 'L' 'L' 'O' ' '					
Tras ejecutar el programa VB0 VB11					
11 'H' 'E' 'L' 'L' 'O' ' '	'W' 'O' 'R' 'L' 'D'				
VB100	VB111				
11 'H' 'E' 'L' 'L' 'O' ' '	'W' 'O' 'R' 'L' 'D'				
AC0 11					

Copiar subcadena de cadena

La operación Copiar subcadena de cadena (SSCPY) copia el número indicado de caracteres N de la cadena indicada por IN, comenzando en el índice (INDX), a la nueva cadena indicada por OUT.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (error de rango)
- 009B (índice=0)

SIMATIC	:		
STL			
	SSCPY	IN, INDX, N, OUT	
1			

Tabla 6-66 Operandos válidos para la operación Copiar subcadena de cadena

Entradas/salidas	Tipos de datos	Operandos
IN	STRING	VB, LB, *VD, *LD, *AC, cadena de constante
OUT	STRING	VB, LB, *VD, *LD, *AC
INDX, N	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante

Ejemplo de la operación Copiar subcadena								
Net	work 1 10.0			SSTI EN	R_CPY ENO	— ×	Network	 //Comenzando en el 7º carácter de //la cadena en VB0, copiar 5 caracteres //a la nueva cadena en VB20
			VB	0 - IN 7 - INDX 5 - <u>N</u>	OUT	•VB20	LD SSCPY	I0.0 VB0, 7, 5, VB20
Ante	Antes de ejecutar el programa							
	11	'H'	'E'	Ľ	Ľ	'O'	, , ,W,	" 'O' 'R' 'L' 'D'
Tras ejecutar el programa VB20 VB25								
	5	'W'	'O'	'R'	Ľ	'D'		

Buscar cadena en cadena

La operación Buscar cadena en cadena (SFND) busca la primera aparición de la cadena IN2 dentro de la cadena IN1. La búsqueda comienza en la posición inicial indicada por OUT. Si se encuentra una secuencia de caracteres que coincida exactamente con la cadena IN2, la posición del primer carácter de esa secuencia se escribirá en OUT. Si la cadena IN2 no se encuentra en la cadena IN1, OUT se pondrá a "0".

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (error de rango)
- 009B (índice = 0)

Buscar carácter en cadena

La operación Buscar carácter en cadena (CFND) busca en la cadena IN1 hasta encontrar la primera aparición de un carácter cualquiera que pertenezca al juego de caracteres descrito en la cadena IN2. La búsqueda comienza en la posición inicial indicada por OUT. Si el carácter se encuentra en N1, la posición del carácter se escribirá en OUT. Si no se encuentra el carácter, OUT se pondrá a "0".

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (error de rango)
- 009B (índice = 0)

Tabla 6-67	Operandos válidos para las operaciones Buscar cadena en cadena
	y Buscar carácter en cadena

Entradas/salidas	Tipos de datos	Operandos
IN1, IN2	STRING	VB, LB, *VD, *LD, *AC, cadena de constante
OUT	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

SIMATIC / IEC1131

LAD FBD STR_FIND STR_FIND ENO ΕN ENO EN IN1 OUT IN1 OUT - IN2 - IN2 STR_FIND CHR_FIND

SIMATIC

STL SFND IN1, IN2, OUT CFND IN1, IN2, OUT

El ejemplo siguiente utiliza una cadena almacenada en VB0 como comando para conectar ('On') o desconectar ('Off') una bomba. Una cadena 'On' se almacena en VB20 y una cadena 'Off' se almacena en VB30. El resultado de la operación Buscar cadena en cadena se almacena en AC0 (que representa el parámetro OUT). Si el resultado no es 0, significa que la cadena 'On' se ha encontrado en la cadena de comando (VB12).

En el ejemplo siguiente, una cadena almacenada en VB0 contiene la temperatura. La cadena en VB20 almacena todos los valores numéricos (y los signos "+" y "-") que pueden indicar la temperatura en una cadena. El programa de ejemplo busca la posición inicial de un número en esa cadena y convierte luego los caracteres numéricos en un número real. VD200 almacena el valor de número real correspondiente a la temperatura.

CIRAOTIC A IECANON

Operaciones de tabla

Registrar valor en tabla

La operación Registrar valor en tabla registra valores de palabra (DATA) en una tabla (TBL). El primer valor de la tabla indica la longitud máxima de la misma (TL). El segundo valor (EC) indica el número de registros que contiene la tabla. Los nuevos datos se agregan al final de la tabla, debajo del último registro. Cada vez que se agrega un registro a la tabla, se incrementa el número efectivo de registros.

Una tabla puede tener como máximo 100 registros.

Condiciones de error que ponen ENO a 0:

- SM1.4 (desbordamiento de tabla)
- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)

Marcas especiales afectadas:

 SM1.4 se activa si se intenta introducir demasiados registros en la tabla.

Tabla 6-68 Operandos válidos para la	las operaciones de tabla
--------------------------------------	--------------------------

SIMATIC			
STL	ATT	DATA, TBL	

Entradas/salidas	Tipos de datos	Operandos
DATOS	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante
TBL	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, *VD, *LD, *AC

Borrar primer registro de la tabla y Borrar último registro de la tabla

Una tabla puede tener como máximo 100 registros.

Borrar primer registro de la tabla

La operación Borrar primer registro de la tabla (FIFO) transfiere el registro más antiguo (es decir, el primer registro) de una tabla a la dirección de salida, quitando el primer registro de la tabla (TBL) y transfiriendo el valor a la dirección indicada por DATA. Todos los demás registros se desplazan una posición hacia arriba. El número de registros (EC) de la tabla se decrementa cada vez que se ejecuta esta operación.

Borrar último registro de la tabla

La operación Borrar último registro de la tabla (LIFO) transfiere el registro más reciente (es decir, el último registro) de una tabla a la dirección de salida, quitando el último registro de la tabla (TBL) y transfiriendo el valor a la dirección indicada por DATA. El número de registros (EC) de la tabla se decrementa cada vez que se ejecuta esta operación.

Condiciones de error que ponen ENO a 0:

- SM1.5 (tabla vacía)
- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)
- Marcas especiales afectadas:
- SM1.5 se activa si se intenta borrar un registro de una tabla vacía.

STL

 Tabla 6-69
 Operandos válidos para las operaciones Borrar primer registro de la tabla y Borrar último registro de la tabla

Entradas/salidas	Tipos de datos	Operandos
TBL	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, *VD, *LD, *AC
DATOS	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

Ejemplo de	la operaci	ón Borrar primer registi	ro de la tabla		
Network 1			Network 1		
	VW20		LD 14. FIFO V	.1 ₩200, V₩4	400
Antes d	e la opera	ción FIFO	► VW400	5431	Después de la operación FIFO
VW200	0006	TL (nº máx. de registros)	VW200	0006	TL (nº máx. de registros)
VW202	0003	EC (nº de registros)	VW202	0002	EC (nº de registros)
VW204	5431	d0 (datos 0)	VW204	8942	d0 (datos 0)
VW206	8942	d1 (datos 1)	VW206	1234	d1 (datos 1)
VW208	1234	d2 (datos 2)	VW208	хххх	
VW210	XXXX		VW210	XXXX	
VW212	XXXX		VW212	XXXX	
VW214	XXXX		VW214	хххх	J

FIFO TBL, DATA LIFO TBL, DATA

204

Ejemplo de la	operaciór	Borrar último registr	o de la	tabla		
Network 1			Netwo	ork 1		
			LD LIFO	I0.1 VW200	, VW300	
Antes de la	operación	LIFO	[► VW300	1234	Después de la operación LIFO
VW200	0006	TL (nº máx. de registros)		VW200	0006	TL (nº máx. de registros)
VW202	0003	EC (nº de registros)		VW202	0002	EC (nº de registros)
VW204	5431	d0 (datos 0)		VW204	5431	d0 (datos 0)
VW206	8942	d1 (datos 1)		VW206	8942	d1 (datos 1)
VW208	1234	d2 (datos 2)		VW208	xxxx	
VW210	хххх			VW210	хххх	
VW212	хххх			VW212	хххх	
VW214	XXXX			VW214	XXXX]

Inicializar memoria

La operación Inicializar memoria (FILL) escribe N palabras consecutivas, comenzando en la dirección OUT, con el valor de palabra contenido en la dirección IN.

N puede estar comprendido entre 1 y 255.

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)

Tabla 6-70 Operandos válidos para la operación Inicializar memoria

Entradas/salidas	Tipos de datos	Operandos
IN	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante
Ν	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, constante
OUT	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AQW, *VD, *LD, *AC

Ejemplo de la operación Inicializar memoria	
Network 1	Network 1
+0-IN OUT-WW200	LD I2.1 FILL +0, VW200, 10
IN VI 0 FILL	W200 VW202 VW218 0 0 0

Buscar valor en tabla

La operación Buscar valor en tabla (FND) busca en una tabla los datos que correspondan a determinados criterios. Esta operación rastrea la tabla TBL, comenzando en el registro indicado por INDX, y busca el valor o patrón PTN que corresponda a los criterios de búsqueda definidos por CMD. El parámetro de comando (CMD) indica un valor numérico comprendido entre 1 y 4 que corresponde a la relación =, <>, <, y >, respectivamente.

Si se cumple un criterio, INDX señalará el registro en cuestión. Para buscar el siguiente registro se habrá de incrementar INDX antes de volver a llamar nuevamente a la operación Buscar valor en tabla. Si no se encuentra ningún registro que corresponda al criterio, el valor INDX será igual al número de registros que contiene la tabla.

Una tabla puede tener como máximo 100 registros. Los registros de la tabla (el área donde se desea buscar) están numerados de 0 hasta el valor máximo (99).

Condiciones de error que ponen ENO a 0:

- 0006 (direccionamiento indirecto)
- 0091 (operando fuera de rango)

Tabla 6-71 Operandos válidos para la operación Buscar valor en tabla

SIVIETIC / IECTIST	
LAD TBL_FIND - EN ENO - - TBL - PTN - INDX - CMD	FBD TBL_FIND - EN ENO - - TBL - PTN - INDX - CMD
SIMATIC	
STL FND= TE FND<> TE FND< TE FND> TE	L, PTN, INDX L, PTN, INDX L, PTN, INDX L, PTN, INDX

Entradas/salidas	Tipos de datos	Operandos
TBL	WORD	IW, QW, VW, MW, SMW, T, C, LW, *VD, *LD, *AC
PTN	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante
INDX	WORD	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
CMD	BYTE	(constante) 1: igual (=), 2: diferente (<>), 3: menor que (<), 4: mayor que (>)

Ţ

Consejo

Si la operación Buscar valor en tabla se utiliza en tablas creadas con las operaciones Registrar valor en tabla, Borrar último registro de la tabla y Borrar primer registro de la tabla, el valor de contaje corresponderá directamente al número de registros. La palabra que indica el número máximo de registros en las operaciones Registrar valor en tabla, Borrar último registro de la tabla y Borrar primer registro de la tabla o se necesita para la operación Buscar valor en tabla (v. fig. 6-37).

Por consiguiente, la dirección del operando TBL de una operación de búsqueda debería exceder en una palabra (dos bytes) al operando TBL correspondiente a la operación Registrar valor en tabla, Borrar último registro de la tabla o Borrar primer registro de la tabla.

|--|

VW200	0006	TL (n ⁰ máx. de registros)
VW202	0006	EC (n ⁰ de registros)
VW204	xxxx	d0 (datos 0)
VW206	xxxx	d1 (datos 1)
VW208	xxxx	d2 (datos 2)
VW210	xxxx	d3 (datos 3)
VW212	xxxx	d4 (datos 4)
VW212	xxxx	d5 (datos 5)

Formato de tabla para TBL_FIND

VW202 VW204 VW206 VW208 VW210 VW212	0006 xxxx xxxx xxxx xxxx xxxx xxxx	EC (nº de registros) d0 (datos 0) d1 (datos 1) d2 (datos 2) d3 (datos 3) d4 (datos 4) d5 (datos 5)
VW214	XXXX	d5 (datos 5)

Figura 6-37 Diferentes formatos de tabla entre la operación Buscar valor en tabla y las operaciones ATT, LIFO y FIFO

Ejemplo de la operación Buscar valor en tabla			
Network 1 Network 1			
		LD FND=	I2.1 VW202, 16#3130, AC1
VW202 - TBL 16#3130 - PTN AC1 - INDX 1 - <u>CMD</u>			
Si I2.1 está activada, buscar un valor en la tabla que sea igual a 3130 HEX.	AC1	0	AC1 se debe poner a "0" para poder iniciar la búsqueda desde el primer registro de la tabla.
	Buscar		AC1 contiene el número del primer registro
VW202 0006 EC (nº de registros) VW204 3133 d0 (datos 0) VW206 4142 d1 (datos 1)	AC1	2	que corresponde al criterio de búsqueda (d2).
VW208 3130 d2 (datos 2) VW210 3030 d3 (datos 3) VW210 2130 d4 (datos 4)	AC1	3	Incrementar INDX en pasos de 1 antes de buscar los demás registros de la tabla.
VW212 3130 d4 (datos 4) VW214 4541 d5 (datos 5)	Buscar		AC1 contiene el número del registro que
	AC1	4	corresponde al segundo criterio de búsqueda (d4).
Si la tabla se creó utilizando las operaciones ATT, LIFO y FIFO, VW200 contendrá el número máximo	AC1	5	Incrementar INDX en pasos de 1 antes de buscar los demás registros de la tabla.
de registros posibles y no será	Buscar		AC1 contione un valor igual al número
búsqueda.	AC1	6	de registros. Se ha rastreado toda la tabla sin encontrar ningún otro registro que corresponda al criterio de búsqueda.
	AC1	0	Antes de que la tabla se pueda rastrear de nuevo, el valor de INDX debe ponerse a "0".

Ejemplo de cómo crear una tabla

El programa siguiente sirve para crear una tabla que comprende 20 registros. La primera dirección de la tabla indica la longitud de la misma (en este ejemplo, 20 registros). La segunda dirección muestra el número actual de registros de la tabla. Las demás direcciones contienen los registros. Una tabla puede tener como máximo 100 registros, a excepción de los parámetros que definen la longitud máxima de la misma y el número actual de registros (en este ejemplo, VW0 y VW2). Con cada comando, la CPU incrementa o decrementa automáticamente el número real de registros de la tabla (en este ejemplo, VW2).

Antes de trabajar con una tabla es preciso asignar el número máximo de registros. En caso contrario, no será posible hacer introducciones en la misma. Vigile también que todos los comandos de lectura y escritura se activen con flancos.

Para poder rastrear la tabla, el índice (VW106) se deberá poner a "0" antes de la operación de búsqueda. Si se encuentra una coincidencia, el índice indicará el número de registros de la tabla. En caso contrario, el índice concordará con el contaje actual de registros de la tabla (VW2).

Operaciones de temporización

Operaciones de temporización (SIMATIC)

Temporizador como retardo a la conexión Temporizador como retardo a la conexión con memoria

Las operaciones Temporizador como retardo a la conexión (TON) y Temporizador como retardo a la conexión con memoria (TONR) cuentan el tiempo al estar activada (ON) la entrada de habilitación. El número de temporizador (Txx) determina la resolución del mismo. Ésta se visualiza entonces en el cuadro de la operación.

Temporizador como retardo a la desconexión

El Temporizador como retardo a la desconexión (TOF) se utiliza para retardar la puesta a "0" (OFF) de una salida durante un período determinado tras haberse desactivado (OFF) una entrada. El número del temporizador (Txx) determina la resolución del mismo.

Tabla 6-72 Operandos válidos para las operaciones de temporización SIMATIC

Entradas/salidas	Tipos de datos	Operandos
Тхх	WORD	Constante (T0 a T255)
IN	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
PT	INT	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, constante

Consejo

No se pueden utilizar números iguales (Txx) para un temporizador como retardo a la conexión (TON) y un temporizador como retardo a la desconexión (TOF). Por ejemplo, no puede haber tanto un TON T32 como un TOF T32.

Como muestra la tabla 6-73, los tres tipos de temporizadores ejecutan diferentes tareas de temporización:

- Los temporizadores como retardo a la conexión se utilizan para temporizar un solo intervalo.
- Los temporizadores como retardo a la conexión con memoria se utilizan para acumular varios intervalos temporizados.
- Los temporizadores con retardo a la desconexión se utilizan para ampliar el tiempo después de un cambio a OFF, por ejemplo, para enfriar un motor tras haber sido desconectado.

Tipos de datos	Actual >= Preselección	Estado de la entrada de habilitación (IN)	Alimentación/primer ciclo
TON	Bit de temporización ON	ON: El valor actual cuenta el tiempo.	Bit de temporización OFF
	contando hasta 32.767.	OFF: Bit de temporización OFF. Valor actual = 0	Valor actual = 0
TONR	Bit de temporización ON	ON: El valor actual cuenta el tiempo.	Bit de temporización OFF
	El valor actual continúa contando hasta 32.767.	OFF: El bit de temporización y el valor actual conservan el último estado.	El valor actual se puede conservar ¹
TOF	Bit de temporización OFF.	ON: Bit de temporización ON.	Bit de temporización OFF
	Valor actual = valor de	Valor actual = 0	Valor actual = 0
contaje.		OFF: El temporizador cuenta tras un cambio de ON a OFF.	

Tabla 6-73 Funcionamiento de las operaciones de temporización

¹ El valor actual del temporizador como retardo a la conexión con memoria se selecciona para que quede memorizado cuando se interrumpa la alimentación. Para más información sobre el respaldo de la memoria de la CPU S7-200, consulte el capítulo 4.

Los ejemplos de programación del CD de documentación contienen un programa que utiliza un temporizador como retardo a la conexión (TON) (consulte el ejemplo 31).

Las operaciones TON y TONR cuentan el tiempo al estar activada (ON) la entrada de habilitación. Si el valor actual es mayor o igual al valor de preselección, se activará el bit de temporización (bit T).

- Cuando la entrada de habilitación está activada (OFF), el valor actual se borra en el temporizador TON. En cambio, se conserva en el temporizador TONR.
- El temporizador TONR sirve para acumular tiempo cuando la entrada se activa (ON) y se desactiva (OFF). Utilice la operación Poner a 0 (R) para borrar el valor actual del temporizador TONR.
- Tanto el temporizador TON como el temporizador TONR continúan contando tras haberse alcanzado el valor de preselección y paran de contar al alcanzar el valor máximo de 32.767.

La operación TOF se utiliza para retardar la puesta a "0" (OFF) de una salida durante un período determinado tras haberse desactivado (OFF) una entrada. Cuando la entrada de habilitación se activa (ON), el bit de temporización se activa (ON) inmediatamente y el valor actual se pone a 0. Cuando la entrada se desactiva (OFF), el temporizador cuenta hasta que el tiempo transcurrido alcance el valor de preselección.

- Cuando se alcanza el valor de preselección, el bit de temporización (bit T) se desactiva y el valor actual no se incrementa más. Sin embargo, si la entrada se activa de nuevo antes de que el temporizador TOF alcance el valor de preselección, el bit de temporización permanecerá activado (ON).
- La entrada de habilitación debe cambiar de ON a OFF para que el temporizador TOF comience a contar intervalos de tiempo.
- Si un temporizador TOF se encuentra dentro de una sección SCR y ésta se encuentra desactivada, el valor actual se pone a 0, el bit de temporización se desactiva (OFF) y el valor actual no se incrementa.

Consejo

El temporizador TONR sólo se puede inicializar mediante la operación Poner a 0 (R). Esta operación también sirve para reinicializar los temporizadores TON o TOF, arrojando los resultados siguientes:

- Bit de temporización = OFF
- Valor actual del temporizador = 0

Tras inicializarse un temporizador TOF, la entrada de habilitación debe cambiar de ON a OFF para poder rearrancar el temporizador.

Determinar la resolución de los temporizadores

Los temporizadores cuentan intervalos de tiempo. La resolución (o base de tiempo) del temporizador determina el lapso de tiempo de cada intervalo. Por ejemplo, un temporizador TON con una resolución de 10 ms cuenta el número de intervalos de 10 ms que han transcurrido desde que se habilitó el TON. Un valor de contaje de 50 en un temporizador de 10 ms equivale a 500 ms. Se dispone de temporizadores SIMATIC con tres resoluciones, a saber: 1 ms, 10 ms y 100 ms. Como muestra la tabla 6-74, el número del temporizador determina su resolución.

Consejo

Para garantizar un intervalo de tiempo mínimo, incremente en 1 el valor de preselección (PV). Por ejemplo, para garantizar un intervalo mínimo de 2.100 ms utilizando un temporizador de 100 ms, ajuste el PV a 22.

Tipo de temporizador	Resolución	Valor máximo		№ de temporizador
TONR	1 ms	32.767 s	(0,546 min.)	T0, T64
(con memoria)	10 ms	327,67 s	(5,46 min.)	T1 a T4, T65 a T68
	100 ms	3276,7 s	(54,6 min.)	T5 a T31, T69 a T95
TON, TOF (sin memoria)	1 ms	32.767 s	(0,546 min.)	T32, T96
	10 ms	327,67 s	(5,46 min.)	T33 a T36, T97 a T100
	100 ms	3276,7 s	(54,6 min.)	T37 a T63, T101 a T255

Tabla 6-74 Temporizadores y sus resoluciones

Efecto de la resolución en la actividad del temporizador

En los temporizadores con una resolución de 1 ms, el bit de temporización y el valor actual se actualizan de forma asíncrona al ciclo. En ciclos que duren más de 1 ms, el bit de temporización y el valor actual se actualizan varias veces durante el ciclo.

En los temporizadores con una resolución de 10 ms, el bit de temporización y el valor actual se actualizan al comienzo de cada ciclo. El bit de temporización y el valor actual permanecen constantes durante el ciclo. Los intervalos de tiempo que se acumulan durante el ciclo se suman al valor actual al comienzo de cada ciclo.

En los temporizadores con una resolución de 100 ms, el bit de temporización y el valor actual se actualizan cuando se ejecuta la operación. Por consiguiente, vigile que el programa ejecute la operación de un temporizador de 100 ms sólo una vez por ciclo para que el temporizador conserve el valor correcto.

Consejo

Para garantizar que la salida de un temporizador que se inicialice a sí mismo se active durante un ciclo cada vez que el temporizador alcance el valor de preselección, utilice un contacto normalmente cerrado (en vez del bit de temporización) como entrada de habilitación del temporizador.

Ejemplo de un temporizador como retardo a la desconexión (SIMATIC)

Operaciones de temporización (IEC)

Temporizador con retardo al conectar

La operación Temporizador con retardo al conectar (TON) cuenta el tiempo al estar activada (ON) la entrada de habilitación.

Temporizador como retardo a la desconexión

El Temporizador con retardo al desconectar (TOF) retarda la puesta a "0" (OFF) de una salida durante un período determinado tras haberse desactivado (OFF) una entrada.

Temporizador por impulsos

El Temporizador por impulsos (TP) genera impulsos de una duración determinada.

Entradas/salidas	Tipos de datos	Operandos
Тхх	TON, TOF, TP	Constante (T32 a T63, T96 a T255)
IN	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
PT	INT	IW, QW, VW, MW, SMW, SW, LW, AC, AIW, *VD, *LD, *AC, constante
Q	BOOL	I, Q, V, M, SM, S, L
ET	INT	IW, QW, VW, MW, SMW, SW, LW, AC, AQW, *VD, *LD, *AC
Txx IN PT Q ET	TON, TOF, TP BOOL INT BOOL INT	Constante (T32 a T63, T96 a T255) I, Q, V, M, SM, S, T, C, L, circulación de corriente IW, QW, VW, MW, SMW, SW, LW, AC, AIW, *VD, *LD, *AC, constante I, Q, V, M, SM, S, L IW, QW, VW, MW, SMW, SW, LW, AC, AQW, *VD, *LD, *AC

Tabla 6-75 Operandos válidos para las operaciones de temporización IEC

Consejo

No se pueden compartir números iguales para los temporizadores TOF, TON y TP. Por ejemplo, no puede haber tanto un TON T32 como un TOF T32.

- El Temporizador con retardo al conectar (TON) cuenta intervalos de tiempo hasta alcanzar el valor prefijado, cuando la entrada de habilitación (IN) cambia a "verdadero". Si el tiempo transcurrido (ET) es igual al tiempo prefijado (PT), se activará el bit de salida del temporizador (Q). El bit de salida se pone a "0" cuando se desactiva la entrada de habilitación. Cuando se alcanza el tiempo prefijado (PT), la temporización se detiene y el temporizador se inhibe.
- El Temporizador con retardo al desconectar (TOF) retarda la puesta a "0" de una salida durante un período determinado tras haberse desactivado una entrada. Temporiza hasta el valor prefijado cuando se desactiva la entrada de habilitación (IN). Si el tiempo transcurrido (ET) es igual al tiempo prefijado (PT), se desactivará el bit de salida del temporizador (Q). Una vez alcanzado el valor prefijado, se desactiva el bit de salida del temporizador y el tiempo transcurrido se mantiene hasta que se activa la entrada de habilitación (IN). Si la entrada de habilitación (IN) se desactiva durante un período inferior al tiempo prefijado, el bit de salida seguirá activado.
- El Temporizador por impulsos (TP) genera impulsos de una duración determinada. Cuando el estado de señal de la entrada de habilitación (IN) es "1", se activa el bit de salida (Q). Éste último permanece activado durante el impulso indicado en el tiempo prefijado (PT). Cuando el tiempo transcurrido (ET) alcanza el valor prefijado (PT), se desactiva el bit de salida (Q). El tiempo transcurrido se conserva hasta que se desactiva la entrada de habilitación. Cuando se active el bit de salida, permanecerá en ese estado hasta que haya transcurrido el tiempo prefijado.

El valor actual resulta del valor de contaje multiplicado por la base de tiempo. Por ejemplo, el valor de contaje 50 en un temporizador de 10 ms equivale a 500 ms. Se dispone de temporizadores IEC (TON, TOF y TP) con tres resoluciones. La resolución viene determinada por el número del temporizador (v. tabla 6-76).

Tabla 6-76	Resolución de los temporizadores IE	EC
------------	-------------------------------------	----

Resolución	Valor máximo		Nº de temporizador
1 ms	32,767 s	(0,546 minutos)	T32, T96
10 ms	327,67 s	(5,46 minutos)	T33 a T36, T97 a T100
100 ms	3276,7 s	(54,6 minutos)	T37 a T63, T101 a T255

Temporizadores de intervalos

Capturar intervalo inicial

La operación Capturar intervalo inicial (BITIM) lee el valor actual del contador integrado de 1 milisegundo y almacena el valor en OUT. El intervalo de tiempo máximo para un valor en milisegundos en formato DWORD es 2 elevado a la potencia 32 (o 49,7 días).

Calcular intervalo

La operación Calcular intervalo (CITIM) calcula la diferencia horaria entre el tiempo actual y el tiempo indicado en IN. Esta diferencia se almacena en OUT. El intervalo de tiempo máximo para un valor en milisegundos en formato DWORD es 2 elevado a la potencia 32 (o 49,7 días). CITIM procesa automáticamente la ejecución del temporizador de 1 milisegundo que ocurre dentro del intervalo máximo, dependiendo de cuándo se ha ejecutado la operación BITIM.

Tabla 6-77 Operandos válidos para las operaciones con temporizadores de intervalos

Entradas/salidas	Tipos de datos	Operandos
IN	DWORD	VD, ID, QD, MD, SMD, SD, LD, HC, AC, *VD, *LD, *AC
OUT	DWORD	VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Operaciones con subrutinas

La operación Llamar a subrutina (CALL) transfiere el control a la subrutina SBR_N. Esta operación se puede utilizar con o sin parámetros. Una vez ejecutada la subrutina, el control vuelve a la operación que sigue a la llamada de la subrutina (CALL).

La operación Retorno condicionado desde subrutina (CRET) finaliza la subrutina en función de la combinación lógica precedente.

Para insertar una subrutina, elija los comandos de menú Edición > Insertar > Subrutina.

Condiciones de error que ponen ENO a 0:

- 0008 (excedida la profundidad máxima de anidado)
- 0006 (direccionamiento indirecto)

FBD

SBR_N

FN

SIMATIC / IEC1131

SBR_N

LBD

FN

En el programa principal, se pueden anidar (situar una llamada a subrutina en otra) hasta ocho subrutinas. Las subrutinas no se pueden anidar en una rutina de interrupción.

Una llamada a subrutina no se puede disponer en ninguna otra subrutina a la que se llame desde una rutina de interrupción. Si bien la recursión (la subrutina se llama a sí misma) está permitida, hay que utilizarla con gran precaución.

Tabla 6-78	Operandos válio	dos para las	operaciones	con subrutinas
------------	-----------------	--------------	-------------	----------------

Entradas/salidas	Tipos de datos	Operandos
SBR_n	WORD	Constante para las CPUs 221, 222 y 224: 0 a 63 para las CPUs 224XP y 226 0 a 127
IN	BOOL BYTE WORD, INT DWORD, DINT STRING	V, I, Q, M, SM, S, T, C, L, circulación de corriente VB, IB, QB, MB, SMB, SB, LB, AC, *VD, *LD, *AC ¹ , constante VW, T, C, IW, QW, MW, SMW, SW, LW, AC, AIW, *VD, *LD, *AC ¹ , constante VD, ID, QD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC ¹ , &VB, &IB, &QB, &MB, &T, &C, &SB, &AI, &AQ, &SMB, constante *VD, *LD, *AC, constante
IN/OUT	BOOL BYTE WORD, INT DWORD, DINT	V, I, Q, M, SM ² , S, T, C, L VB, IB, QB, MB, SMB ² , SB, LB, AC, *VD, *LD, *AC ¹ VW, T, C, IW, QW, MW, SMW ² , SW, LW, AC, *VD, *LD, *AC ¹ VD, ID, QD, MD, SMD ² , SD, LD, AC, *VD, *LD, *AC ¹
OUT	BOOL BYTE WORD, INT DWORD, DINT	V, I, Q, M, SM ² , S, T, C, L VB, IB, QB, MB, SMB ² , SB, LB, AC, *VD, *LD, *AC ¹ VW, T, C, IW, QW, MW, SMW ² , SW, LW, AC, AQW, *VD, *LD, *AC ¹ VD, ID, QD, MD, SMD ² , SD, LD, AC, *VD, *LD, *AC ¹

¹ El offset debe ser 1 o superior

² El offset debe ser 30 o superior

Consejo

STEP 7-Micro/WIN inserta automáticamente un retorno absoluto desde cada subrutina.

Cuando se llama a una subrutina, se almacena toda la pila lógica, poniéndose a "1" el nivel superior de la pila. Sus demás niveles se ponen a "0" y la ejecución se transfiere a la subrutina que se ha llamado. Cuando ésta se termina de ejecutar, se restablece la pila con los valores almacenados al llamar a la subrutina y se retorna a la rutina que ha efectuado la llamada.

Los acumuladores son comunes a las subrutinas y a la rutina de llamada. Los acumuladores no se almacenan ni se restablecen si se utilizan con subrutinas.

No utilice las operaciones de detección de flancos ni de contaje si una rutina se llama más de una vez en un mismo ciclo.

Llamar a una subrutina con parámetros

Las subrutinas pueden contener parámetros que hayan sido transferidos. Los parámetros se definen en la tabla de variables locales de la subrutina. Estos parámetros deben tener un nombre simbólico (de 23 caracteres como máximo), un tipo de variable y un tipo de datos. Se pueden transferir 16 parámetros a o desde una subrutina.

El campo "Tipo de variable" en la tabla de variables locales define si la variable se transfiere a la subrutina (IN), a y desde la subrutina (IN_OUT) o desde la subrutina (OUT). En la tabla 6-79 figuran los tipos de parámetros de las subrutinas. Para insertar un registro de parámetro, en el campo "Tipo de variable" sitúe el cursor en el tipo (IN, IN_OUT o OUT) que desea insertar. Pulse el botón derecho del ratón para visualizar un menú contextual que ofrece diversas opciones. Seleccione el comando "Insertar" y luego la opción "Fila inferior". Debajo del registro actual aparecerá un nuevo registro de parámetro.

Parámetro	Descripción
IN	Los parámetros se transfieren a la subrutina. Si el parámetro es una dirección directa (por ejemplo, VB10), el valor de la dirección indicada se transfiere a la subrutina. Si el parámetro es una dirección indirecta (por ejemplo, *AC1), el valor de la dirección a la que señala el puntero se transfiere a la subrutina. Si el parámetro es una constante de datos (16#1234) o una dirección (VB100), la constante o el valor de dirección se transfieren a la subrutina.
IN_OUT	El valor de la dirección del parámetro indicado se transfiere a la subrutina y el valor resultante de la subrutina se devuelve luego a la misma dirección. Para los parámetros de entrada/salida no se pueden utilizar ni constantes (por ejemplo, 16#1234) ni direcciones (por ejemplo, &VB100).
OUT	El valor resultante de la subrutina se devuelve a la dirección del parámetro indicado. Para los parámetros de salida no se pueden utilizar ni constantes (por ejemplo, 16#1234) ni direcciones (por ejemplo, &VB100).
TEMP	Cualquier memoria local que no se utilice para la transferencia de parámetros se puede emplear para el almacenamiento temporal dentro de la subrutina.

Tabla 6-79 Tipos de parámetros de subrutinas

Como muestra la figura 6-38, el campo "Tipo de datos" de la tabla de variables locales indica el tamaño y el formato del parámetro. Los tipos de parámetros figuran a continuación:

- BOOL: Este tipo de datos se utiliza para entradas y salidas binarias sencillas. En el ejemplo siguiente, IN3 es una entrada booleana.
- BYTE, WORD, DWORD: Estos tipos de datos identifican parámetros de entrada o de salida sin signo compuestos por 1, 2 ó 4 bytes, respectivamente.
- INT, DINT: Estos tipos de datos identifican parámetros de entrada o de salida con signo compuestos por 2 ó 4 bytes, respectivamente.

🕮 SIMATIE LAD 📃 🗆 🗶					
· • () • • • • • • • • • • • • • • • • •					
	Name	Vai Туре	Data Type	Comment	_
	EN	IN	BODL		
LO.D	FirstPass	IN	BODL	First pass flag	
L81	Addr	IN	BYTE	Address of slave device	
LW2	Data	IN	INT	Data to write to slave	
LBł	Status	IN_OUT	BYTE	Status of write	
L5.D	Done	OUT	BODL	Done flag	
LW6	Error	OUT	WORD	Error number (if any)	-
🔳 💽 🔪 MAIN	λSBR_0 (INT_	0/	4		• 🗆

Figura 6-38 Tabla de variables locales

- REAL: Este tipo de datos identifica un valor en coma flotante IEEE de precisión simple (4 bytes).
- STRING: Este tipo de datos sirve de puntero de 4 bytes a una cadena.
- Circulación de corriente: La circulación de corriente booleana sólo se permite en las entradas binarias (booleanas). Esta declaración le indica a STEP 7-Micro/WIN que este tipo de parámetro de entrada es el resultado de la circulación de la corriente conforme a una combinación de operaciones lógicas con bits. Las entradas booleanas de circulación de corriente deben aparecer en la tabla de variables locales antes de cualquier otro tipo de entrada. Aquí se permite utilizar sólo parámetros de entrada. La entrada de habilitación (EN) y las entradas IN1 en el siguiente ejemplo usan la lógica booleana.

Ejemplo de la operación Llamada a subrutina

A continuación figuran dos ejemplos en AWL. El primer juego de instrucciones AWL se puede visualizar únicamente en el editor AWL, puesto que los parámetros BOOL utilizados como entradas de circulación de corriente no se almacenan en la memoria L.

El segundo juego de instrucciones AWL se puede visualizar también en los editores KOP y FUP, puesto que la memoria L se utiliza para guardar el estado de los parámetros de entrada BOOL que se visualizan como entradas de circulación de corriente en KOP y FUP.

Los parámetros de dirección tales como IN4 (&VB100) se transfieren a una subrutina como valor DWORD (palabra doble sin signo). El tipo de parámetro de una constante se debe indicar en la rutina de llamada mediante un descriptor delante del valor de la constante. Por ejemplo, para transferir como parámetro una constante de palabra doble sin signo cuyo valor sea 12.345, el parámetro de esta constante se deberá indicar de la siguiente forma: DW#12345. Si se omite el descriptor de la constante, se podría deducir que la constante es de un tipo diferente.

En el caso de los parámetros de entrada o de salida no se realiza una conversión automática de datos. Por ejemplo, si en la tabla de variables locales se indica que un parámetro es del tipo de datos REAL y en la rutina de llamada se indica una palabra doble (DWORD) para ese parámetro, el valor en la subrutina será una palabra doble.

Los valores que se transfieren a una subrutina se depositan en la memoria local de la misma. La columna situada en el extremo izquierdo de la tabla de variables locales muestra la dirección local de todos los parámetros que se han transferido. Cuando se llama a la subrutina, los valores de los parámetros de entrada se copian a la memoria local de la subrutina. Cuando se finaliza la ejecución de la subrutina, los valores de los parámetros de salida se copian de la memoria local de la subrutina de la memoria local de la subrutina.

El tamaño y el tipo de los elementos de datos está codificado en los parámetros. Los valores de los parámetros se asignan de la siguiente forma a la memoria local de la subrutina:

- Los valores de parámetros se asignan a la memoria local en el orden indicado por la operación Llamar a subrutina, comenzando en L.0.
- Uno a ocho valores binarios de parámetros consecutivos se asignan a un sólo byte comenzando en Lx.0 hasta Lx.7.
- Los valores de byte, palabra y palabra doble se asignan a la memoria local en bytes (LBx, LWx o LDx).

En la operación Llamar a subrutina con parámetros, éstos se deben organizar de la siguiente forma: primero los parámetros de entrada, luego los de entrada/salida y, por último, los de salida.

En AWL, el formato de la operación Llamar a subrutina (CALL) es el siguiente:

CALL número de subrutina, parámetro 1, parámetro 2, ... , parámetro

Ejemplo de una llamada a subrutina con cadenas

En este ejemplo, un literal de cadena diferente se copia a una dirección unívoca en función de la entrada dada. La dirección unívoca de esta cadena se almacena. A continuación, la dirección de la cadena se transfiere a la subrutina, utilizando para ello una dirección indirecta. El tipo de datos del parámetro de entrada de la subrutina es STRING. A continuación, la subrutina desplaza la cadena a una dirección diferente.

Un literal de cadena también se puede transferir a la subrutina. La referencia a la cadena dentro de la subrutina es siempre igual.

Comunicación en redes

El S7-200 se ha diseñado para solucionar las tareas de comunicación en redes, soportando redes tanto sencillas como complejas. El S7-200 incorpora herramientas que facilitan la comunicación con otros equipos (por ejemplo, impresoras y balanzas) que utilizan sus propios protocolos de comunicación.

STEP 7-Micro/WIN permite instalar y configurar la red de forma rápida y sencilla.

Índice del capítulo

Principios básicos de la comunicación en redes S7-200	224
Seleccionar el protocolo para la comunicación en la red	228
Agregar y quitar interfaces de comunicación	234
Configurar la red	235
Crear protocolos personalizados en modo Freeport	240
Utilizar módems y STEP 7-Micro/WIN en la red	243
Temas avanzados	249
Configurar el cable multimaestro RS-232/PPI para el funcionamiento remoto	255

Principios básicos de la comunicación en redes S7-200

Seleccionar la interfaz de comunicación en la red

El S7-200 soporta numerosos tipos de redes de comunicación. La red se selecciona en el cuadro de diálogo "Ajustar interface PG/PC". Una red seleccionada se denomina una interfaz. A continuación se indican los diferentes tipos de interfaces disponibles para acceder a las redes de comunicación:

- Cables multimaestro PPI
- Procesadores de comunicaciones
- Tarjetas de comunicación Ethernet

Para seleccionar la interfaz de comunicación de STEP 7-Micro/WIN, siga los pasos indicados a continuación (v. fig. 7-1).

- 1. En la ventana "Configurar la comunicación", haga doble clic en el icono superior.
- 2. Seleccione el parámetro de la interfaz para STEP 7-Micro/WIN.

Figura 7-1 Interfa STFP

STEP 7-Micro/WIN

Cables multimaestro PPI

El S7-200 soporta la comunicación a través de dos tipos diferentes de cables multimaestro PPI. Estos tipos de cable permiten la comunicación vía una interfaz RS-232, o bien USB.

Como muestra la figura 7-2 es muy fácil seleccionar el tipo de cable multimaestro PPI. Proceda de la manera siguiente:

- 1. Haga clic en el botón "Propiedades..." del cuadro de diálogo "Ajustar interface PG/PC".
- 2. En el cuadro de diálogo "Propiedades", haga clic en la ficha "Conexión local".
- 3. Seleccione el puerto USB o COM deseado.

Figura 7-2 Seleccionar el cable multimaestro PPI

Consejo

Tenga en cuenta que sólo se puede utilizar un cable USB a la vez.

Consejo

En los ejemplos del presente manual se utiliza el cable multimaestro RS-232/PPI. El cable multimaestro RS-232/PPI sustituye el cable PC/PPI que se empleaba anteriormente. El cable multimaestro USB/PPI también está disponible. Los números de referencia se indican en el anexo E.

Utilizar maestros y esclavos en una red PROFIBUS

El S7-200 soporta redes compuestas por maestros y esclavos, pudiendo actuar tanto de maestro como de esclavo en una red PROFIBUS. En cambio, STEP 7-Micro/WIN actúa siempre de maestro.

Maestros

Los maestros pueden enviar una petición a otros aparatos de la red. Un maestro también puede responder a las peticiones de otros maestros incorporados en la red. Algunos maestros típicos son STEP 7-Micro/WIN, interfaces hombre-máquina (HMI), tales como el TD 200, así como sistemas de automatización S7-300 o S7-400. El S7-200 actúa de maestro cuando le solicita información a otro S7-200 (comunicación punto a punto).

Consejo

Un TP070 no funcionará en una red que incorpore otro maestro.

Esclavos

Un aparato que se haya configurado como esclavo sólo puede responder a las peticiones de un maestro. Un esclavo no puede iniciar una petición. El S7-200 actúa de esclavo en la mayoría de las redes. En su calidad de esclavo, el S7-200 responde a las peticiones de un maestro de la red, por ejemplo, de un panel de operador o de STEP 7-Micro/WIN.

Ajustar la velocidad de transferencia y la dirección de estación

La velocidad de transferencia de los datos en la red se indica, por lo general, en kilobits por segundo (kbit/s), o bien, en megabits por segundo (Mbit/s). La velocidad de transferencia mide cuántos datos se pueden transmitir en un determinado período. Por ejemplo, una velocidad de transferencia de 19,2 kbit/s significa que se transmiten 19.200 bits por segundo.

Todos los aparatos que conforman la red se deben configurar de manera que transfieran datos a un misma velocidad de transferencia. Por tanto, el aparato más lento de la red determina la velocidad de transferencia máxima.

En la tabla 7-1 figuran las velocidades de transferencia que soporta el S7-200.

La dirección de estación es un número unívoco que se asigna a cada aparato de la red. La dirección de estación unívoca garantiza que los datos sean enviados al o recibidos del aparato correcto. El S7-200 soporta direcciones de estación comprendidas entre 0 y 126. Si el S7-200 dispone de dos puertos, cada uno de ellos tiene su propia dirección de estación. En la tabla 7-2 figuran los ajustes estándar (de fábrica) de los equipos S7-200. Tabla 7-1 Velocidades de transferencia soportadas por el S7-200

Red	Velocidad de transferencia
Red estándar	9,6 kbit/s a 187,5 kbit/s
Utilizando un EM 277	9,6 kbit/s a 12 Mbit/s
Modo Freeport	1200 bit/s a 115,2 kbit/s

Tabla 7-2 Direcciones estándar de los equipos S7-200

Equipo S7-200	Dirección estándar		
STEP 7-Micro/WIN	0		
HMI (TD 200, TP u OP)	1		
CPU S7-200	2		

Ajustar la velocidad de transferencia y la dirección de estación de STEP 7-Micro/WIN

Es preciso configurar la velocidad de transferencia y la dirección de estación de STEP 7-Micro/WIN. La velocidad de transferencia debe ser igual a la de los demás equipos que conforman la red, en tanto que la dirección de estación deberá ser unívoca.

Por lo general no es necesario cambiar la dirección de estación (0) de STEP 7-Micro/WIN. Si la red incorpora un paquete de programación diferente puede resultar necesario cambiar la dirección de estación de STEP 7-Micro/WIN.

Como muestra la figura 7-3, es muy fácil configurar la velocidad de transferencia y la dirección de estación de STEP 7-Micro/WIN. Tras hacer clic en el icono "Comunicación" en la barra de navegación, proceda de la manera siguiente:

- 1. En la ventana "Configurar la comunicación", haga doble clic en el icono superior.
- 2. Haga clic en el botón "Propiedades..." del cuadro de diálogo "Ajustar interface PG/PC".
- 3. Seleccione la dirección de estación de STEP 7-Micro/WIN.
- 4. Seleccione la velocidad de transferencia de STEP 7-Micro/WIN.

Figura 7-3 Configurar STEP 7-Micro/WIN

Ajustar la velocidad de transferencia y la dirección de estación del S7-200

También es preciso configurar la velocidad de transferencia y la dirección de estación del S7-200. Estos dos parámetros se almacenan en el bloque de sistema del S7-200. Tras haber ajustado la velocidad de transferencia y la dirección de estación del S7-200, es preciso cargar el bloque de sistema en el S7-200.

La velocidad de transferencia estándar de los puertos del S7-200 es de 9,6 kbit/s. La dirección de dirección estándar es "2".

Como muestra la figura 7-4, utilice STEP 7-Micro/WIN para ajustar la velocidad de transferencia y la dirección de estación del S7-200. Después de hacer clic en el icono "Bloque de sistema" en la barra de navegación o tras seleccionar el comando de menú **Ver > Componente > Bloque de sistema**, proceda de la manera siguiente:

- 1. Seleccione la dirección de estación del S7-200.
- 2. Seleccione la velocidad de transferencia del S7-200.
- 3. Cargue el bloque de sistema en el S7-200.

Figura 7-4 Configurar el S7-200

Ŷ

Consejo

Es posible seleccionar una velocidad de transferencia cualquiera. STEP 7-Micro/WIN comprueba esta selección cuando el bloque de sistema se carga en la CPU. Si selecciona una velocidad de transferencia que no permita la comunicación entre STEP 7-Micro/WIN y el S7-200, ésta se rechazará durante el proceso de carga.

Ajustar la dirección remota

Antes de cargar los ajustes actualizados en el S7-200, es preciso configurar el puerto de comunicación (COM) de STEP 7-Micro/WIN (local) y la dirección del S7-200 (remota) para que concuerden con el ajuste actual del S7-200 remoto (v. fig. 7-5).

Tras haber cargado los parámetros actualizados es preciso reconfigurar la velocidad de transferencia en el cuadro de diálogo "Ajustar interface PG/PC" (si difiere del ajuste utilizado para cargar los parámetros en el S7-200 remoto). Para configurar la velocidad de transferencia, consulte la figura 7-3.

Figura 7-5 Configurar STEP 7-Micro/WIN

Buscar CPUs S7-200 en una red

Es posible buscar e identificar las CPUs S7-200 conectadas a la red. La búsqueda de CPUs S7-200 en la red se puede efectuar a una velocidad de transferencia determinada, o bien a todas las velocidades de transferencia.

Los cables multimaestro PPI son los únicos que permiten buscar a todas las velocidades de transferencia. Esta función no está disponible si la comunicación se efectúa vía un procesador de comunicaciones. La búsqueda comienza a la velocidad de transferencia seleccionada actualmente.

- 1. Abra el cuadro de diálogo "Configurar la comunicación" y haga doble clic en el icono "Actualizar" para iniciar la búsqueda.
- Si desea buscar a todas las velocidades de transferencia, active la casilla de verificación "Buscar a todas las velocidades de transferencia".

Seleccionar el protocolo para la comunicación en la red

A continuación se indican los protocolos soportados por las CPUs S7-200.

- Interfaz punto a punto (PPI)
- □ Interfaz multipunto (MPI)
- □ PROFIBUS

Basándose en la intercomunicación de sistemas abiertos (OSI) de la arquitectura de siete capas, estos protocolos se implementan en una red "token ring" (red de anillo con testigo) conforme al estándar PROFIBUS, definido en la Norma Europea EN 50170. Se trata de protocolos asíncronos de caracteres que utilizan un bit de inicio, ocho bits de datos, un bit de paridad par y un bit de parada. Los bloques de comunicación dependen de los caracteres especiales de inicio y de parada, de las direcciones de estación de fuente y de destino, de la longitud de los bloques y de la suma de verificación para garantizar la integridad de los datos. Los protocolos se pueden utilizar simultáneamente en una red sin que interfieran entre sí, con la condición de que usen una misma velocidad de transferencia.

Ethernet también está disponible para la CPU S7-200 con los módulos de ampliación CP243-1 y CP243-1 IT.

Protocolo PPI

PPI es un protocolo maestro-esclavo. Los maestros envían peticiones a los esclavos y éstos responden (v. fig. 7-7). Los esclavos no inician mensajes, sino que esperan a que un maestro les envíe una petición o solicite una respuesta.

Los maestros se comunican con los esclavos vía un enlace compartido que es gestionado por el protocolo PPI. El protocolo PPI no limita el número de maestros que se pueden comunicar con un mismo esclavo. Sin embargo, la red no puede comprender más de 32 maestros.

Estando en modo RUN, algunas CPUs S7-200 pueden actuar de estaciones maestras en la red si está habilitado el modo maestro PPI en el programa de usuario. (Consulte la descripción de SMB30 en el anexo D). Una vez habilitado el modo maestro PPI, las operaciones Leer de la red (NETR) y Escribir en la red (NETW) se podrán utilizar para leer de o escribir en otros equipos S7-200. Mientras actúa de maestro PPI, el S7-200 sigue respondiendo en calidad de esclavo a las peticiones de otros maestros.

El protocolo PPI Avanzado permite establecer un enlace lógico entre los aparatos. En este caso, cada aparato soporta un número de enlaces limitado. En la tabla 7-3 figura el número de enlaces que soporta el S7-200.

Todas las CPUs S7-200 soportan los protocolos PPI y PPI Avanzado. En cambio, el módulo EM 277 soporta únicamente el protocolo PPI Avanzado.

Tabla 7-3	Cantidad de enlaces so	portados por la CPU	S7-200 y e	el módulo EM 277

Módulo		Velocidad de transferencia	Enlaces	
CPU S7-200 Puerto 0 9		9,6 kbit/s, 19,2 kbit/s ó 187,5 kbit/s	4	
	Puerto 1	9,6 kbit/s, 19,2 kbit/s ó 187,5 kbit/s	4	
Módulo EM 277		9,6 kbit/s a 12 Mbit/s	6 por módulo	

Protocolo MPI

El protocolo MPI soporta la comunicación maestro-maestro y maestro-esclavo (v. fig. 7-8). Para comunicarse con una CPU S7-200, STEP 7-Micro/WIN establece un enlace maestro-esclavo. El protocolo MPI no sirve para comunicarse con una CPU S7-200 que actúe de maestra.

Los aparatos de la red se comunican a través de enlaces separados (gestionados por el protocolo MPI) entre dos aparatos cualquiera. La comunicación entre los aparatos se limita la cantidad de enlaces que soportan la CPU S7-200 o el módulo EM 277. En la tabla 7-3 figura el número de enlaces que soporta el S7-200.

Figura 7-8 Red MPI

En el caso del protocolo MPI, los sistemas de automatización S7-300 y S7-400 utilizan las operaciones XGET y XPUT para leer y escribir datos en la CPU S7-200. Para más información acerca de estas operaciones, consulte el manual de programación del S7-300 o del S7-400, respectivamente.

Protocolo PROFIBUS

El protocolo PROFIBUS se ha diseñado para la comunicación rápida con unidades periféricas descentralizadas (E/S remotas). Hay numerosos aparatos PROFIBUS ofrecidos por diversos fabricantes. Estos aparatos abarcan desde módulos sencillos de entradas o salidas hasta controladores de motores y sistemas de automatización (autómatas programables).

Por lo general, las redes PROFIBUS incorporan un maestro y varios esclavos (v. fig. 7-9). La configuración del maestro permite detectar los tipos de esclavos conectados, así como sus respectivas direcciones. El maestro inicializa la red y verifica si los esclavos coinciden con la configuración. Continuamente, el maestro escribe los datos de salida en los esclavos y lee de allí los datos de entrada.

Figura 7-9 Red PROFIBUS

Una vez que un maestro DP haya configurado correctamente a un esclavo, éste último le pertenecerá. Si hay otro maestro en la red, tendrá apenas un acceso muy limitado a los esclavos del primer maestro.

Protocolo TCP/IP

El S7-200 soporta la comunicación Ethernet TCP/IP vía un módulo de ampliación Ethernet (CP 243-1) o Internet (CP 243-1 IT). La tabla 7-4 muestra las velocidades de transferencia y la cantidad de enlaces que soportan estos módulos.

Fabla 7-4	Cantidad de enlaces	soportados por los	módulos Ethernet	t (CP 243-1) e Internet	t (CP 243-1 IT)
-----------	---------------------	--------------------	------------------	-------------------------	-----------------

Módulo		Velocidad de transferencia	Enlaces		
	Módulo Ethernet (CP 243-1)	10 Mbit/c a 100 Mbit/c	8 enlaces de carácter general		
	Módulo Internet (CP 243-1 IT)		1 enlace STEP 7-Micro/WIN		

Para más información, consulte los manuales SIMATIC NET CP 243-1 Procesador de comunicaciones para Industrial Ethernet o SIMATIC NET CP 243-1 IT Procesador de comunicaciones para Industrial Ethernet y tecnología informática.

Ejemplos de redes compuestas sólo por PLCs S7-200

Redes PPI monomaestro

En una red monomaestro, el PC o la PG y la CPU S7-200 se interconectan bien sea mediante un cable multimaestro PPI, o bien utilizando un procesador de comunicaciones (CP) instalado en el PC o la PG.

En la red de ejemplo que aparece en el lado superior de la figura 7-10, el PC o la PG (con STEP 7-Micro/WIN) es el maestro de la red. En la red de ejemplo que aparece en el lado inferior de la figura 7-10, una interfaz hombre-máquina o aparato HMI (por ejemplo, un TD 200, un panel táctil o un panel de operador) es el maestro de la red.

Figura 7-10 Red PPI monomaestro

En ambas redes de ejemplo, la CPU S7-200 es un esclavo que responde a las peticiones del maestro.

En una configuración PPI monomaestro es preciso ajustar que STEP 7-Micro/WIN utilice el protocolo PPI. Desactive las casillas de verificación "Red multimaestro" y "PPI Avanzado" (si están disponibles).

Redes multimaestro PPI

La figura 7-11 muestra un ejemplo de una red multimaestro con un esclavo. El PC o la PG (con STEP 7-Micro/WIN) utiliza un procesador de comunicaciones (CP) o un cable multimaestro PPI. STEP 7-Micro/WIN y el aparato HMI comparten la red.

Tanto STEP 7-Micro/WIN como el aparato HMI son maestros y deben tener direcciones de estación unívocas. Si se utiliza el cable multimaestro PPI, éste actúa de maestro y utiliza la dirección de red suministrada por STEP 7-Micro/WIN. La CPU S7-200 actúa de estación esclava.

La figura 7-12 muestra una red PPI con varios maestros que se comunican con varios esclavos. En el presente ejemplo, tanto STEP 7-Micro/WIN como el aparato HMI pueden solicitar datos de cualquier CPU S7-200 esclava. STEP 7-Micro/WIN y el aparato HMI comparten la red.

Todos los aparatos (tanto los maestros como los esclavos) deben tener direcciones de estación unívocas. Si se utiliza el cable multimaestro PPI, éste actúa de maestro y utiliza la dirección de red suministrada por STEP 7-Micro/WIN. Las CPUs S7-200 son esclavas.

Figura 7-11 Varios maestros y un solo esclavo

Figura 7-12 Varios maestros y esclavos

En una red que incorpore varios maestros y uno o varios esclavos, configure STEP 7-Micro/WIN para que utilice el protocolo PPI y active las casillas de verificación "Red multimaestro" y "PPI Avanzado" (si están disponibles). Si utiliza un cable multimaestro PPI se ignorarán estas casillas.

Redes PPI complejas

La figura 7-13 muestra una red de ejemplo que incorpora varios maestros que utilizan la comunicación punto a punto.

A través de la red, STEP 7-Micro/WIN y el aparato HMI leen y escriben datos en las CPUs S7-200, en tanto que éstas utilizan las operaciones Leer de la red (NETR) y Escribir en la red (NETW) para leer y escribir datos entre sí (comunicación punto a punto).

La figura 7-14 muestra otro ejemplo de una red PPI compleja, incorporando varios maestros que utilizan la comunicación punto a punto. En el presente ejemplo, cada aparato HMI vigila una CPU S7-200.

Las CPUs S7-200 utilizan las operaciones Leer de la red (NETR) y Escribir en la red (NETW) para leer y escribir datos entre sí (comunicación punto a punto).

En redes PPI complejas, configure STEP 7-Micro/WIN para que utilice el protocolo PPI y active las casillas de verificación "Red multimaestro" y "PPI Avanzado" (si están disponibles). Si utiliza un cable multimaestro PPI se ignorarán estas casillas.

Figura 7-13 Comunicación punto a punto

Figura 7-14 Aparatos HMI y comunicación punto a punto

Ejemplos de redes compuestas por PLCs S7-200, S7-300 y S7-400

Redes con una velocidad de transferencia máxima de 187,5 kbit/s

En la red de ejemplo que muestra la figura 7-15, el S7-300 utiliza las operaciones XPUT y XGET para comunicarse con una CPU S7-200. El S7-300 no se puede comunicar con una CPU S7-200 en modo maestro.

Para comunicarse con las CPUs S7, configure STEP 7-Micro/WIN para que utilice el protocolo PPI y active las casillas de verificación "Red multimaestro" y "PPI Avanzado" (si están disponibles). Si utiliza un cable multimaestro PPI se ignorarán estas casillas.

Figura 7-15 Velocidad de transferencia máxima de 187,5 kbit/s

Redes con una velocidad de transferencia superior a 187,5 kbit/s

Si la velocidad de transferencia es superior a 187,5 kbit/s, es preciso utilizar un módulo EM 277 para conectar la CPU S7-200 a la red (v. fig. 7-16). STEP 7-Micro/WIN se debe conectar vía un procesador de comunicaciones (CP).

En la presente configuración, el S7-300 se puede comunicar con las CPUs S7-200 utilizando las operaciones XPUT y XGET, en tanto que el aparato HMI puede vigilar las CPUs S7-200 o el S7-300.

El módulo EM 277 actúa siempre de esclavo.

STEP 7-Micro/WIN puede programar o vigilar cualquiera de las dos CPUs S7-200 a través del EM 277 conectado. Para comunicarse con un EM 277 a una velocidad de transferencia superior a 187,5 kbit/s, configure STEP 7-Micro/WIN para que se utilice el protocolo MPI con un procesador de comunicaciones. La velocidad de transferencia máxima para los cables multimaestro PPI es 187,5 kbit/s.

Figura 7-16 Velocidad de transferencia superior a 187,5 kbit/s

Ejemplos de redes PROFIBUS-DP

Redes con un S7-315-2 DP como maestro PROFIBUS y un EM 277 como esclavo PROFIBUS

La figura 7-17 muestra un ejemplo de una red PROFIBUS en la que un S7-315-2 DP actúa de maestro PROFIBUS. El módulo EM 277 es el esclavo PROFIBUS.

El S7-315-2 DP puede leer o escribir datos de/en el EM 277 (entre 1 byte y 128 bytes). El S7-315-2 DP lee o escribe de/en direcciones de la memoria V del S7-200.

Esta red soporta velocidades de transferencia comprendidas entre 9.600 bit/s y 12 Mbit/s.

Redes con STEP 7-Micro/WIN y HMI

La figura 7-18 muestra una red de ejemplo con un S7-315-2 DP que actúa de maestro PROFIBUS y un EM 277 que actúa de esclavo PROFIBUS. En la presente configuración, el aparato HMI vigila el S7-200 a través del EM 277. STEP 7-Micro/WIN programa el S7-200 a través del EM 277.

Esta red soporta velocidades de transferencia comprendidas entre 9.600 bit/s y 12 Mbit/s. Si la velocidad de transferencia excede los 187,5 kbit/s, STEP 7-Micro/WIN se debe conectar vía un procesador de comunicaciones (CP).

Figura 7-17 Red con S7-315-2 DP

Figura 7-18 Red PROFIBUS

Configure STEP 7-Micro/WIN de manera que utilice el protocolo PROFIBUS para el CP. Seleccione el perfil "DP" o "Estándar" si la red está compuesta sólo por aparatos DP. Si la red incorpora aparatos no DP (p. ej. TDs 200), seleccione el perfil "Universal" (DP/FMS) para todos los maestros. Para que la red pueda funcionar correctamente, todos los maestros de la red se deben configurar de manera que utilicen un mismo perfil PROFIBUS ("DP", "Estándar" o "Universal").

Los cables multimaestro PPI sólo funcionarán en redes a una velocidad máxima de 187,5 kbit/s si los maestros utilizan el perfil "Universal" (DP/FMS).

Ejemplos de redes compuestas por dispositivos Ethernet y/o Internet

En la configuración ilustrada en la figura 7-19 se utiliza un enlace Ethernet para que STEP 7-Micro/WIN se pueda comunicar con las CPUs S7-200 que utilizan bien sea un módulo Ethernet (CP 243-1), o bien un módulo Internet (CP 243-1 IT). Las CPUs S7-200 pueden intercambiar datos vía el enlace Ethernet. Para acceder a la homepage del módulo Internet (CP 243-1 IT) es posible utilizar un browser estándar en el PC con STEP 7-Micro/WIN.

En redes Ethernet, configure STEP 7-Micro/WIN para que utilice el protocolo TCP/IP.

Figura 7-19 Red Ethernet de 10/100 Mbit/s

Ŷ

Consejo

El cuadro de diálogo "Ajustar interface PG/PC" incorpora como mínimo dos opciones TCP/IP. El S7-200 no soporta la opción TCP/IP -> NdisWanlp.

- Las opciones del cuadro de diálogo "Ajustar interface PG/PC" dependen del tipo de interfaz Ethernet del PC. Seleccione una opción que permita conectar el PC a la red Ethernet a la que está conectado el módulo CP 243-1 o CP 243-1 IT.
- Introduzca en el cuadro de diálogo "Comunicación" la(s) dirección(es) IP remotas de todos los módulos Ethernet/Internet con los que desea comunicarse.

Agregar y quitar interfaces de comunicación

A partir del cuadro de diálogo "Ajustar interface PG/PC" es posible acceder al cuadro de diálogo "Instalar/desinstalar interfaces" para agregar o quitar interfaces de comunicación del PC.

1. En el cuadro de diálogo "Ajustar interface PG/PC", haga clic en "Seleccionar" para acceder al cuadro de diálogo "Instalar/desinstalar interfaces".

En el cuadro "Selección" figuran las interfaces disponibles, en tanto que en el cuadro "Instalados" aparecen las interfaces que se han instalado en el PC.

- 2. Para agregar una interfaz de comunicación: Seleccione el hardware de comunicación instalado en el PC y haga clic en "Instalar". Tras cerrar el cuadro de diálogo "Instalar/desinstalar interfaces", la interfaz en cuestión aparecerá en el cuadro de lista "Parametrización utilizada" del cuadro de diálogo "Ajustar interface PG/PC".
- Para quitar una interfaz de comunicación: Seleccione la interfaz que desea quitar y haga clic en "Desinstalar". Tras cerrar el cuadro de diálogo "Instalar/desinstalar interfaces", la interfaz en cuestión se quitará del cuadro de lista "Parametrización utilizada" del cuadro de diálogo "Ajustar interface PG/PC".

Paramétrage interface PG/PC X Voie d'accès Entrée de l'application : Intrée de l'application : Micro/MIN -> PC/PPI cable(PPI) Présédection Micro/VIN Jeu de paramètres utilisé : PC/PPI cable(PPI) Propriétés Interfaces Ajouter/Supprimer :	1.	2. Installer/dósin/aller des Sélection: Cate Sélection: Cate Sélection: Cate Sélection: Cate Sélection: Cate Sélection: Cate Sélection: Cate Sélection: Cate Sélection: Cate Sélection: Cate Sélection: Cate Sélection: Cate Sélection: Sélection: Cate Sélection: Sélec	3. /éjá installées : Carte II SO Ind. E therm: I→ 3Com 3C920 Integrate II CP/IP → 3Com 3C920 Integrated II CP/IP → NdisWanip II CP/IP → NdisWanip II CP/IP → NdisWanip
OK Annuler Aide		Fermer	Aide

Figura 7-20 Cuadros de diálogo "Ajustar interface PG/PC" e "Instalar/desinstalar interfaces"

Ajustar la configuración del puerto del PC para el modo multimaestro PPI

Si utiliza los cables multimaestro USB/PPI o RS-232/PPI en modo PPI, no es necesario ajustar la configuración del puerto del PC, siendo posible comunicarse en redes multimaestro con el sistema operativo Windows NT.

Si utiliza el cable multimaestro RS-232/PPI en modo PPI/Freeport para la comunicación entre una CPU S7-200 y STEP 7-Micro/WIN con un sistema operativo que soporte la configuración multimaestro PPI (Windows NT no la soporta), puede resultar necesario ajustar la configuración del puerto del PC:

- 1. En el Escritorio de Windows, haga clic con el botón derecho del ratón en el icono "Mi PC" y elija el comando de menú Propiedades.
- 2. Seleccione la ficha "Administrador de dispositivos". En Windows 2000, seleccione primero la ficha "Hardware" y después haga clic en el botón "Administrador de dispositivos".
- 3. Haga doble clic en "Puertos (COM y LPT)".
- 4. Elija el puerto de comunicación que esté utilizando actualmente (por ejemplo, COM1).
- 5. En la ficha "Configuración de puerto", haga clic en el botón "Avanzada".
- 6. Ajuste los búferes de recepción y de recepción al valor mínimo (1).
- 7. Haga clic en "Aceptar" para aplicar los cambios, cierre todas las ventanas y reinicie el equipo para activar la nueva configuración.

Configurar la red

Reglas de carácter general

Instale dispositivos de supresión de sobretensiones apropiados en el cableado susceptible de recibir sobretensiones causadas por rayos.

Evite colocar los conductores de señalización y los cables de comunicación en una misma canalización junto con los cables c.a. y los cables c.c. de alta tensión y de conmutación rápida. El cableado deberá efectuarse por pares; con el cable de neutro o común combinado con el cable de fase o de señal.

El puerto de comunicación del S7-200 no está aislado. Es recomendable que prevea un repetidor RS-485 o un módulo EM 277 para garantizar el aislamiento de la red.

Cuidado

Si se interconectan equipos con potenciales de referencia diferentes, podrían circular corrientes indeseadas por el cable de conexión.

Las corrientes indeseadas pueden causar errores de comunicación o deteriorar los equipos.

Para evitar corrientes indeseadas, vigile que todos los equipos conectados con un cable de comunicación compartan un circuito de referencia, o bien que estén aislados entre sí. Para más información sobre la puesta a tierra y los puntos de referencia para utilizar circuitos aislados, consulte el capítulo 3.

Determinar las distancias, la velocidad de transferencia y el cable de la red

Como muestra la tabla 7-5, dos factores determinan la longitud máxima de un segmento de una red, a saber: el aislamiento (utilizando un repetidor RS-485) y la velocidad de transferencia.

Es necesario aislar la red si los aparatos se conectan a potenciales de tierra diferentes. Estos potenciales pueden existir si las tomas de tierra están separadas físicamente por una gran distancia. Las corrientes de carga de maquinaria pesada pueden causar diferencias de potencial de tierra, incluso en distancias cortas.

Velocidad de transferencia	Puerto de CPU no aislado ¹	Puerto de CPU con repetidor o EM 277		
9,6 kbit/s a 187,5 kbit/s	50 m	1.000 m		
500 kbit/s	No soportada	400 m		
1 Mbit/s a 1,5 Mbit/s	No soportada	200 m		
3 Mbit/s a 12 Mbit/s	No soportada	100 m		

 Tabla 7-5
 Longitud máxima de un cable de red

La distancia máxima permitida sin utilizar aislamientos o repetidores es de 50 metros, medidos entre el primer y el último nodo del segmento.

Utilizar repetidores en la red

Los repetidores RS-485 sirven para polarizar y cerrar el segmento de red en cuestión. Se pueden utilizar para los fines siguientes:

- Aumentar la longitud de una red: Agregando un repetidor a la red, es posible ampliarla en 50 m adicionales. Si se conectan repetidores sin nodos entre ellos (como muestra la figura 7-21), es posible ampliar la red hasta la longitud máxima del cable permitida para la velocidad de transferencia en cuestión. En una red se pueden utilizar como máximo 9 repetidores en serie, pero la longitud total de la red no puede exceder 9.600 metros.
- ☐ Agregar aparatos a una red: Cada segmento puede comprender como máximo 32 aparatos conectados hasta 50 m a 9.600 bit/s. Utilizando un repetidor es posible agregar un segmento adicional (32 aparatos) a la red.
- Aislar eléctricamente diferentes segmentos de la red: El aislamiento de la red mejora la calidad de la transmisión, separando los segmentos que puedan tener diferentes potenciales de puesta a tierra.

Un repetidor de la red cuenta como uno de los nodos de un segmento, aunque no tiene asignada una dirección de estación.

Figura 7-21 Ejemplo de una red con repetidores

Seleccionar el cable de red

Las redes S7-200 utilizan el estándar RS-485 con cables de par trenzado. En la tabla 7-6 figuran los datos técnicos del cable de red. Un segmento puede incorporar 32 aparatos como máximo.

Tabla 7-6	Datos te	écnicos	generales	de	un	cable	de	red

Datos técnicos	Descripción
Tipo de cable	Apantallado, con par trenzado
Resistencia de bucle	\leq 115 Ω /km
Capacidad efectiva	30 pF/m
Impedancia nominal	Aprox. 135 Ω a 160 Ω (frecuencia = 3 MHz a 20 MHz)
Atenuación	0,9 dB/100 m <i>(frecuencia = 200 kHz)</i>
Sección del alma del cable	0,3 mm ² a 0,5 mm ²
Diámetro del cable	8 mm ±0,5 mm

Asignación de pines

Los puertos de comunicación de las CPUs S7-200 son compatibles con el estándar RS-485 vía un conector D subminiatura de 9 pines, conforme al estándar PROFIBUS definido en la norma europea EN 50170. La tabla 7-7 muestra el conector que ofrece el enlace físico para el puerto de comunicación, indicándose también las asignaciones de pines de los puertos de comunicación.

 Tabla 7-7
 Asignación de pines del puerto de comunicación del S7-200

Polarizar y cerrar el cable de red

Siemens ofrece dos tipos de conectores de bus que permiten conectar fácilmente varios aparatos a una red, a saber: un conector de bus estándar (en la tabla 7-7 figura la asignación de pines) y un conector que incorpora un puerto de programación, permitiendo conectar un PC/una PG o un aparato HMI (interfaz hombre-máquina) a la red, sin perturbar ningún enlace existente. El conector con puerto de programación transmite todas las señales del S7-200 (incluyendo los pines de potencia) a través del puerto de programación, siendo especialmente apropiado para conectar aparatos alimentados por el S7-200 (por ejemplo, un TD 200).

Ambos conectores poseen dos juegos de tornillos para fijar los cables de entrada y salida. Asimismo, disponen de interruptores para polarizar y cerrar la red de forma selectiva. La figura 7-22 muestra cómo polarizar y cerrar el cable de red.

Blindaje del cable: aprox. 12 mm deben hacer contacto con la guía de metal en todos los puntos.

Figura 7-22 Polarizar y cerrar el cable de red

Seleccionar un cable multimaestro PPI o un CP para la red

Como muestra la tabla 7-8, STEP 7-Micro/WIN soporta los cables multimaestro RS-232/PPI y USB/PPI, así como varios procesadores de comunicaciones (CPs) que permiten que el PC o la PG actúe de maestro en la red.

A velocidades de transferencia de hasta 187,5 kbit/s, los cables multimaestro PPI ofrecen el enlace más sencillo y económico entre STEP 7-Micro/WIN y una CPU S7-200 o una red S7-200. Hay dos tipos de cables multimaestro PPI disponibles. Ambos se pueden utilizar para enlaces locales entre STEP 7-Micro/WIN y una red S7-200.

El cable multimaestro USB/PPI es un dispositivo "plug and play" utilizable con PCs que soporten la versión USB 1.1. Proporciona aislamiento eléctrico entre el PC y la red S7-200, soportando la comunicación PPI a velocidades de transferencia de hasta 187,5 kbit/s. No es necesario ajustar interruptores DIP. Basta con que conecte el cable, seleccione el cable PC/PPI como interfaz, active el protocolo PPI y ajuste el puerto USB en la ficha "Conexión PC". Sólo un cable multimaestro USB/PPI puede estar conectado al PC para utilizarlo con STEP 7-Micro/WIN.

El cable multimaestro RS-232/PPI dispone de 8 interruptores DIP. Dos de ellos se utilizan para configurar el cable para el funcionamiento con STEP 7-Micro/WIN.

- Si conecta el cable al PC, seleccione el modo PPI (interruptor 5 = 1) y el modo local (interruptor 6 = 0).
- ☐ Si conecta el cable a un módem, seleccione el modo PPI (interruptor 5 = 1) y el modo remoto (interruptor 6 = 1).

El cable proporciona aislamiento eléctrico entre el PC y la red S7-200. En la ficha "Conexión PC", elija el cable PC/PPI como interfaz y seleccione el puerto RS-232 que desea utilizar. En la ficha "PPI", seleccione la dirección de estación y la velocidad de transferencia de la red. No es necesario que seleccione nada más, puesto que el cable multimaestro RS-232/PPI selecciona automáticamente el protocolo.

Los cables multimaestro USB/PPI y RS-232/PPI tienen LEDs que indican las actividades de comunicación tanto del PC como de la red.

- El LED Tx indica que el cable está transmitiendo datos al PC.
- El LED Rx indica que el cable está recibiendo datos del PC.
- El LED PPI indica que el cable está transmitiendo datos a la red. Puesto que los cables multimaestro pueden tener el "token" en su poder, el LED PPI se enciende continuamente una vez que STEP 7-Micro/WIN haya inicializado la comunicación. El LED PPI se apaga cuando se finalice la conexión con STEP 7-Micro/WIN. El LED PPI parpadea a una frecuencia de 1 Hz cuando esté esperando ingresar a la red.

Los procesadores de comunicaciones (CPs) contienen componentes de hardware especiales para asistir al PC o a la PG en la gestión de la red multimaestro, soportando diferentes protocolos y diversas velocidades de transferencia.

Todos los procesadores de comunicaciones (CPs) incorporan un puerto RS-485 para la conexión a la red. El CP 5511 PCMCIA dispone de un adaptador que incorpora el conector D subminiatura de 9 pines. Uno de los extremos del cable se conecta al puerto RS-485 del CP y el otro, al conector del puerto de programación de la red.

Si se utiliza un CP para la comunicación PPI, STEP 7-Micro/WIN no soporta la ejecución simultánea de dos aplicaciones diferentes en un mismo CP. Es preciso cerrar la otra aplicación antes de conectar STEP 7-Micro/WIN a la red a través del CP. Si utiliza la comunicación MPI o PROFIBUS, varias aplicaciones de STEP 7-Micro/WIN pueden comunicarse simultáneamente a través de la red.

Cuidado

Si utiliza un convertidor de RS-485 a RS-232 no aislado, se podría deteriorar el puerto RS-232 del PC.

Los cables multimaestro RS-232/PPI y USB/PPI de Siemens (números de referencia: 6ES7 901-3CB30-0XA0 y 6ES7 901-3DB30-0XA0, respectivamente) proporcionan aislamiento eléctrico entre el puerto RS-485 de la CPU S7-200 y el puerto RS-232 o USB del PC. Si no se utiliza el cable multimaestro de Siemens, es preciso aislar el puerto RS-232 del PC.
Configuración	Velocidad de transferencia	Protocolo
Cable multimaestro RS-232/PPI o USB/PPI ¹ Conectado a un puerto de la PG	9,6 kbit/s a 187,5 kbit/s	PPI
CP 5511 Tipo II, tarjeta PCMCIA (para un portátil)	9,6 kbit/s a 12 Mbit/s	PPI, MPI y PROFIBUS
CP 5512 Tipo II, tarjeta PCMCIA (para un portátil)	9,6 kbit/s a 12 Mbit/s	PPI, MPI y PROFIBUS
CP 5611 (versión 3 o superior) Tarjeta PCI	9,6 kbit/s a 12 Mbit/s	PPI, MPI y PROFIBUS
CP 1613, S7-1613 Tarjeta PCI	10 o 100 Mbit/s	TCP/IP
CP 1612, SoftNet-S7 Tarjeta PCI	10 o 100 Mbit/s	TCP/IP
CP 1512, SoftNet-S7 Tarjeta PCMCIA (para un PC portátil)	10 o 100 Mbit/s	TCP/IP

Tabla 7-8	Procesadores de comunicaciones (CPs) y protocolos soportados por
	STEP 7-Micro/WIN

¹ Los cables multimaestro proporcionan aislamiento eléctrico entre el puerto RS-485 del S7-200 y el puerto del PC. Si se utiliza un convertidor de RS-485 a RS-232 no aislado, se podría deteriorar el puerto RS-232 del PC.

Utilizar aparatos HMI en la red

El S7-200 soporta numerosos tipos de aparatos HMI (interfaces hombre-máquina) de Siemens y de otros fabricantes. En algunos de ellos (por ejemplo, el TD 200 o el TP070) no es posible seleccionar el protocolo de comunicación a utilizar por el aparato, en tanto que otros sí lo permiten (por ejemplo, el OP7 y el TP170).

Si el aparato HMI permite seleccionar el protocolo de comunicación, tenga en cuenta las reglas siguientes:

- □ Si un aparato HMI está conectado al puerto de comunicación de la CPU S7-200 y la red no incorpora más aparatos, seleccione el protocolo PPI o MPI.
- Si un aparato HMI está conectado a un módulo EM 277 PROFIBUS, seleccione el protocolo MPI o PROFIBUS.
 - Si la red que incorpora el aparato HMI comprende sistemas de automatización S7-300 o S7-400, seleccione el protocolo MPI para el aparato HMI.
 - Si la red que incorpora el aparato HMI es una red PROFIBUS, seleccione el protocolo PROFIBUS para el aparato HMI y elija un perfil coherente con los demás maestros de la red PROFIBUS.
- Si un aparato HMI está conectado al puerto de comunicación de una CPU S7-200 configurada como estación maestra, seleccione el protocolo PPI para el aparato HMI. El modo PPI Avanzado es el protocolo óptimo. Los protocolos MPI y PROFIBUS no soportan la CPU S7-200 como estación maestra.

Crear protocolos personalizados en modo Freeport

El modo Freeport permite controlar el puerto de la CPU S7-200 desde el programa de usuario. Con el modo Freeport se pueden implementar protocolos de comunicación definidos por el usuario para comunicarse con numerosos dispositivos inteligentes. El modo Freeport soporta los protocolos ASCII y binario.

El modo Freeport se habilita utilizando las marcas especiales SMB30 (para el puerto 0) y SMB130 (para el puerto 1). El programa utiliza las siguientes operaciones e interrupciones para controlar el funcionamiento del puerto de comunicación:

- Operación Transmitir mensaje (XMT) e interrupción de transmisión: La operación Transmitir mensaje sirve para transmitir hasta 255 caracteres desde el puerto COM del S7-200. La interrupción de transmisión le indica al programa contenido en el S7-200 el fin de la transmisión.
- Interrupción de recepción de caracteres: Esta interrupción le indica al programa de usuario que se ha recibido un carácter en el puerto COM. El programa puede reaccionar a ese carácter, basándose en el protocolo a implementar.
- Operación Recibir mensaje (RCV): La operación Recibir mensaje obtiene el mensaje entero del puerto COM y genera luego una interrupción en el programa cuando el mensaje se ha recibido por completo. La memoria de marcas del S7-200 se utiliza para configurar la operación Recibir mensaje con objeto de iniciar y detener la recepción de mensaje, basándose en condiciones predefinidas. Esta operación le permite al programa iniciar o detener un mensaje, basándose en caracteres específicos o en intervalos de tiempo. La mayoría de los protocolos se pueden implementar con la operación Recibir mensaje.

El modo Freeport sólo está activado cuando el S7-200 se encuentra en modo RUN. Si el S7-200 cambia a modo STOP se detiene la comunicación Freeport y el puerto de comunicación vuelve al protocolo PPI con los ajustes configurados en el bloque de sistema del S7-200.

Configuración de la red		Descripción
Utilizar el modo Freeport vía un enlace RS-232	Balanza PC/PPI S7-200	 Ejemplo de cómo utilizar una CPU S7-200 con una balanza electrónica dotada con un puerto RS-232 El cable multimaestro RS-232/PPI conecta el puerto RS-232 de la balanza con el puerto RS-485 de la CPU S7-200. (Ajuste el cable a modo PPI/Freeport, interruptor 5 = 0). La CPU S7-200 utiliza el modo Freeport para comunicarse con la balanza. La velocidad de transferencia puede estar comprendida entre 1.200 bit/s y 115,2 kbit/s. El programa de usuario define el protocolo.
Utilizar el protocolo USS	MicroMaster	Ejemplo de cómo utilizar una CPU S7-200 con accionamientos SIMODRIVE MicroMaster • STEP 7-Micro/WIN incorpora una librería
	S7-200 MicroMaster	 USS. La CPU S7-200 es la estación maestra y los accionamientos son los esclavos.
		El CD de documentación contiene un programa de ejemplo USS. (v. ejemplo 28).

Tabla 7-9Utilizar el modo Freeport

Configuración de la	red	Descripción	
Crear un programa de usuario que	Red Modbus	Ejemplo de cómo conectar CPUs S7-200 a una red Modbus	
emula un esclavo en una red diferente		 El programa de usuario contenido en el S7-200 emula un esclavo Modbus. 	
	S7-200 S7-200 Modbus	 STEP 7-Micro/WIN incorpora una librería Modbus. 	
		El CD de documentación contiene un programa de ejemplo Modbus. (v. ejemplo 41).	

Tabla 7-9 Utilizar el modo Freeport, continued

Utilizar el cable multimaestro RS-232/PPI y el modo Freeport con dispositivos RS-232

El cable multimaestro RS-232/PPI y el modo Freeport se pueden utilizar para conectar las CPUs S7-200 a numerosos dispositivos compatibles con el estándar RS-232. Para que el cable pueda funcionar en modo Freeport, se deberá ajustar el modo PPI/Freeport (interruptor 5 = 0). El interruptor 6 selecciona bien sea el modo local (DCE) (interruptor 6 = 0), o bien el modo remoto (DTE) (interruptor 6 = 1).

El cable multimaestro RS-232/PPI está en modo de transmisión cuando los datos se envían del puerto RS-232 al puerto RS-485. En cambio, se encuentra en modo de recepción al estar inactivo, o bien cuando los datos se transmiten del puerto RS-485 al RS-232. El cable cambia inmediatamente de modo de recepción a transmisión cuando detecta caracteres en el canal de transmisión del RS-232.

El cable multimaestro RS-232/PPI soporta velocidades de transferencia comprendidas entre 1200 bit/s y 115,2 kbit/s. Utilice los interruptores DIP dispuestos en la carcasa del cable multimaestro RS-232/PPI para configurar el cable a la velocidad de transferencia correcta. La tabla 7-10 muestra las velocidades de transferencia y las posiciones de los interruptores DIP.

El cable cambia nuevamente a modo de recepción cuando el canal de transmisión del RS-232 está inactivo durante el tiempo de inversión del cable. Como muestra la tabla 7-10, la velocidad de transferencia seleccionada en el cable determina el tiempo de inversión.

Si el cable multimaestro RS-232/PPI se utiliza en un sistema que use también el modo Freeport, el programa del S7-200 deberá tener en cuenta el tiempo de inversión en las situaciones siguientes: Tabla 7-10 Tiempo de inversión y ajustes

Velocidad de transferencia	Tiempo de inversión	Ajustes (1= arriba)
115200	0,15 ms	110
57600	0,3 ms	111
38400	0,5 ms	000
19200	1,0 ms	001
9600	2,0 ms	010
4800	4,0 ms	011
2400	7,0 ms	100
1200	14,0 ms	101

El S7-200 responde a los mensajes que envía el aparato RS-232.

Tras recibir una petición del aparato RS-232, el S7-200 debe retardar la transmisión de un mensaje de respuesta por un período mayor o igual al tiempo de inversión del cable.

El aparato RS-232 responde a los mensajes que envía el S7-200.

Tras recibir una respuesta del aparato RS-232, el S7-200 debe retardar la transmisión de la siguiente petición por un período mayor o igual al tiempo de inversión del cable.

En ambos casos, el tiempo de retardo es suficiente para que el cable multimaestro RS-232/PPI pueda cambiar de modo de transmisión a modo de recepción, enviando entonces los datos del puerto RS-485 al RS-232.

Utilizar módems y STEP 7-Micro/WIN en la red

La versión 3.2 (o posterior) de STEP 7-Micro/WIN utiliza las opciones estándar de teléfono y módem de Windows para seleccionar y configurar los módems. El icono "Opciones de teléfono y módem" se encuentra en el Panel de control de Windows. Las opciones de configuración de módems de Windows permiten:

- Utilizar la mayoría de los módems internos y externos soportados por Windows.
- Utilizar las configuraciones estándar para la mayoría de los módems soportados por Windows.
- Utilizar las reglas de marcado telefónico estándar de Windows para seleccionar la ubicación, el país, el prefijo (código de área), el tipo de marcado (impulsos o tonos) y el soporte de tarjetas de llamada.
- Utilizar velocidades de transferencia más elevadas para la comunicación con el módulo Módem EM 241.

A partir del Panel de control de Windows, acceda al cuadro de diálogo "Propiedades del módem". Allí podrá configurar el módem local. Seleccione el módem deseado en la lista de módems soportados por Windows. Si el tipo de módem que desea utilizar no aparece en esa lista, seleccione el tipo más parecido a su módem o diríjase al fabricante del módem, con objeto de obtener los archivos de configuración para Windows.

Modems Properties	? ×			
General				
The following modems are set up or	n this computer:			
Modem	Attached T 🔺			
Standard 9600 bps Modem	СОМ1			
Standard 9600 bps Modem #2	СОМ2 —			
Standard 19200 bps Modem	COM1			
Yiroom Crodii/Card Modom 20.0 CM20				
Add <u>R</u> emove	Properties			
Dialing Preferences				
Dialing from: New Location				
Use Dialing Properties to modify how your calls are dialed.				
<u>Dialing Properties</u>				
Close	Cancel			

Figura 7-23 Configurar el módem local

STEP 7-Micro/WIN también permite utilizar módems radio y celulares. Estos tipos de módems no aparecen en el cuadro de diálogo "Propiedades del módem" de Windows, pero están a la disposición al configurar una conexión con STEP 7-Micro/WIN.

Configurar la conexión del módem

Una conexión asocia un nombre identificador con las propiedades físicas de la conexión. En el caso de los módems autónomos, estas propiedades incluyen el tipo de módem, la posibilidad de seleccionar un protocolo de 10 u 11 bits y los timeouts. Por lo que respecta a los módems celulares, es posible ajustar un número de identificación personal (PIN) y otros parámetros. En los módems radio se puede seleccionar la velocidad de transferencia, la paridad, el control de flujo y otros parámetros.

módems

Agregar una conexión

Como muestra la figura 7-24, el asistente para conectar módems sirve para agregar una conexión nueva, o bien para quitar o modificar una conexión existente.

- 1. En la ventana "Configurar la comunicación", haga doble clic en el icono superior.
- Haga doble clic en el icono del cable PC/PPI para abrir el cuadro de diálogo "Ajustar interface PG/PC". Seleccione el cable PPI y haga clic en el botón "Propiedades". En la ficha "Conexión local", active la casilla de verificación "Utilizar módem".
- 3. En el cuadro de diálogo "Comunicación", haga doble clic en el icono "Conectar módem".
- 4. Haga clic en el botón "Configurar" para visualizar el cuadro de diálogo "Configurar módem".
- 5. Haga clic en el botón "Agregar" con objeto de iniciar el asistente de módems.
- 6. Configure la conexión utilizando el asistente.

4.	Configurar módem	5. 6.
Conectar módem Seleccionar una conexión on una estación remota. Conectar con: NEW odem NI de teléfono: 127 segundos Conectar conexión: 127 segundos Conectar Configurar Cencelar	General Consestones Consestones Radio Radio Configurer. Actual NEW Modern Exténder: Configurer. Configurer. Actual NEW Modern Exténder: T35 Esténder	Agropar Asistenica para conectar módens Conexión local Introduca el norte de la conexión, se Jone un móden local y narque la Introduce au nombre para esta conexión Introduce au nombre para esta conexión Seleccione el móden local Móden vía rado/FF S Configura Si dese utilizar un móden 520 o TC35 de Welfore módi cone xiden local Si dese utilizar un móden 520 o TC35 de Welfore módi cone xiden local Introduce autilizar un móden 520 o TC35 de Welfore módi cone xiden local Interduce autilizar un móden 520 o TC35 de Welfore módi cone xiden local
Ninguna línea soporta llamadas de módems de datos.	My Location Propiedades de marcació	In_ isjuents Selectionie come módem bad y wargue la casilla que sparsee abply para acaderia al se octoreil I Utilizar exite windem local come módem de tel d'ano móvil. C Birch C Birch Next > Cancel

Figura 7-24 Agregar una conexión de módem

Conectar el S7-200 a un módem

Tras agregar una conexión de módem podrá establecer un enlace con una CPU S7-200.

- Abra el cuadro de diálogo "Configurar la comunicación" y haga doble clic en el icono "Conectar" para visualizar el cuadro de diálogo "Conectar módem".
- 2. Haga clic en "Conectar" para iniciar la marcación con el módem.

Figura 7-25 Conectar al S7-200

Configurar un módem remoto

El módem remoto es el que está conectado directamente al S7-200. Si el módem remoto es un módulo Módem EM 241, no es necesario configurarlo. Si desea establecer una conexión con un módem autónomo, o bien con un módem celular, deberá configurar la conexión.

Asistente de módems

> El asistente de módems sirve para configurar el módem remoto conectado a la CPU S7-200. Para poder comunicarse correctamente con el puerto RS-485 semidúplex de la CPU S7-200 es preciso configurar los módems. Seleccione el tipo de módem e introduzca las informaciones solicitadas por el asistente. Para más información, consulte la Ayuda en pantalla.

Figura 7-26 Asistente de módems

Configurar un cable multimaestro PPI para el funcionamiento con un módem remoto

Tras conectar la alimentación del cable multimaestro RS-232 PPI, éste permite enviar comandos AT de módem. Tenga en cuenta que esta configuración sólo se necesita si es preciso cambiar los ajustes estándar del módem (v. fig. 7-27).

Los comandos del módem se pueden definir en los comandos generales. El comando de autorrespuesta es entonces el único ajuste estándar.

Los comandos de autorización de teléfono móvil y los números de PIN se pueden indicar en el campo "Autorización de teléfono móvil", por ejemplo +CPIN=1234.

Cada cadena de comandos se envía por separado al módem. Todas las cadenas van precedidas del comando de módem AT.

Estos comandos se inicializan en el cable haciendo clic en el botón "Programa/Test".

Figura 7-27 Asistente de módems - Enviar comandos de módem

Tenga en cuenta que el bitmap representará los ajustes recomendados de los interruptores conforme a los parámetros seleccionados.

Al configurar el cable multimaestro RS-232/PPI con STEP 7-Micro/WIN, es preciso conectar el puerto RS-485 a una CPU S7-200. Ésta constituye la fuente de alimentación de 24V necesaria para el funcionamiento del cable. Verifique que se aplique tensión a la CPU S7-200.

Tras finalizar la configuración del cable multimaestro RS-232/PPI en STEP 7-Micro/WIN, desconecte el cable del PC y conéctelo al módem. Desconecte y vuelva a conectar la alimentación del módem y del cable. Ahora podrá utilizar el cable en modo remoto en una red multimaestro PPI.

Consejo

El módem deberá tener los ajustes estándar de fábrica para poder utilizarlo con un cable multimaestro PPI.

Configurar un cable multimaestro PPI para el funcionamiento en modo Freeport

El cable multimaestro RS-232 PPI permite enviar comandos AT de módem si está configurado para modo Freeport. Tenga en cuenta que esta configuración sólo se necesita si es preciso cambiar los ajustes estándar del módem.

No obstante, el cable también se deberá configurar de manera que los ajustes concuerden con la velocidad de transferencia del S7-200, la paridad y el número de bits de datos. Ello es necesario puesto que el programa de usuario del S7-200 controla la configuración de estos parámetros.

Se soportan velocidades de transferencia comprendidas entre 1,2 kbit/s y 115,2 kbit/s.

Es posible seleccionar siete u ocho bits de datos.

Es posible seleccionar la paridad par o impar, o bien ninguna paridad.

Figura 7-28 Asistente de módems - Enviar comandos de módem en modo Freeport

Tenga en cuenta que el bitmap representará los ajustes recomendados de los interruptores conforme a los parámetros seleccionados.

Al configurar el cable multimaestro RS-232/PPI con STEP 7-Micro/WIN, es preciso conectar el puerto RS-485 a una CPU S7-200. Ésta constituye la fuente de alimentación de 24V necesaria para el funcionamiento del cable. Verifique que se aplique tensión a la CPU S7-200.

Tras finalizar la configuración del cable multimaestro RS-232/PPI en STEP 7-Micro/WIN, desconecte el cable del PC y conéctelo al módem. Desconecte y vuelva a conectar la alimentación del módem y del cable. Ahora podrá utilizar el cable en modo remoto en una red multimaestro PPI.

Consejo

El módem deberá tener los ajustes estándar de fábrica para poder utilizarlo con un cable multimaestro PPI.

Utilizar un módem telefónico con el cable multimaestro RS-232/PPI

El cable multimaestro RS-232/PPI se puede utilizar para conectar el puerto RS-232 de un módem telefónico a una CPU S7-200 (v. fig. 7-29).

- □ Los interruptores 1, 2 y 3 sirven para ajustar la velocidad de transferencia.
- El interruptor 5 selecciona PPI, o bien el modo PPI/Freeport.
- El interruptor 6 selecciona bien sea el modo "Local" (equivalente a DCE), o bien el modo "Remoto" (equivalente a DTE).
- □ El interruptor 7 sirve para seleccionar el modo de 10 u 11 bits para el protocolo PPI.

Figura 7-29 Ajustes del cable multimaestro RS-232/PPI

El interruptor 5 sirve para seleccionar el modo PPI, o bien el modo PPI/Freeport. Si utiliza STEP 7-Micro/WIN para que el S7-200 se comunique vía módem, seleccione el modo PPI (interruptor 5 = 1). De lo contrario, ajuste el modo PPI/Freeport (interruptor 5=0).

El interruptor 7 del cable multimaestro RS-232/PPI selecciona el modo de 10 u 11 bits para el modo PPI/Freeport. Utilice el interruptor 7 sólo si el S7-200 está conectado a STEP 7-Micro/WIN vía un módem en modo PPI/Freeport. De lo contrario, ajuste el interruptor 7 al modo de 11 bits para garantizar el funcionamiento correcto con otros aparatos.

El interruptor 6 del cable multimaestro RS-232/PPI permite ajustar el puerto RS-232 del cable a modo "Local" (DCE) o "Remoto" (DTE).

- Si el cable multimaestro RS-232/PPI se utiliza con STEP 7-Micro/WIN, o bien si está conectado a un PC, ajuste el cable a modo "Local" (DCE).
- Si utiliza el cable multimaestro RS-232/PPI con un módem (éste es un dispositivo DCE), ajuste el cable a modo "Remoto" (DTE).

Figura 7-30 Asignación de pines de adaptadores

Así se evita la necesidad de utilizar un adaptador de módem nulo entre el cable multimaestro RS-232/PPI y el módem. Sin embargo, puede precisarse un adaptador de 9 a 25 pines (dependiendo del conector del módem).

La figura 7-30 muestra la asignación de pines de un adaptador de módem común.

Para más información sobre el cable multimaestro RS-232/PPI, consulte el anexo A. Los números de los pines y las funciones de los puertos RS-485 y RS-232 del cable multimaestro RS-232/PPI en modo "Local" (DCE) figuran en la tabla A-66. La tabla A-67 muestra los números de los pines y las funciones de los puertos RS-485 y RS-232 del cable multimaestro RS-232/PPI en modo "Remoto" (DTE). El cable multimaestro RS-232/PPI suministra RTS sólo en modo "Remoto" (DTE).

Utilizar un módem radio con el cable multimaestro RS-232/PPI

El cable multimaestro RS-232/PPI se puede utilizar para conectar el puerto RS-232 de un módem radio a una CPU S7-200. No obstante, el funcionamiento con módems radio difiere del funcionamiento con módems telefónicos.

Modo PPI

Si el cable multimaestro RS-232/PPI está ajustado para modo PPI (interruptor 5 = 1), normalmente se seleccionaría el modo remoto (interruptor 6 = 1) para el funcionamiento con un módem. No obstante, si se selecciona el modo remoto, el cable envía la cadena de caracteres 'AT' y espera a que el módem responda con un 'OK' cada vez que se conecta la alimentación. En tanto que los módems telefónicos utilizan esta secuencia para determinar la velocidad de transferencia, los módems radio no aceptan generalmente comandos AT.

Por tanto, si se utilizan módems radio es preciso seleccionar el modo local (interruptor 6 = 0) y conectar un adaptador de módem nulo entre el puerto RS-232 del cable y el puerto RS-232 del módem radio. Existen adaptadores de módem nulo bien sea de 9 a 9 pines, o bien de 9 a 25 pines.

Configure el módem radio para que funcione a una velocidad de transferencia de 9,6, 19,2, 38,4, 57,6 ó 115,2 kbit/s. El cable multimaestro RS-232/PPI se ajustará automáticamente a cualquiera de estas velocidades cuando el módem radio transfiera el primer carácter.

Modo PPI/Freeport

Si el cable multimaestro RS-232/PPI está ajustado para modo PPI/Freeport (interruptor 5 = 0), normalmente se seleccionaría el modo remoto (interruptor 6 = 1) para el funcionamiento con un módem radio. Configure el cable de manera que no envíe comandos AT para inicializar el módem.

Los interruptores 1, 2 y 3 del cable multimaestro RS-232/PPI sirven para ajustar la velocidad de transferencia (v. figura 7-29). Seleccione una velocidad de transferencia correspondiente a la CPU y al módem radio.

Temas avanzados

Optimizar el rendimiento de la red

Los factores siguientes afectan el rendimiento de la red (la velocidad de transferencia y el número de maestros tienen el mayor impacto a este respecto):

- Velocidad de transferencia: El rendimiento óptimo de la red se logra utilizando la velocidad de transferencia máxima soportada por todos los aparatos.
- Número de maestros en la red: Si el número de maestros se reduce a un mínimo, aumenta también el rendimiento de la red. Cada maestro prolonga el tiempo de procesamiento de la red. Por tanto, el tiempo se acortará cuanto menor sea el número de maestros.
- Direcciones de los maestros y esclavos: Las direcciones de los maestros se deberán elegir de forma secuencial, evitando huecos entre las mismas. Si hay un hueco (GAP) entre las direcciones de los maestros, éstos comprueban continuamente las direcciones del GAP para averiguar si hay otro maestro que desee ingresar a la red. Esta comprobación aumenta el tiempo de procesamiento de la red. Si no existe un hueco entre las direcciones de los maestros, la comprobación no se efectúa, por lo que se minimiza el tiempo de procesamiento. Las direcciones de los esclavos se pueden ajustar a cualquier valor sin que ello influya en el rendimiento de la red, a menos que los esclavos se encuentren entre los maestros. En este último caso aumentaría también el tiempo de procesamiento de la red, como si existieran huecos entre las direcciones de los maestros.
- Factor de actualización GAP: El factor de actualización GAP, utilizado sólo si una CPU S7-200 actúa de maestro PPI, le indica al S7-200 con qué frecuencia debe comprobar el hueco de direcciones para averiguar si hay otros maestros que deban ingresar a la red. El factor de actualización GAP se ajusta en STEP 7-Micro/WIN cuando se configura el correspondiente puerto de la CPU. Ello permite configurar el S7-200 de manera que compruebe periódicamente si hay huecos entre las direcciones. Si se elige "1" como factor de actualización GAP, el S7-200 comprobará el hueco de direcciones cada vez que tenga el "token" en su poder. Si se elige "2", el S7-200 comprobará el hueco cada 2 veces que tenga el "token" en su poder. Si hay huecos entre las direcciones de los maestros, un factor de actualización GAP más elevado reducirá el tiempo de procesamiento en la red. Si no existen huecos, el factor de actualización GAP no tendrá efecto alguno en el rendimiento. Si se ajusta un factor de actualización GAP elevado pueden producirse grandes demoras cuando se deban incorporar nuevos maestros a la red, ya que las direcciones se comprueban con menor frecuencia. El ajuste estándar del factor de actualización GAP es "10".
- Dirección de estación más alta (HSA): La HSA, utilizada sólo si una CPU S7-200 actúa de maestro PPI, es la dirección más alta donde un maestro debe buscar a otro. Esta dirección se ajusta en STEP 7-Micro/WIN cuando se configura el correspondiente puerto de la CPU. Al ajustar la HSA se limita el hueco de direcciones que el último maestro (la dirección más alta) debe comprobar en la red. Limitando el tamaño del hueco de direcciones se reduce el tiempo necesario para buscar e incorporar en la red a un nuevo maestro. La dirección de estación más alta no tiene efecto en las direcciones de los esclavos: los maestros pueden comunicarse con esclavos cuyas direcciones sean superiores a la dirección de estación más alta. Por regla general, se ajusta en todos los maestros un mismo valor para la dirección de estación más alta. Esta dirección debería ser mayor o igual a la dirección más alta de los maestros. El valor estándar de la dirección de estación más alta es "31".

Calcular el tiempo de rotación del "token" en una red

En una red con "token passing" (paso de testigo), la estación que tiene el "token" (testigo) en su poder es la única que puede iniciar la comunicación. El tiempo de rotación del "token" (es decir, el tiempo que el "token" necesita para circular por todos los maestros que conforman el anillo lógico) refleja el rendimiento de la red.

La figura 7-31 muestra una red de ejemplo para calcular el tiempo de rotación del "token" en una configuración multimaestro. En el presente ejemplo, un TD 200 (estación 3) se comunica con una CPU 222 (estación 2), otro TD 200 (estación 5) se comunica con la otra CPU 222 (estación 4), etc. Las dos CPUs 224 utilizan las operaciones Leer de la red y Escribir en la red para recoger datos de los demás PLCs S7-200. Además, una CPU 224 (estación 6) envía mensajes a las estaciones 2, 4 y 8, y la otra CPU 224 (estación 8) envía mensajes a las estaciones 2, 4 y 6. Esta red comprende seis estaciones maestras (los cuatro TDs 200 y las dos CPUs 224), así como dos estaciones esclavas (las dos CPUs 222).

En los ejemplos de programación contenidos en el CD de documentación se incluye una descripción de la rotación del "token". Consulte el ejemplo 42.

Figura 7-31 Ejemplo de una red con "token passing"

Para que un maestro pueda enviar un mensaje deberá tener el "token" en su poder. Por ejemplo, cuando la estación 3 tiene el "token" en su poder, envía una petición a la estación 2 y pasa el "token" a la estación 5. La estación 5 envía una petición a la estación 4 y pasa el "token" a la estación 6. La estación 6 envía un mensaje a las estaciones 2, 4 u 8 y pasa el "token" a la estación 7. Este proceso de enviar un mensaje y pasar el "token" continúa por el anillo lógico de la estación 3 a la estación 5, a la estación 6, a la estación 7, a la estación 8, a la estación 9 y de allí retorna finalmente a la estación 3. El "token" debe recorrer todo el anillo lógico para que un maestro pueda enviar una petición para leer o escribir un valor de doble palabra (cuatro bytes de datos) cada vez que tienen el "token" en su poder, el tiempo de rotación del mismo será de unos 900 milisegundos a una velocidad de transferencia de 9.600 bit/s. Si aumenta el número de bytes de datos a los que se debe acceder por mensaje o si se incorporan más estaciones, se prolongará el tiempo de rotación del "token".

Ello depende del tiempo que cada estación tiene el "token" en su poder. El tiempo de rotación del "token" en redes multimaestro se puede determinar sumando los tiempos de posesión del "token" de cada maestro. Si se ha habilitado el modo maestro PPI (en el protocolo PPI de la red en cuestión), será posible enviar mensajes a otros equipos S7-200 utilizando las operaciones Leer de la red (NETR) y Escribir en la red (NETW) con el S7-200. Si se envían mensajes utilizando las operaciones NETR y NETW, la fórmula siguiente permite calcular el tiempo aproximado de rotación del testigo, suponiendo que cada estación envíe una petición cuando tenga el "token" en su poder; que la petición sea una operación de lectura o de escritura a direcciones consecutivas; que no haya conflictos de acceso al único búfer de comunicación del S7-200; y que ningún S7-200 tenga un tiempo de ciclo superior a aprox. 10 ms.

Tiempo de posesión del "token" (T _{pos}) = (tiempo necesario 128 + <i>n</i> caráct. datos) x 11 bits/caráct. x 1/vel. transf.				
Tiempo de rotación	del "token" (T_{rot}) = T_{pos} del maestro 1 + T_{pos} del maestro 2 + + T_{pos} del maestro m			
donde	<i>n</i> el número de caracteres de datos (bytes) <i>m</i> el número de maestros			

Las siguientes ecuaciones sirven para calcular los tiempos de rotación (un "bit time" equivale a la duración de un período de señal) para el ejemplo que muestra la figura 7-31:

T (tiempo de posesión del "token")	$= (128 + 4 \text{ caracteres}) \times 11 \text{ bits/carácter} \times 1/9,600 \text{ "bit times"/s}$
	= 151,25 ms por maestro
T (tiempo de rotación del "token")	= 151,25 ms/maestro ≤ ×6 maestros
	= 907,5 ms

Consejo

El software SIMATIC NET COM PROFIBUS incorpora un analizador para determinar el rendimiento de la red.

Comparar los tiempos de rotación del "token"

En la tabla 7-11 se compara el tiempo de rotación del "token" con el número de estaciones, la cantidad de datos y la velocidad de transferencia. Estos tiempos son válidos utilizando las operaciones Leer de la red y Escribir en la red con el S7-200 u otros maestros.

Velocidad de	Bytes	Nº de maestros								
transferencia	transferidos	2	3	4	5	6	7	8	9	10
0.6 kbit/c	1	0,30	0,44	0,59	0,74	0,89	1,03	1,18	1,33	1,48
9,0 KDI/S	16	0,33	0,50	0,66	0,83	0,99	1,16	1,32	1,49	1,65
40.0 hhit/a	1	0,15	0,22	0,30	0,37	0,44	0,52	0,59	0,67	0,74
19,2 KDI05	16	0,17	0.25	0,33	0,41	0,50	0,58	0,66	0,74	0,83
187,5 kbit/s	1	0,009	0,013	0,017	0,022	0,026	0,030	0,035	0,039	0,043
	16	0,011	0,016	0,021	0,026	0,031	0,037	0,042	0,047	0,052

Tabla 7-11 Tiempo de rotación del "token" (en segundos)

Enlaces entre los aparatos de la red

Los aparatos de la red se comunican vía conexiones individuales, es decir, enlaces privados entre el maestro y los esclavos. Como muestra la figura 7-32, los protocolos de comunicación se diferencian en la manera de tratar las conexiones:

- El protocolo PPI utiliza un enlace compartido por todos los aparatos de la red.
- Los protocolos PPI Avanzado, MPI y PROFIBUS utilizan enlaces por separado entre dos aparatos cualquiera que se comuniquen entre sí.

Si se utilizan los protocolos PPI Avanzado, MPI o PROFIBUS, un segundo maestro no podrá interferir en un enlace que se haya establecido entre un maestro y un esclavo. Las CPUs S7-200 y los módulos EM 277 reservan siempre un enlace para STEP 7-Micro/WIN y otro para los aparatos HMI (interfaces hombre-máquina). Los demás maestros no pueden utilizar estos enlaces reservados. Gracias a ello, siempre es posible conectar al menos un PC o una PG y como mínimo un aparato HMI a la CPU S7-200 o al módulo EM 277, si el maestro utiliza un protocolo que soporte enlaces (por ejemplo, el protocolo PPI Avanzado).

Figura 7-32 Gestionar los enlaces de comunicación

Como muestra la tabla 7-12, la CPU S7-200 y el módulo EM 277 soportan un determinado número de enlaces. Cada puerto (tanto el puerto 0 como el puerto 1) de una CPU S7-200 asisten hasta cuatro enlaces por separado. (Por tanto, con una CPU S7-200 se pueden establecer ocho enlaces como máximo.) A ello se le suma el enlace PPI compartido. El módulo EM 277 soporta seis enlaces.

Tabla 7-12 Prestaciones de comunicación de la CPU S7-20	00 y del módulo EM 277
---	------------------------

Punto de conexión	Velocidad de transferencia	Enlaces	Protocolos de STEP 7-Micro/WIN
CPU S7-200 Puerto 0	9,6 kbit/s, 19,2 kbit/s ó 187,5 kbit/s	4	PPI, PPI Avanzado, MPI y PROFIBUS ¹
Puerto 1	9,6 kbit/s, 19,2 kbit/s ó 187,5 kbit/s	4	PPI, PPI Avanzado, MPI y PROFIBUS ¹
Módulo EM 277	9,6 kbit/s a 12 Mbit/s	6 por módulo	PPI Avanzado, MPI y PROFIBUS

Si utiliza un procesador de comunicaciones para conectar STEP 7-Micro/WIN a la CPU S7-200 vía el puerto 0 ó 1, podrá seleccionar los protocolos MPI o DP PROFIBUS sólo si el S7-200 actúa de esclavo.

Trabajar con redes complejas

En el caso del S7-200, las redes complejas incorporan por lo general varios maestros S7-200 que utilizan las operaciones Leer de la red (NETR) y Escribir en la red (NETW) para comunicarse con otros aparatos en una red PPI. En redes complejas pueden surgir conflictos que impiden a un maestro comunicarse con un esclavo.

Si la comunicación se ejecuta a una velocidad de transferencia baja (por ejemplo, 9,6 kbit/s ó 19,2 kbit/s), cada maestro completa la transacción (de lectura o escritura) antes de pasar el "token" (o testigo). En cambio, a 187,5 kbit/s, el maestro envía una petición a un esclavo y pasa luego el "token", dejando así una petición pendiente en el esclavo.

La figura 7-33 muestra una red con posibles conflictos de comunicación. En esta red, las estaciones 1, 2 y 3 son maestros que utilizan las operaciones Leer de la red o Escribir en la red para comunicarse con la estación 4. Las operaciones Leer de la red y Escribir en la red utilizan el protocolo PPI, de manera que todos los PLCs S7-200 comparten un mismo enlace con la estación 4.

En el presente ejemplo, la estación 1 envía una petición a la estación 4. Si la velocidad de transferencia es superior a 19,2 kbit/s, la estación 1 pasa el "token" a la estación 2. Si la estación 2 intenta enviar una petición a la estación 4, esta petición se rechazará, puesto que la petición de la estación 1 está pendiente todavía. Todas las demás peticiones dirigidas a la estación 4 se rechazarán hasta que la estación 4 responda a la estación 1. Sólo tras haber respondido la estación 4, otro maestro podrá enviar una nueva petición a esa estación.

Para evitar este conflicto en el puerto de comunicación de la estación 4, considere declarar la estación 4 el único maestro en la red, como muestra la figura 7-34. En este caso, la estación 4 envía las peticiones de lectura/escritura a los demás PLCs S7-200.

Esta configuración no sólo evita conflictos de comunicación, sino que acorta también el tiempo de procesamiento (debido a los múltiples maestros), aumentando así la eficiencia de la red.

Figura 7-33 Conflicto de comunicación

Figura 7-34 Evitar el conflicto

Sin embargo, en algunas aplicaciones no es aconsejable reducir el número de maestros en la red. Si la red comprende varios maestros, es preciso gestionar el tiempo de rotación del "token" (testigo), con objeto de garantizar que la red no exceda el tiempo nominal de rotación del mismo. (El tiempo de rotación del "token" es el período que transcurre desde que un maestro pasa el "token" hasta que ese mismo maestro lo recibe de nuevo.)

Tabla 7-13 Dirección de estación más alta (HSA) y tiempo nominal de rotación del "token"

HSA	9,6 kbit/s	19,2 kbit/s	187,5 kbit/s
HSA=15	0,613 s	0,307 s	31 ms
HSA=31	1,040 s	0,520 s	53 ms
HSA=63	1,890 s	0,950 s	97 ms
HSA=126	3,570 s	1,790 s	183 ms

Si el tiempo transcurrido hasta que el maestro reciba el "token" de nuevo excede el tiempo nominal de rotación del "token", ese maestro no podrá enviar peticiones. El maestro sólo podrá enviar una petición si el tiempo real de rotación del "token" es inferior al tiempo nominal.

La dirección de estación más alta (HSA) y la velocidad de transferencia ajustada para el S7-200 determinan el tiempo nominal de rotación del "token". En la tabla 7-13 figuran los tiempos de rotación nominales.

A una velocidad de transferencia baja (por ejemplo, a 9,6 ó 19,2 kbit/s), el maestro espera la respuesta a su petición antes de pasar el "token". Puesto que el procesamiento del ciclo de petición/respuesta puede tardar bastante en relación con el tiempo de ciclo, es muy probable que cada maestro de la red tenga una petición lista para transmitir cada vez que tenga el "token" en su poder. En este caso, el tiempo real de rotación del "token" se incrementaría, por lo que algunos maestros no podrían procesar ninguna petición. En algunas situaciones es posible que un maestro no pueda procesar peticiones casi nunca.

Ejemplo: Supongamos que una red comprende 10 maestros que transmiten un byte a una velocidad de transferencia de 9,6 kbit/s y que la dirección de estación más alta es "15". En el presente ejemplo, todos los maestros tienen siempre un mensaje listo para enviar. Como muestra la tabla 7-13, el tiempo de rotación del "token" en esta red es de 0,613 segundos. No obstante, conforme a los datos de rendimiento que figuran en la tabla 7-11, el tiempo real de rotación del "token" necesario para esta red es de 1,48 segundos. Puesto que el tiempo real de rotación del "token" excede el tiempo nominal, algunos de los maestros no podrán transmitir un mensaje hasta una posterior rotación del "token".

Si el tiempo real de rotación del "token" excede el tiempo nominal, este problema se puede solucionar optando por una de las alternativas siguientes:

- El tiempo real de rotación del "token" se puede decrementar reduciendo el número de maestros incorporados en la red. Dependiendo de la aplicación, es posible que esta solución no sea practicable.
- El tiempo nominal de rotación del "token" se puede incrementar aumentando la dirección de estación más alta de todos los maestros incorporados en la red.

Sin embargo, si se incrementa la dirección de estación más alta podría surgir otro problema en la red, puesto que ello afecta el tiempo necesario para que un S7-200 conmute a modo maestro y se incorpore en la red. Si se utiliza un temporizador para asegurar que las operaciones Leer de la red o Escribir en la red se ejecuten en un tiempo determinado, el retardo debido a la inicialización del modo maestro y a la incorporación del S7-200 como maestro en la red puede provocar que se exceda el tiempo de vigilancia de la operación. El retardo a causa de la incorporación de maestros se puede minimizar reduciendo el factor de actualización GAP de todos los maestros incorporados en la red.

Debido a la manera cómo las peticiones se envían a 187,5 kbit/s y se depositan en el esclavo, es recomendable prever un tiempo adicional al seleccionar el tiempo nominal de rotación del "token". A una velocidad de transferencia de 187,5 kbit/s, el tiempo real de rotación del "token" debería equivaler aproximadamente a la mitad del tiempo nominal.

Para determinar el tiempo de rotación del "token", utilice los datos de rendimiento que figuran en la tabla 7-11 con objeto de averiguar el tiempo necesario para ejecutar las operaciones Leer de la red y Escribir en la red. Si desea calcular el tiempo necesario para los aparatos HMI (por ejemplo, el TD 200), utilice los datos de rendimiento para transferir 16 bytes. Calcule el tiempo de rotación del "token" sumando el tiempo que necesita cada uno de los aparatos que conforman la red. Sumando los tiempos de todos los aparatos resulta el peor de los casos, es decir, si todos los aparatos desean procesar una petición durante una misma rotación del "token". Así se obtiene el tiempo máximo de rotación del "token" requerido en la red.

Ejemplo: Supongamos que la velocidad de transferencia de la red es de 9,6 kbit/s y que la red comprende 4 TDs 200s y 4 PLCs S7-200. Cada uno de los PLCs S7-200 escribe 10 bytes de datos en otro S7-200 cada segundo. Utilice la tabla 7-11 para calcular los tiempos de transferencia específicos de la red:

4 TDs 200 transfieren 16 bytes de datos =	0,66 s
4 PLCs S7-200 transfieren 10 bytes de datos =	<u>0,63 s</u>
Tiempo total de rotación del "token" =	1,29 s

Con objeto de prever suficiente tiempo en la red para que todas las peticiones se puedan procesar durante una rotación del "token", ajuste a "63" la dirección de estación más alta (v. tabla 7-13). Seleccionando un tiempo nominal de rotación del "token" (1,89 s) superior al tiempo máximo de rotación del "token" (1,29 s) se garantiza que todos los aparatos puedan transferir datos en cada rotación del "token".

Para garantizar el funcionamiento seguro de una red multimaestro, considere también lo siguiente:

- Modifique la frecuencia de actualización de los aparatos HMI, con objeto de prever más tiempo entre las actualizaciones. Por ejemplo, cambie la frecuencia de actualización de un TD 200 de "Cuanto antes" a "Cada segundo".
- Reduzca el número de peticiones (y el tiempo para procesarlas), combinando las operaciones Leer de la red y Escribir en la red. Por ejemplo, en vez de utilizar dos operaciones de Leer en la red (NETR) que lean 4 bytes cada una, utilice una operación NETR que lea 8 bytes. El tiempo necesario para procesar dos peticiones de 4 bytes es mucho más largo que el tiempo para procesar una petición de 8 bytes.
- □ Cambie la frecuencia de actualización de los maestros S7-200 de manera que no intenten actualizarse más deprisa que el tiempo de rotación del "token".

Configurar el cable multimaestro RS-232/PPI para el funcionamiento remoto

HyperTerminal como herramienta de configuración

Si STEP 7-Micro/WIN no está disponible para configurar el cable multimaestro RS-232/PPI para el funcionamiento remoto, puede utilizar HyperTerminal u otro terminal no inteligente. El cable multimaestro RS-232/PPI incorpora menús interactivos que permiten configurarlo para el funcionamiento remoto.

Al configurar el cable multimaestro RS-232/PPI con HyperTerminal, es preciso conectar el puerto RS-485 a una CPU S7-200. Ésta constituye la fuente de alimentación de 24V necesaria para el funcionamiento del cable. Verifique que se aplique tensión a la CPU S7-200.

Para Ilamar a HyperTerminal en el PC, haga clic en Inicio > Programas > Accesorios > Comunicación > HyperTerminal.

La aplicación HyperTerminal arrancará, solicitándole que introduzca una descripción de la conexión. Introduzca un nombre para la conexión (p. ej. "Multimaestro"). Haga clic en "Aceptar". Puede seleccionar un icono, o bien aceptar el icono estándar ofrecido para la nueva conexión (v. fig. 7-35).

Connection Description 2 ×
Enter a name and choose an icon for the connection: Name:
Multi-Master
OK Cancel

Figura 7-35 Descripción de la conexión de HyperTerminal

Se visualizará la pantalla "Conectar". Seleccione el puerto de comunicación que desea utilizar y haga clic en "Aceptar". A continuación aparecerá la pantalla "Propiedades de COMx". Acepte el ajuste estándar y haga clic en "Aceptar" (v. fig. 7-36).

Connect To ?×	COM1 Properties
Rulti-Master	Port Settings
~	Bits per second: 2400
Enter details for the phone number that you want to diat	Data bits: 8
Country/region: United States of America (1)	Parity: None
Area code: 423	Stop biz:
Phone number:	
Connect using: DDM1	
	Restore Defaults
OK Cancel	DK Cancel App()

Figura 7-36 Pantallas "Conectar" y "Propiedades de COMx" de HyperTerminal

Tras hacer clic en "Aceptar", el cursor se situará en la ventana de edición de HyperTerminal que muestra la figura 7-37. Tenga en cuenta que la barra de estado (en el borde inferior de la ventana de HyperTerminal) indica que está conectado. Además, un temporizador indica la duración de la conexión.

Elija el comando de menú **Llamar > Desconectar**. En la barra de estado se indicará que está desconectado.

Elija el comando de menú **Ver > Fuente**. Seleccione "Courier New" y haga clic en "Aceptar".

Figura 7-37 Ventana de edición de HyperTerminal

Elija el comando de menú **Archivo > Propiedades**. En la ficha "Conectar con", haga clic en el botón **Configurar ...** para visualizar las propiedades del puerto de comunicación (v. fig. 7-38).

En el cuadro de diálogo "Propiedades de COMx", seleccione la velocidad de transferencia (en bit/s) en la lista desplegable. Elija una velocidad de transferencia comprendida entre 9600 y 115200 bits por segundo (típicamente: 9600).

En las listas desplegables correspondientes, seleccione 8 bits de datos, sin paridad, un bit de parada y sin control de flujo.

Haga clic en "Aceptar" para regresar a la ficha "Conectar con".

Active la ficha "Configuración". En la lista desplegable "Emulación", seleccione ANSI y haga clic en "Aceptar". A continuación se visualizará de nuevo la ventana de edición de HyperTerminal. En la barra de estado debería indicarse lo siguiente:

"Desconectado ANSI 9600 8-N-1" como muestra la figura 7-39.

Para iniciar la comunicación con el cable multimaestro RS-232/PPI, introduzca "hhh". El LED Rx debería parpadear durante aproximadamente un segundo mientras teclea "hhh". El LED TX se encenderá brevemente cuando el cable responda con una selección de idiomas.

Introduzca el número correspondiente al idioma deseado (utilice la tecla de retroceso para eliminar la selección estándar) y pulse la tecla INTRO. La figura 7-40 muestra la pantalla de selección de idioma y de configuración del cable RS-232/PPI para el modo remoto.

Asimismo, se visualiza la versión de firmware del cable.

Multi-Master Properties	COM1 Properties
Connect To Settings	Port Settings
Multi-Master Change Icon	
Constructions United Clarks of America (1)	Bits per second 200
Enter the area code without the long-distance prefix.	Data bits: 8
Area code: 423	Pailty: None
Phone number: Connect using: COM1	Stop bits: 1
Configure	Flow control Hardware
Use country/region code and area code Control on lower	
 Treadminute 	Restore Defaults
OK Cancel	OK Cancel Apply

Figura 7-38 Propiedades de la conexión multimaestro y propiedades de COMx

Multi Master -	yperTerminal				
Dick of the	In Iterater Help				
1				-	
Disconnected	44451 240	BN-1 SCROU	CAPS NUM	Capture Pirst ech	

Figura 7-39 Ventana de edición de HyperTerminal -Desconectar ANSI

Figura 7-40 Selección de idioma en HyperTerminal y configuración del cable RS-232/PPI

La pantalla de configuración del cable RS-232/PPI para el modo remoto conduce por los pasos necesarios para configurar el cable.

- Si está utilizando una versión anterior de STEP 7-Micro/WIN, seleccione la opción 2 "Red monomaestro PPI con un módem".
- Si desea utilizar la comunicación Freeport con un módem, seleccione la opción 3.

Seleccione la opción 1 si se trata de una red multimaestro PPI con un módem que utilice STEP 7-Micro/WIN 3.2 Service Pack 4 (o posterior).

La pantalla de HyperTerminal ilustrada en la figura 7-41 muestra los interruptores DIP que se deben ajustar en el cable.

Los ajustes de los interruptores DIP permiten que STEP 7-Micro/WIN participe vía módem en una red remota que comprenda uno o varios maestros y una o varias CPUs S7-200 similar a la ilustrada en la figura 7-41.

Tras ajustar los interruptores DIP de la manera indicada, seleccione "Continuar". El resultado de HyperTerminal se muestra en la figura 7-42.

El módem remoto (es decir, el que está conectado al cable multimaestro RS-232/PPI) debería tener los ajustes de fábrica. Con el módem ajustado de esa manera, introduzca los comandos AT necesarios para programar el módem para el funcionamiento con el cable multimaestro RS-232/PPI.

Por lo general, el único comando que se debe enviar es ATS0=1. Éste configura el módem de manera que responda automáticamente las llamadas la primera vez que timbre.

4	Multi-Master - Hyper	Terminal					_ 🗆 🗙
Fi	le Edit View Call Tr	ansfer Help					
С	12 93 01	9 🖻					
	Select Operation:	1					_
	PPI multi-master :	network wit	n a modem				
	AT Command 1: ATS AT Command 2:	0=1					
	l. Modify AT comm 2. Exit	ands					
	Select Operation:	1	_				
4							▶
Co	nnected 1:22:20	ANSI	9600 8-N-1	SCROLL	CAPS	NUM	Capture /

Figura 7-42 HyperTerminal - Módem remoto

Si desea utilizar un módem celular que exija un PIN, utilice el segundo comando AT para indicar el PIN (para más información sobre los comandos AT que soporta el módem, consulte el manual de éste último). Si necesita modificar los comandos AT, efectúe la selección correspondiente e introduzca los comandos exigidos. Los cuadros de introducción contienen ejemplos de cadenas AT útiles para formatear los comandos.

Cada vez que se conecte la alimentación del cable multimaestro RS-232 PPI, éste enviará esas cadenas AT al módem. Conecte la alimentación del módem antes de conectar la alimentación del cable. Si conecta la alimentación del módem es preciso que conecte también la alimentación del cable. Gracias a ello, el cable podrá configurar el módem correctamente y funcionar a la velocidad de transferencia máxima posible.

Las pantallas de HyperTerminal ilustradas en la figura 7-43 muestran cómo introducir los comandos AT. Si no es necesario que introduzca un segundo comando AT, pulse la tecla INTRO. Así se retorna a la selección para modificar comandos AT, o bien para salir de HyperTerminal. Cuando termine de introducir los comandos AT, seleccione "Salir".

Tras finalizar la configuración del cable multimaestro RS-232/PPI en HyperTerminal, desconecte el cable del PC y conéctelo al módem. Desconecte y vuelva a conectar la alimentación del módem y del cable. Ahora podrá utilizar el cable en modo remoto en una red multimaestro PPI.

Figura 7-43 HyperTerminal - Comandos AT

Modo Freeport en HyperTerminal

La configuración del cable multimaestro RS-232/PPI para modo Freeport utilizando HyperTerminal es muy similar a la configuración de ejemplo descrita arriba. Siga los pasos necesarios para configurar el cable conforme a sus exigencias.

8

Eliminar errores de hardware y comprobar el software

STEP 7-Micro/WIN incorpora diversas funciones que ayudan a comprobar y observar el programa. Es posible observar el estado del programa a medida que éste se ejecuta en el S7-200, seleccionar que el programa del S7-200 se ejecute uno o varios ciclos, así como forzar valores.

La tabla 8-1 sirve de guía para determinar las causas posibles y los remedios de los errores en relación con el hardware del S7-200.

Índice del capítulo

Funciones para comprobar el programa	260
Visualizar el estado del programa	262
Utilizar una tabla de estado para observar y modificar los datos en el S7-200	263
Forzar valores específicos	264
Ejecutar el programa un número determinado de ciclos	264
Eliminar errores de hardware	265

Funciones para comprobar el programa

STEP 7-Micro/WIN incorpora diversas funciones que ayudan a comprobar el programa, tales como marcadores, tablas de referencias cruzadas y edición de programas en modo RUN.

Utilizar marcadores para acceder fácilmente al programa

Para desplazarse fácilmente (hacia arriba y hacia abajo) por un programa extenso es posible disponer marcadores. Ello permite saltar directamente al marcador anterior o siguiente en el programa.

Utilizar la tabla de referencias cruzadas para comprobar las referencias del programa

ł	•
Refe	rencia
CTU	20hor

Como lo indica su nombre, la tabla de referencias cruzadas sirve para visualizar las referencias cruzadas y los elementos utilizados en el programa.

La tabla de referencias cruzadas identifica a todos los operandos usados en el programa, indicando el bloque de programa, el número de segmento o de línea y el contexto de la operación del operando cada vez que éste se utiliza.

Para cambiar la representación de todos los operandos se puede conmutar entre la visualización simbólica y la absoluta, y viceversa.

Ca C	ross Reference			_ 🗆 >	K
۰¢	1	• • • • • 2		3 • • • • • •	
	Element	Block	Location	Context 🖃	•
1	10.0	MAIN (OB1)	Network 1	-11-	1
2	SMW32	MAIN (OB1)	Network 1	MOV_W	1
3	SMB31	MAIN (OB1)	Network 1	MOV_B	
4	SM31.7	MAIN (OB1)	Network 1	-1/1-	1
5	SM31.7	MAIN (OB1)	Network 1	-(S)	-
	Cross Reference	Byte Usage 🔳		ા	

Consejo

Haga doble clic en un elemento de la tabla de referencias cruzadas para acceder a esa parte del programa o al bloque en cuestión.

Editar el programa en modo RUN

Las CPUs S7-200 de la versión 2.0 (o superior) soportan la edición en modo RUN. Esta función permite efectuar cambios pequeños en el programa de usuario sin afectar demasiado a los equipos controlados. No obstante, también es posible realizar modificaciones considerables que podrían ser perjudiciales o incluso peligrosas.

Precaución

Si los cambios se cargan en una CPU S7-200 que se encuentre en modo RUN, afectarán directamente al proceso. Si el programa se modifica estando la CPU en modo RUN, es posible que se produzcan reacciones inesperadas en los equipos, lo que podría ocasionar la muerte o lesiones graves personales y/o daños materiales.

Sólo el personal cualificado que tenga pleno conocimiento de los efectos de esta función debería editar programas en modo RUN.

Para poder editar un programa en modo RUN, la CPU S7-200 conectada deberá soportar la edición en modo RUN y encontrarse en modo RUN.

- 1. Elija el comando de menú Test > Editar programa en RUN.
- Si el proyecto es diferente al programa contenido en el S7-200, se le pregunta si desea guardarlo. En modo RUN sólo se puede editar el programa del S7-200.
- STEP 7-Micro/WIN le advierte que el programa se editará en modo RUN y le pregunta si desea continuar, o bien cancelar la operación. Si hace clic en "Continuar", STEP 7-Micro/WIN cargará en el PC el programa del S7-200. A continuación podrá editar el programa en modo RUN. El programa se podrá editar sin limitación alguna.

Consejo

Las operaciones Detectar flanco positivo (EU) y Detectar flanco negativo (ED) se muestran con un operando. Para visualizar información sobre estas operaciones, haga clic en el icono "Referencias cruzadas" de la barra de navegación. En la ficha "Flancos usados" se indican los números de los flancos utilizados en el programa. Tenga cuidado de no asignar números de flancos repetidos cuando edite el programa.

Cargar el programa en modo RUN

La función de edición en modo RUN permite cargar sólo el bloque del programa en el S7-200 mientras éste se encuentra en modo RUN. Antes de cargar el bloque de programa en modo RUN, considere los efectos que puede tener la modificación de un programa en modo RUN en el funcionamiento del S7-200 en las situaciones siguientes:

- Si ha borrado la lógica de control de una salida, se conservará el último estado de la salida hasta la próxima vez que el S7-200 se desconecte y se conecte de nuevo, o bien, hasta que cambie a modo STOP.
- Si ha borrado una operación con contadores rápidos o con salida de impulsos que se estaba ejecutando, la operación se seguirá ejecutando hasta la próxima vez que el S7-200 se desconecte y se conecte de nuevo, o bien, hasta que cambie a modo STOP.
- Si ha borrado una operación Asociar interrupción, sin borrar también la rutina de interrupción correspondiente, el S7-200 continuará ejecutando la rutina de interrupción hasta la próxima vez que se desconecte y se conecte de nuevo, o bien, hasta que cambie a modo STOP. De forma similar, si ha borrado una operación Desasociar interrupción, la rutina de interrupción correspondiente no se culminará hasta que el S7-200 se desconecte y se conecte de nuevo, o bien, hasta que el S7-200 se desconecte y se conecte de nuevo, o bien, hasta que cambie a modo STOP.
- Si ha agregado una operación Asociar interrupción, deseando que se ejecute en el primer ciclo, el evento correspondiente no se activará hasta que el S7-200 se desconecte y se conecte de nuevo, o bien, hasta el próximo cambio de STOP a RUN.
- Si ha borrado una operación Habilitar todos los eventos de interrupción, las correspondientes rutinas de interrupción se continuarán ejecutando hasta que el S7-200 se desconecte y se conecte de nuevo, o bien, hasta que cambie de RUN a STOP.
- Si ha modificado la dirección de tabla de un cuadro de recepción y éste se encuentra activo cuando el S7-200 conmuta del programa antiguo al programa modificado, el S7-200 continuará escribiendo los datos en la antigua dirección de tabla. Ello mismo es aplicable también a las operaciones Leer de la red y Escribir en la red.
- Cualquier operación que dependa del estado de la marca del primer ciclo no se ejecutará hasta que el S7-200 se desconecte y se conecte de nuevo, o bien, hasta que cambie de STOP a RUN. La marca del primer ciclo sólo se activa al cambiar el S7-200 a modo RUN y no se ve afectada por la edición del programa en modo RUN.

Consejo

Para poder cargar el programa en modo RUN, el S7-200 deberá soportar la edición en modo RUN, el programa se deberá haber compilado correctamente y la comunicación entre STEP 7-Micro/WIN y el S7-200 deberá funcionar sin errores.

Sólo es posible cargar el bloque de programa en el S7-200.

Para cargar el programa en modo RUN en el S7-200, haga clic en el botón "Cargar" en la barra de herramientas o elija el comando de menú **Archivo > Cargar**. Si el programa se ha compilado correctamente, STEP 7-Micro/WIN cargará el bloque de programa en el S7-200.

Salir de la edición en modo RUN

Para salir de la edición en modo RUN, elija el comando de menú **Test > Editar programa en RUN** y haga clic en la marca de verificación para desactivarla. Si ha efectuado cambios que no se hayan guardado todavía, STEP 7-Micro/WIN le pregunta si desea continuar editando, o cargar los cambios en el S7-200 y salir de la edición en modo RUN, o bien si prefiere salir sin cargar en el S7-200.

Visualizar el estado del programa

STEP 7-Micro/WIN permite observar el estado del programa de usuario mientras éste se ejecuta. Cuando se está observando el estado del programa, el editor de programas visualiza el estado de los valores de los operandos.

Para visualizar el estado, haga clic en el botón "Estado del programa" en la barra de herramientas o elija el comando de menú **Test > Estado del programa**.

Visualizar el estado del programa en KOP y FUP

STEP 7-Micro/WIN ofrece dos opciones para visualizar el estado de los programas KOP y FUP.

Estado al final del ciclo: STEP 7-Micro/WIN recoge los valores para visualizar el estado durante varios ciclos, actualizando luego la ventana de estado. El estado visualizado no refleja el estado real de ejecución de todos los elementos. El estado al final del ciclo no muestra el estado de la memoria L ni de los acumuladores.

Los valores de estado al final del ciclo se actualizan en todos los modos de operación de la CPU.

Estado durante la ejecución del programa: STEP 7-Micro/WIN visualiza los valores de los segmentos a medida que los elementos se ejecutan en el S7-200. Para visualizar el estado durante la ejecución del programa, elija el comando de menú Test > Estado de ejecución.

Los valores de estado durante la ejecución del programa se actualizan sólo si la CPU está en modo RUN.

Consejo

STEP 7-Micro/WIN incorpora un método sencillo para cambiar el estado de las variables. Seleccione la variable en cuestión y haga clic con el botón derecho del ratón para visualizar un menú contextual.

Configurar la visualización del estado en programas KOP y FUP

STEP 7-Micro/WIN ofrece diversas opciones para visualizar el estado del programa.

Para configurar la visualización del estado, elija el comando de menú Herramientas > Opciones, seleccione "Editor de programas" y haga clic en la ficha "Editor de programas", como muestra la figura 8-2.

Figura 8-2 Opciones para visualizar el estado

Visualizar el estado del programa en AWL

La ejecución del estado del programa AWL se puede observar de operación en operación. En un programa AWL, STEP 7-Micro/WIN muestra el estado de las operaciones que se visualizan en la pantalla.

STEP 7-Micro/WIN recoge las informaciones de estado del S7-200 comenzando en la primera operación AWL, en el lado superior de la ventana del editor. A medida que se navega hacia abajo por la ventana del editor, se obtienen nuevas informaciones del S7-200.

STEP 7-Micro/WIN actualiza continuamente los valores en la pantalla. Para detener la actualización de la pantalla, haga clic en el botón "Detener actualización". Los datos actuales permanecerán en la pantalla hasta que el botón se desactive nuevamente.

Configurar los parámetros a visualizar en el programa AWL

En STEP 7-Micro/WIN se puede visualizar el estado de diversos parámetros de las operaciones AWL. Elija el comando de menú **Herramientas** > **Opciones**, seleccione "Editor de programas" y haga clic en la ficha "Estado AWL". (v. fig. 8-3).

Opciones General General General General General General General General General Tablo de sinductos Tablo de sinductos General Tablo de sinductos General Gen	Editor de programa: Eritedo XWL Observer valores D'Eritedo de perendos D'Pita lógica D'Pita lógica Nº de cerendos D'ad Nº de cerendos D'ad Pita lógica Nº de bito de pita d'ad	Bit de antado de las operaciones	
---	--	----------------------------------	--

Utilizar una tabla de estado para observar y modificar los datos en el S7-200

La tabla de estado sirve para leer, escribir, forzar y observar las variables mientras el programa se ejecuta en el S7-200. Elija el comando de menú **Ver > Componente > Tabla de estado** para crear una tabla de estado. La figura 8-4 muestra un ejemplo de una tabla de estado.

Es posible crear varias tablas de estado.

La barra de herramientas de STEP 7-Micro/WIN incorpora diversos botones que permiten manipular la tabla de estado, a saber: Orden ascendente, Orden descendente, Lectura sencilla, Escribir todo, Forzar, Desforzar, Desforzar todo y Leer todo.

Para seleccionar el formato de una celda, seleccione la celda en cuestión y pulse el botón derecho del ratón con objeto de acceder al correspondiente menú contextual.

Opciones Tabla de estado Permite configurar la tabla de est	ado, cambiando la fuente, e	el color y otras opi	ciones de visual	ización.	
Tocknes	Tabla de estado Vista preliminar Dirección A0.1 A0.2 A0.3 A0.3 A0.4	Formato Con signo Con signo Con signo Con signo	Valor actual +1 +0 +1 +0	Nuevo valor +0 +1 +0 +1 +1	Cuedricula Direccionamiento simbólico Moster sólo símbolos
	Fuence Rectangoria Rectangoria Fich and		4 ¥ Texto de ejemplo		
 Haga clic para obtener a 	yuda y soporte			[Aceptar Cancelar Resetear todo

Figura 8-4 Tabla de estado

Forzar valores específicos

El S7-200 permite forzar algunas o todas las entradas y salidas (bits I y Q). Además, es posible forzar hasta 16 valores de la memoria (V o M), o bien los valores de las entradas y salidas analógicas (AI o AQ). Los valores de la memoria V o de las marcas se pueden forzar en formato de bytes, palabras o palabras dobles. Los valores analógicos se fuerzan únicamente como palabras, en bytes de número par (por ejemplo, AIW6 ó AQW14). Todos los valores forzados se almacenan en la memoria permanente del S7-200.

Puesto que los valores forzados se pueden modificar durante el ciclo (mediante el programa, al actualizarse las entradas y salidas o al procesarse las comunicaciones), el S7-200 los vuelve a forzar en diversos puntos del ciclo.

- Leer las entradas: El S7-200 aplica los valores forzados a las entradas a medida que se van leyendo.
- Ejecutar la lógica de control en el programa:
 El S7-200 aplica los valores forzados a todas las E/S directas. Los valores forzados se pueden aplicar como máximo a 16 valores de memoria una vez ejecutado el programa.
- Procesar las peticiones de comunicación: El S7-200 aplica los valores forzados a todas los procesos de lectura/escritura durante la comunicación.
- Escribir las salidas: El S7-200 aplica los valores forzados a las salidas a medida que se van escribiendo.

La tabla de estado se puede utilizar para forzar valores. Para forzar un nuevo valor, introduzca el valor en la columna "Nuevo valor" de la tabla de estado y haga clic en el botón "Forzar" en la barra de herramientas. Para forzar un valor existente, destaque el valor en la columna "Valor actual" y pulse luego el botón "Forzar".

Figura 8-5 Ciclo del S7-200

Consejo

La función Forzar se impone a las operaciones de lectura y de escritura directas. Asimismo, tiene prioridad sobre la tabla de salidas configurada para la transición a modo STOP. Si el S7-200 cambia a modo STOP, la salida en cuestión reflejará el valor forzado y no el valor configurado en la tabla de salidas.

Ejecutar el programa un número determinado de ciclos

Para poder comprobar el programa, STEP 7-Micro/WIN permite ejecutar el programa durante un número determinado de ciclos.

Se puede ajustar que el S7-200 ejecute sólo el primer ciclo, con objeto de observar los datos en el S7-200 tras el primer ciclo. Elija el comando de menú **Test > Primer ciclo** para ejecutar el primer ciclo del programa.

También es posible indicar que el S7-200 ejecute el programa durante un número limitado de ciclos (entre 1 y 65.535 ciclos). Ello permite observar el programa a medida que cambian las variables. Elija el comando de menú **Test > Varios ciclos** para indicar el número de ciclos a ejecutar.

Eliminar errores de hardware

Síntoma	Causas posibles	Solución posible
Las salidas han dejado de funcionar.	 El equipo controlado ha causado una sobretensión que ha averiado la salida. Error en el programa de usuario. Cableado suelto o incorrecto. Carga excesiva. Salida forzada. 	 Al conectar la CPU a una carga inductiva (por ejemplo, un motor o un relé) es preciso utilizar un circuito de supresión adecuado (consulte el capítulo 3). Corrija el programa de usuario. Compruebe y corrija el cableado. Compruebe la carga en las E/S. Compruebe si hay E/S forzadas en el S7-200.
El diodo "SF" (System Fault) del S7-200 se enciende. (Rojo)	La lista siguiente describe los errores más frecuentes y sus causas: • Error en el programa de usuario. - 0003 Error de tiempo de vigilancia (watchdog). - 0011 Direccionamiento indirecto - 0012 Valor en coma flotante no válido - 0014 Error de rango • Ruido eléctrico (0001 a 0009) • Componente averiado (0001 a 0010)	 Para más información sobre el tipo de error, lea el código del error fatal y consulte el anexo C: En caso de un error de programación, consulte la descripción de las operaciones FOR, NEXT, JMP, LBL, así como de las operaciones de comparación. En caso de un ruido eléctrico: Consulte las reglas de cableado en el capítulo 3. Es muy importante que el armario eléctrico esté conectado correctamente a tierra y que el cableado de alta y baja tensión no se conduzcan en paralelo. Conecte a tierra el terminal M de la alimentación de sensores de 24 V c.c.
No se enciende ninguno de los LEDs.	 Fusible fundido Hilos de 24 V invertidos. Tensión incorrecta. 	Conecte un dispositivo para medir la magnitud y la duración de las puntas de sobretensión. Conforme a esas informaciones, incorpore un dispositivo apropiado de supresión de sobretensiones. Para más información acerca de la instalación del cableado de campo, consulte el capítulo 3.
Funcionamiento intermitente en relación con aparatos de alta energía.	 Puesta a tierra incorrecta. Conducción del cableado en el armario eléctrico. Tiempo de retardo demasiado corto para los filtros de entrada. 	Consulte las reglas de cableado en el capítulo 3. Es muy importante que el armario eléctrico esté conectado correctamente a tierra y que el cableado de alta y baja tensión no se conduzcan en paralelo. Conecte a tierra el terminal M de la alimentación de sensores de 24 V c.c. Incremente en el bloque de datos el retardo del filtro de entrada.
Red de comunicación averiada al conectar un aparato externo. (Están averiados el puerto del PC, el puerto del S7-200 o el cable PC/PPI).	El cable de comunicación puede convertirse en una ruta de corrientes indeseadas si los equipos que no tengan separación galvánica (tales como las CPUs, los PCs u otros aparatos conectados al cable) no comparten un mismo hilo de referencia en el circuito. Las corrientes indeseadas pueden causar errores de comunicación o averiar los circuitos.	 Consulte las reglas de cableado en el capítulo 3, así como la descripción de la comunicación en redes en el capítulo 7. Sustituya el cable PC/PPI. Utilice un repetidor de RS-485 a RS-485 con separación galvánica al conectar equipos que no tengan una referencia eléctrica común. Para más información acerca de los números de referencia de los equipos S7-200, consulte el anexo E.
Otros problemas de comuni- cación (STEP 7-Micro/WIN)	Para más información acerca de la com	unicación en redes, consulte el capítulo 7.
Tratamiento de errores	Para más información acerca de los códigos de error, consulte el anexo C.	

Tabla 8-1	Eliminar errores	do hardwaro v	comprobar	al coftwara
10010 0-1	Eliminal enoies	ue naruware y	comprobal	ersonware

Controlar el movimiento en lazo abierto con el S7-200

El S7-200 incorpora tres métodos para controlar el movimiento en lazo abierto, a saber:

- Modulación por ancho de impulsos (PWM) integrada en el S7-200 para controlar la velocidad, la posición y el ciclo de trabajo
- Tren de impulsos (PTO) integrado en el S7-200 para controlar la velocidad y la posición
- Módulo de posicionamiento EM 253 módulo adicional para controlar la velocidad y la posición

Para simplificar el uso del control de posición en la aplicación, STEP 7-Micro/WIN ofrece un asistente de control de posición que permite configurar por completo las operaciones PWM y PTO, así como el módulo de posicionamiento en pocos minutos. El asistente genera operaciones de posicionamiento que pueden utilizarse para controlar dinámicamente la velocidad y la posición en la aplicación. Con respecto al módulo de posicionamiento, STEP 7-Micro/WIN incorpora asimismo un panel de control que permite controlar, vigilar y comprobar las operaciones de movimiento.

Índice del capítulo

Resumen breve	268
Utilizar la salida PWM (Modulación por ancho de impulsos)	269
Nociones básicas del control de posición en lazo abierto usando motores paso a paso o servomotores	271
Operaciones creadas con el asistente de control de posición	276
Códigos de error de las operaciones PTO	280
Funciones del módulo de posicionamiento	281
Configurar el módulo de posicionamiento	283
Operaciones creadas con el asistente de control de posición para	
el modulo de posicionamiento	289
Programas de ejemplo para el módulo de posicionamiento	301
Observar el módulo de posicionamiento con el panel de control EM 253	306
Códigos de error del módulo de posicionamiento y de las operaciones	308
Temas avanzados	310
Modos de búsqueda del RP soportados por el módulo de posicionamiento	320

Resumen breve

El S7-200 incorpora tres métodos para controlar el movimiento en lazo abierto, a saber:

- Modulación por ancho de impulsos (PWM) integrada en el S7-200 para controlar la velocidad, la posición y el ciclo de trabajo
- Tren de impulsos (PTO) integrado en el S7-200 para controlar la velocidad y la posición
- Módulo de posicionamiento EM 253 módulo adicional para controlar la velocidad y la posición

El S7-200 provee dos salidas digitales (Q0.0 y Q0.1) que pueden configurarse utilizando el asistente de control de posición para utilizarlas como salidas PWM o PTO. El asistente de control de posición también sirve para configurar el módulo de posicionamiento EM 253.

Al configurarse una salida para la función PWM, se fija el tiempo de ciclo de la misma y el programa de usuario controla el ancho de impulsos o el ciclo de trabajo del impulso. Las variaciones del ancho de impulsos pueden utilizarse para controlar la velocidad o la posición en la aplicación.

Al configurarse una salida para la función PTO, se genera un tren de impulsos con un ciclo de trabajo de 50% para el control en lazo abierto de la velocidad y la posición de motores paso a paso o de servomotores. La función PTO integrada sólo provee el tren de impulsos. El programa de aplicación debe controlar el sentido y los límites utilizando las E/S integradas en la CPU, o bien los módulos de ampliación.

El módulo de posicionamiento EM 253 provee un solo tren de impulsos con control de sentido integrado y la posibilidad de desactivar y borrar las salidas. Asimismo, incorpora entradas que permiten configurar el módulo para diversos modos de operación, incluyendo la búsqueda automática del punto de referencia. El módulo provee una solución unificada para el control en lazo abierto de la velocidad y la posición, tanto para motores paso a paso como para servomotores.

Para simplificar el uso del control de posición en la aplicación, STEP 7-Micro/WIN ofrece un asistente de control de posición que permite configurar por completo las operaciones PWM y PTO, así como el módulo de posicionamiento en pocos minutos. El asistente genera operaciones de posicionamiento que pueden utilizarse para controlar dinámicamente la velocidad y la posición en la aplicación. Con respecto al módulo de posicionamiento, STEP 7-Micro/WIN incorpora asimismo un panel de control que permite controlar, vigilar y comprobar las operaciones de movimiento.

Utilizar la salida PWM (Modulación por ancho de impulsos)

La función PWM ofrece un tiempo de ciclo fijo con un ciclo de trabajo variable. La salida PWM se ejecuta continuamente tras haberse iniciado a la frecuencia indicada (tiempo de ciclo). El ancho de impulsos varía según sea necesario para obtener el control deseado. El ciclo de trabajo se puede expresar como porcentaje del tiempo de ciclo, o bien como valor de tiempo correspondiente al ancho de impulsos. El ancho de impulsos puede estar comprendido entre 0% (sin impulsos, siempre desactivado) y 100% (sin impulsos, siempre activado) (v. fig. 9-1).

Puesto que la salida PWM puede estar comprendida entre 0% y 100%, provee una salida digital que - en numerosos aspectos - es similar a una salida analógica. Por ejemplo, la salida PWM puede utilizarse para controlar la velocidad de un motor (desde "paro" hasta "a toda velocidad"), o bien para controlar la posición de una válvula (desde "cerrada" hasta "totalmente abierta").

Configurar la salida PWM

Utilice el asistente de control de posición de STEP 7-Micro/WIN con objeto de configurar una de las salidas integradas para la función PWM. Para iniciar el asistente de control de posición, haga clic en el icono "Herramientas" de la barra de navegación y, a continuación, haga doble clic en el icono "Asistente de control de posición", o bien elija el comando de menú **Herramientas >** Asistente de control de posición (v. fig. 9-2)

- 1. Seleccione la opción para configurar la función PTO/PWM de la CPU S7-200.
- 2. Elija la salida Q0.0 o Q0.1 que desea configurar como salida PWM.
- A continuación, seleccione "Modulación por ancho de impulsos (PWM)" en la lista desplegable, elija la base de tiempo (microsegundos o milisegundos) e indique el tiempo de ciclo.

Configurar la salida PWM

4. Por último, haga clic en "Finalizar". Figura 9-2

El asistente generará una operación que permitirá controlar el ciclo de trabajo de la salida PWM.

PWMx_RUN

La operación PWMx_RUN permite controlar el ciclo de trabajo de la salida, variando el ancho de impulsos desde 0 hasta el ancho de impulsos del tiempo de ciclo.

La entrada "Cycle" es un valor de palabra que define el tiempo de ciclo de la salida PWM. Su rango puede estar comprendido entre 2 y 65535 unidades de la base de tiempo (microsegundos o milisegundos) indicada en el asistente.

La entrada "Duty_Cycle" es un valor de palabra que define el ancho de impulsos de la salida PWM. Su rango puede estar comprendido entre 0,0 y 65535 unidades de la base de tiempo (microsegundos o milisegundos) indicada en el asistente.

La salida "Error" es un valor de byte devuelto por la operación PWMx_RUN que indica el resultado de la ejecución. Los códigos de error se describen en la tabla 9-2.

SIMATIC / IEC1131

SIMATIC	
STL	PWM×_RUN, Cycle,
CALL	Pulse, Error

Tabla 9-1	Parámetros de la operación PWMx_RUN
-----------	-------------------------------------

Entradas/salidas	Tipos de datos	Operandos
Cycle, Duty_Cycle	Word	IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *AC, *LD, constante
Error	Byte	IB, QB, VB, MBV, SMB, LB, AC, *VD, *AC, *LD, constante

Tabla 9-2 Códigos de error de la operación PWMx_RUN

Código de error	Descripción
0	Operación finalizada sin error.
1	Paro inmediato emitido durante el movimiento. Comando STOP finalizado correctamente.

Nociones básicas del control de posición en lazo abierto usando motores paso a paso o servomotores

La función PTO integrada en la CPU S7-200 y en el módulo de posicionamiento EM 253 utiliza un tren de impulsos para controlar tanto la velocidad como la posición de un motor paso a paso o de un servomotor.

Para utilizar la función PTO o el módulo para el control de posición en lazo abierto es preciso tener amplios conocimientos en relación con el control de movimiento. Este capítulo no pretende capacitar en esta materia a los usuarios principiantes. No obstante, se proporcionan informaciones básicas que le ayudarán a utilizar el asistente de control de posición de STEP 7-Micro/WIN con objeto de configurar la función PTO o un módulo para la aplicación.

Velocidades máxima y de arranque/paro

El asistente le solicita que indique las velocidades máxima (MAX_SPEED) y de arranque/paro (SS_SPEED) de la aplicación (v. fig. 9-3).

- MAX_SPEED: Introduzca el valor de la velocidad óptima de funcionamiento conforme al par motor de la aplicación. El par motor necesario para accionar la carga depende de la fricción, la inercia y los tiempos de aceleración y desaceleración.
- El asistente de control de posición calcula y visualiza la velocidad mínima que puede controlar el módulo de posicionamiento para la MAX_SPEED indicada.
- Para la salida PTO es preciso especificar la velocidad de arranque/paro deseada. Puesto que por lo menos un ciclo se genera a la velocidad de arranque/paro cada vez que se ejecuta un movimiento, utilice una velocidad de arranque/paro cuyo período sea inferior al tiempo de aceleración/desaceleración.
- SS_SPEED: Introduzca un valor que corresponda a la capacidad del motor para accionar la carga a velocidades reducidas. Si el valor de SS_SPEED es demasiado bajo, el motor y la carga podrían vibrar o desplazarse en salto cortos al comienzo y al final del recorrido. Si el valor de SS_SPEED es demasiado alto, el motor podría perder impulsos durante el arranque y la carga podría sobrecargar el motor cuando se intente parar.

En las hojas de datos técnicos de los motores hay diferentes posibilidades de indicar la velocidad de arranque/paro del motor y la carga. Por lo general, el valor de SS_SPEED debería equivaler a 5% hasta 15% del valor de MAX_SPEED. Con objeto de seleccionar las velocidades correctas para la aplicación, consulte la hoja de datos técnicos del motor utilizado. La figura 9-4 muestra una curva típica de par motor/velocidad.

Figura 9-4 Curva típica de par motor/velocidad

Introducir los tiempos de aceleración y desaceleración

Los tiempos de aceleración y desaceleración se ajustan como parte de la configuración. El ajuste estándar de ambos tiempos es 1 segundo. Por lo general, los motores necesitan menos de 1 segundo para acelerar o desacelerar (v. fig. 9-5). Los tiempos siguientes se indican en milisegundos:

Ţ

Consejo

Los tiempos de aceleración y desaceleración del motor se determinan de forma experimental (por tanteo). Para comenzar, es recomendable que introduzca un valor grande. Optimice estos ajustes reduciendo gradualmente los tiempos hasta que el motor comience a parar.

Configurar los perfiles de movimiento

Un perfil es una descripción de un movimiento predefinido compuesta por una o más velocidades que ocasionan un cambio de posición desde un punto inicial hasta un punto final. Para utilizar la función PTO o el módulo no es necesario definir ningún perfil. El asistente de control de posición incorpora operaciones que permiten controlar los movimientos sin necesidad de ejecutar un perfil.

Un perfil se programa en pasos que comprenden una aceleración/desaceleración a una velocidad objetivo, seguida de un número fijo de impulsos a la velocidad objetivo. Si se trata de movimientos de un solo paso, o bien del último paso de un movimiento, hay también una desaceleración desde la (última) velocidad objetivo hasta el paro.

El número máximo de perfiles soportados por la función PTO y el módulo es 100 y 25, respectivamente.

Definir los perfiles de movimiento

El asistente de control de posición le avuda a definir los perfiles de movimiento de la aplicación. Para cada uno ellos es preciso seleccionar un modo de operación y definir las propiedades de todos los pasos del perfil. El asistente también permite definir nombres simbólicos para los perfiles.

Seleccionar el modo de operación de los perfiles

El perfil se configura conforme con el modo de operación deseado. La función PTO soporta la posición relativa y el giro continuo a velocidad única. El módulo de posicionamiento soporta la posición absoluta, la posición relativa, el giro continuo a velocidad única y el giro continuo a dos velocidades. La figura 9-6 muestra los diferentes modos de operación.

Figura 9-6

Modos de operación del módulo de posicionamiento

Crear los pasos del perfil

Un paso es una distancia fija que recorre una herramienta, incluyendo el trayecto recorrido durante los tiempos de aceleración y desaceleración. En la función PTO se permiten 29 pasos como máximo en cada perfil. El módulo soporta 4 pasos como máximo en cada perfil.

Es preciso indicar la velocidad objetivo y la posición final o el número de impulsos de cada paso. Los pasos adicionales se deben introducir uno por uno. La figura 9-7 muestra perfiles de 1, 2, 3 y 4 pasos.

Observe que un perfil de 1 paso tiene un segmento de velocidad constante, uno de 2 pasos tiene dos segmentos de velocidad constante, etc. El número de pasos del perfil concuerda con el número de segmentos de velocidad constante del mismo.

Figura 9-7 Perfiles de movimiento (ejemplos)

Utilizar la salida PTO

PTO ofrece una salida en cuadratura (con un ciclo de trabajo de 50%) para un número determinado de impulsos. La frecuencia (es decir, el tiempo de ciclo) de cada impulso cambia linealmente con la frecuencia durante la aceleración y desaceleración, permaneciendo fija durante las fases de frecuencia constante de un movimiento. Una vez generado el número de impulsos indicado, la salida PTO se desactivará y no se generarán más impulsos hasta que se cargue una nueva definición (v. fig. 9-8).

Figura 9-8 Tren de impulsos (PTO)
Configurar la salida PTO

Utilice el asistente de control de posición de STEP 7-Micro/WIN con objeto de configurar una de las salidas integradas para la función PTO. Para iniciar el asistente de control de posición, haga clic en el icono "Herramientas" de la barra de navegación y, a continuación, haga doble clic en el icono "Asistente de control de posición", o bien elija el comando de menú Herramientas > Asistente de control de posición.

- 1. Seleccione la opción para configurar la función PTO/PWM de la CPU S7-200.
- 2. Elija la salida Q0.0 o Q0.1 que desea configurar como salida PTO.
- 3. En la lista desplegable, seleccione "Tren de impulsos lineal (PTO)".
- 4. Si desea contar el número de impulsos que ha generado la función PTO, active la casilla de verificación "Utilizar el contador rápido".
- Introduzca la velocidad máxima (MAX_SPEED) y la velocidad de arranque/paro (SS_SPEED) en los respectivos cuadros de entrada.
- 6. Introduzca los tiempos de aceleración y desaceleración en los respectivos cuadros de entrada.
- 7. En la pantalla de definición del perfil de movimiento, haga clic en el botón "Nuevo perfil" para definir el perfil. Seleccione el modo de operación deseado.

Tratándose de un perfil de posición relativa:

Introduzca la velocidad objetivo y el número de impulsos. A continuación, puede hacer clic en el botón "Plotear paso" para visualizar una representación gráfica del paso.

Si se requiere más de un paso, haga clic en el botón "Nuevo paso" e introduzca las informaciones necesarias para el mismo.

Tratándose de un giro continuo a velocidad única:

Introduzca el valor de la velocidad única en el cuadro de entrada.

Si desea finalizar el movimiento de giro continuo a velocidad única, active la casilla de verificación "Programar una subrutina" e introduzca el número de impulsos para desplazarse después del evento STOP.

- 8. Defina el número de perfiles y pasos necesarios para realizar el movimiento deseado.
- 9. Por último, haga clic en "Finalizar".

Operaciones creadas con el asistente de control de posición

El asistente de control de posición facilita el control de la función PTO integrada, creando cinco subrutinas especiales. Todas las operaciones de posicionamiento van precedidas de "PTOx_" representando la "x" la ubicación del módulo.

PTOx_CTRL

La subrutina PTOX_CTRL (Control) sirve para habilitar e inicializar la función PTO a fin de utilizarla con un motor paso a paso o un servomotor. Utilice esta subrutina sólo una vez en el programa de usuario y vigile que sea ejecutada en cada ciclo. Use siempre la marca especial SM0.0 (Siempre ON) para la entrada EN.

La entrada "I_STOP" (Paro inmediato) es una entrada booleana. La operación PTO funciona normalmente al estar desactivada esta entrada. Si se activa esta entrada, la operación PTO finalizará inmediatamente la emisión de impulsos al activarse esta entrada.

La entrada "D_STOP" (Paro desacelerado) es una entrada booleana. La operación PTO funciona normalmente al estar desactivada esta entrada. Si se activa esta entrada, la operación PTO generará un tren de impulsos que desacelerará el motor hasta parar.

La salida "Done" es una salida booleana. Si se activa esta salida, ello indica que la CPU ha ejecutado la subrutina.

SIMATIC / IEC1131			
LAD	FBD		
PTO×_CTRL - EN	PTO×_CTRL - EN		
- UStop	– I_Stop		
_ D,Stop	_D_Stop		
Done – Error – C_Pos –	Done Error C_Pos		

SIMATIC		
STL CALL	PT Ox_CTRL, I_Stop, D_Stop Done, Error, C_Pos	

Al estar activada la salida "Done", el byte "Error" indica si la operación se ha finalizado con o sin errores. Los códigos de error se describen en la tabla 9-7.

El parámetro "C_Pos" contiene la posición actual del módulo expresada como número de impulsos si el contador rápido se ha habilitado en el asistente. De lo contrario, la posición actual será siempre "0".

Entradas/salidas	Tipos de datos	Operandos
I_STOP	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
D_STOP	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Done	BOOL	I, Q, V, M, SM, S, T, C, L
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
C_Pos	DWORD	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Tabla 9-3 Parámetros de la operación PTOx_CTRL

PTOx_RUN

La subrutina PTOX_RUN (Ejecutar perfil) ordena a la CPU que ejecute la operación de movimiento en un determinado perfil almacenado en la tabla de configuración/perfiles.

Esta subrutina se habilita activando el bit EN. Vigile que éste permanezca activado hasta que el bit "Done" indique que ha finalizado la subrutina.

Al activarse el parámetro START se inicia la ejecución del perfil. En cada ciclo en el que el parámetro START esté puesto a "1" y el PTO no esté activado, la subrutina activará el PTO. Con objeto de garantizar que se envíe sólo un comando, utilice un elemento de detección de flancos para activar el parámetro START.

El parámetro "Profile" contiene el número o el nombre simbólico del perfil de movimiento.

Activando el parámetro "Abort" se ordena al módulo de posicionamiento a detener el perfil actual y a desacelerar hasta que pare el motor.

El parámetro "Done" se activa cuando el módulo finaliza esta operación.

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-7.

SIMATIC / IEC 1131		
LAD	FBD	
PTO×_RUN - EN	PTO×_RUN - EN	
- START	- START	
- Profile Done - - Abort Error - C_Profile - C_Step - C_Pos -	- Profile Done - - Abort Error - C_Profile - C_Step - C_Pos -	
SIMBTIC		
STL CALL PTOX_RUN, START, Profile,		

Abort, Done, Error, C_Profile, C_Step, C_Pos

El parámetro "C_Profile" contiene el perfil que el módulo de posicionamiento está ejecutando actualmente.

El parámetro "C_Step" contiene el paso del perfil que se está ejecutando actualmente.

El parámetro "C_Pos" contiene la posición actual del módulo expresada como número de impulsos si el contador rápido se ha habilitado en el asistente. De lo contrario, la posición actual será siempre "0".

Tabla 9-4 Parámetros de la operación PTOx_RUN	

Entradas/salidas	Tipos de datos	Operandos
START	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Profile	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, constante
Abort, Done	BOOL	I, Q, V, M, SM, S, T, C, L
Error, C_Profile, C_Step	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
C_Pos	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

PTOx_MAN

La subrutina PTOx_MAN (Modo manual) ajusta la salida PTO a modo manual. Ello permite que el motor arranque, pare y marche a diferentes velocidades. Mientras está habilitada la subrutina PTOx_MAN, no es posible ejecutar ninguna otra subrutina PTO.

Habilitando el parámetro "RUN" (RUN/STOP) se ordena al tren de impulsos (PTO) que acelere a la velocidad indicada (parámetro "Speed"). El valor del parámetro "Speed" se puede modificar estando el motor en marcha. Si se inhibe el parámetro "RUN", se ordena al PTO a desacelerar hasta que pare el motor.

El parámetro "Speed" determina la velocidad cuando está activado el parámetro "RUN". La velocidad es un valor DINT (de entero doble) expresado en impulsos/segundo. Este parámetro se puede modificar estando el motor en marcha.

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-7.

SIMATIC	
STL	PTOX_MAN, RUN, Speed,
CALL	Error, C_Pos

El parámetro "C_Pos" contiene la posición actual del módulo expresada como número de impulsos si el contador rápido se ha habilitado en el asistente. De lo contrario, la posición actual será siempre "0".

Tabla 9-5	Parámetros	de la c	peración	PTOx	MAN
	i arametros		peración	110/	

Entradas/salidas	Tipos de datos	Operandos
RUN	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Speed	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, constante
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
C_Pos	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Consejo

Puede suceder que el tren de impulsos (PTO) no reaccione a cambios leves del parámetro "Speed", especialmente si el tiempo de aceleración o desaceleración configurado es breve y si la diferencia entre la velocidad máxima configurada y la velocidad de arranque/paro es grande.

PTOx_LDPOS

La operación PTOx_LDPOS (Cargar posición) cambia el valor de la posición actual del contador de impulsos a un nuevo valor. También puede utilizarse para definir una nueva posición cero para un comando cualquiera de movimiento.

Esta operación se habilita activando el bit EN. Vigile que éste permanezca activado hasta que el bit "Done" indique que ha finalizado la operación.

Activando el parámetro START se carga una nueva posición en el contador de impulsos PTO. En cada ciclo en el que parámetro START esté activado y el PTO no esté ocupado, la operación cargará una nueva posición en el contador de impulsos PTO. Con objeto de garantizar que se envíe sólo un comando, utilice un elemento de detección de flancos para activar el parámetro START.

El parámetro "New_Pos" proporciona el nuevo valor que debe reemplazar el valor indicado de la posición actual. El valor de posición se expresa como número de impulsos.

SIMATIC / IEC 1131	
LAD PTO×_LDPOS - EN - START - New_Pos Done - Error - C_Pos -	FBD PTO×_LDPOS -EN -START -New_Pos Done- Error- C_Pos -
STL	

STL		
CALL	PT OX_LDPOS, START, New_Pos, Done, Error, C_Pos	
L	-	

El parámetro "Done" se activa cuando el módulo finaliza esta operación.

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-7.

El parámetro "C_Pos" contiene la posición actual del módulo expresada como número de impulsos si el contador rápido se ha habilitado en el asistente. De lo contrario, la posición actual será siempre "0".

Entradas/salidas	Tipos de datos	Operandos
START	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
New_Pos, C_Pos	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD
Done	BOOL	I, Q, V, M, SM, S, T, C, L
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

Tabla 9-6 Parámetros de la operación PTOx_LDPOS

PTOx_ADV

La subrutina PTOx_ADV detiene el perfil de movimiento continuo actual y avanza el número de impulsos indicado en el perfil definido en el asistente. Esta subrutina se crea si el usuario ha indicado por lo menos un giro continuo a velocidad única con la opción PTOx_ADV habilitada en el asistente de control de posición.

Códigos de error de las operaciones PTO

Código de error	Descripción
0	Operación finalizada sin error.
1	Paro inmediato emitido durante el movimiento. Comando STOP finalizado correctamente.
2	Paro desacelerado emitido durante el movimiento. Comando STOP finalizado correctamente.
3	Error de ejecución detectado en el generador de impulsos o en el formato de la tabla PTO.
127	Error ENO durante la ejecución de la operación HSC, PLS o PTO.
128	Imposible procesar esta petición. Puede ser que la CPU esté procesando una petición diferente, o que no haya un impulso START en esta petición.
129	Los comandos de paro inmediato y de paro desacelerado se han emitido simultáneamente.
130	Se ha emitido un comando STOP para detener la operación PTO.
132	No se ha configurado ningún bloque para el perfil indicado.

 Tabla 9-7
 Códigos de error de la operación PTO

Funciones del módulo de posicionamiento

El módulo de posicionamiento ofrece la funcionalidad necesaria para controlar movimientos uniaxiales en lazo abierto:

- Ofrece control rápido, en un rango comprendido entre 20 y 200.000 impulsos por segundo.
- Soporta la aceleración y desaceleración tanto por sacudidas (curva S) como lineal.
- Incorpora un sistema de medida configurable que permite introducir los datos, bien sea en unidades de medida (por ejemplo, pulgadas o centímetros), o bien como número de impulsos.
- Ofrece una compensación configurable de movimientos indeseados.
- Soporta los métodos de control de posición absoluto, relativo y manual.
- Permite un funcionamiento continuo.
- Ofrece hasta 25 perfiles de movimiento, con máx. 4 cambios de velocidad por perfil.
- Soporta cuatro modos diferentes de búsqueda del punto de referencia, permitiendo seleccionar el sentido inicial de búsqueda, así como el sentido de aproximación final en todas las secuencias.

Figura 9-9 Módulo de posicionamiento EM 253

 Incorpora conectores de cableado de campo extraíbles para facilitar el montaje y el desmontaje.

STEP 7-Micro/WIN permite crear toda la información de configuración/perfiles que utiliza el módulo de posicionamiento. Esta información se carga en el S7-200 junto con los bloques del programa. Puesto que toda la información necesaria para el control de posición se guarda en el S7-200, el módulo de posicionamiento se puede sustituir sin tener que programarlo o configurarlo de nuevo.

El S7-200 reserva 8 bits de la imagen del proceso de las salidas (memoria Q) para la interfaz con el módulo de posicionamiento. El programa de aplicación en el S7-200 utiliza esos bits para controlar el funcionamiento del módulo. Estos 8 bits de salida no se conectan a ninguna de las salidas físicas del módulo de posicionamiento.

El módulo de posicionamiento incorpora 5 entradas digitales y 4 salidas digitales que constituyen la interfaz con la aplicación de movimiento (v. tabla 9-8). Estas entradas y salidas están integradas en el módulo. El anexo A contiene los datos técnicos detallados del módulo de posicionamiento, incluyendo también diagramas de cableado que indican cómo conectarlo a algunos de los accionamientos/amplificadores de motores más usuales.

Tabla 9-6 Entradas y salidas del modulo de posicionamiento		
Señal	Descripción	
STP	La entrada STP hace que el módulo detenga el movimiento actual. La reacción deseada de STP se puede seleccionar con el asistente de control de posición.	
RPS	La entrada RPS (sensor del punto de referencia) establece el punto de referencia (o posición inicial) para las operaciones de movimiento absoluto.	
ZP	La entrada ZP (impulso cero) ayuda a establecer el punto de referencia (o posición inicial). Por lo general, el accionamiento o el amplificador del motor generan impulsos ZP una vez por revolución del motor.	
LMT+ LMT-	Las entradas LMT+ y LMT- establecen los límites máximos de recorrido del movimiento. El asistente de control de posición permite configurar la reacción de las entradas LMT+ y LMT	
P0 P1 P0+, P0- P1+, P1-	P0 y P1 son salidas de impulsos de drenador abierto que controlan el movimiento y el sentido de movimiento del motor. P0+, P0- y P1+, P1- son salidas de impulsos diferenciales que funcionan igual que P0 y P1, respectivamente, pero ofreciendo una calidad de señal más elevada. Las salidas de drenador abierto y las salidas diferenciales están activadas simultáneamente. El juego de salidas de impulsos a utilizar se selecciona en función de la interfaz del accionamiento o del amplificador del motor.	
1		

Tabla 9-8 Entradas y salidas del módulo de posicionamiento

Señal	Descripción
DIS	DIS es una salida de drenador abierto utilizada para inhibir o habilitar el accionamiento o el amplificador del motor.
CLR	CLR es una salida de drenador abierto utilizada para borrar el registro de contaje de servoimpulsos.

Tabla 9-8 Entradas y salidas del módulo de posicionamiento, continuación

Programar el módulo de posicionamiento

STEP 7-Micro/WIN incorpora herramientas que permiten configurar y programar fácilmente el módulo de posicionamiento. Siga los pasos indicados a continuación:

- Configure el módulo de posicionamiento. STEP 7-Micro/WIN incorpora un asistente de control de posición que ayuda a crear la tabla de configuración/perfiles, así como las operaciones de posicionamiento. Consulte a este respecto el apartado "Configurar el módulo de posicionamiento" en el presente capítulo.
- Compruebe el funcionamiento del módulo de posicionamiento. STEP 7-Micro/WIN incorpora un panel de control EM 253 que sirve para comprobar el cableado de las entradas y salidas, la configuración del módulo y el funcionamiento de los perfiles de movimiento. Para más información acerca del panel de control EM 253, consulte la página 306.
- Cree el programa a ejecutar en el S7-200. El asistente de control de posición crea automáticamente las operaciones de posicionamiento que se deben insertar en el programa de usuario. Para más información acerca de las operaciones de posicionamiento, consulte la página 289. Inserte las operaciones siguientes en el programa de usuario:
 - Para habilitar el módulo de posicionamiento, inserte una operación POSx_CTRL. Utilice la marca especial SM0.0 (Siempre ON) para garantizar que esta operación se ejecute en cada ciclo.
 - Para mover el motor hasta una posición específica, utilice una operación POSx_GOTO, o bien una operación POSx_RUN. La operación POSx_GOTO mueve el motor hasta la posición indicada por las entradas del programa de usuario. La operación POSx_RUN ejecuta los perfiles de movimiento configurados con el asistente de control de posición.
 - Si desea utilizar coordenadas absolutas para el movimiento, deberá definir la posición cero de la aplicación. Utilice una operación POSx_RSEEK, o bien una operación POSx_LDPOS para definir esa posición.
 - Las demás operaciones (opcionales) creadas con el asistente de control de posición ofrecen funciones para aplicaciones típicas.
- 4. Compile el programa de usuario y cargue el bloque de sistema, el bloque de datos y el bloque de programa en el S7-200.

Consejo

Para más información sobre cómo conectar el módulo de posicionamiento a diversos accionamientos de motores paso a paso, consulte el anexo A.

Consejo

Ajuste los interruptores DIP del accionamiento del motor paso a paso a 10.000 impulsos por revolución para que concuerden con la configuración estándar creada con el asistente de control de posición.

Configurar el módulo de posicionamiento

Para que el módulo de posicionamiento pueda controlar la aplicación de movimiento, es preciso crear una tabla de configuración/perfiles. El asistente de control de posición le guía paso a paso por el proceso de configuración, lo que facilita y agiliza esta tarea. Para más información acerca de la tabla de configuración/perfiles, consulte el apartado "Temas avanzados" en la página 310.

El asistente de control de posición sirve también para crear la tabla de configuración/perfiles offline. Por tanto, la configuración puede efectuarse sin existir una conexión con una CPU S7-200 y sin estar instalado un módulo de posicionamiento.

Para ejecutar el asistente de control de posición, deberá compilar el proyecto y ajustar el modo de direccionamiento simbólico.

Para iniciar el asistente de control de posición, haga clic en el icono "Herramientas" de la barra de navegación y, a continuación, haga doble clic en el icono "Asistente de control de posición", o bien elija el comando de menú Herramientas > Asistente de control de posición.

Figura 9-10 Asistente de control de posición

Utilice el asistente de control de posición de STEP 7-Micro/WIN para configurar el módulo de posicionamiento. Seleccione la opción "Configurar el funcionamiento del módulo de posicionamiento EM 253".

Introducir la ubicación del módulo

Indique la ubicación del módulo en el slot (módulos 0 a 6). Si STEP 7-Micro/WIN está conectado a la CPU, sólo tendrá que hacer clic en el botón "Leer módulos". En el caso de las CPUs S7-200 con firmware anterior a la versión 1.2, el módulo se deberá disponer directamente junto a la CPU.

Seleccionar el sistema de medida

Seleccione el sistema de medida. Puede seleccionar bien sea unidades de medida, o bien impulsos. Si selecciona impulsos, no es necesario que introduzca ninguna información adicional. Si selecciona unidades de ingeniería, deberá introducir el número de impulsos necesarios para generar una revolución del motor (consulte los datos técnicos del motor o del accionamiento), la unidad básica de medida (p. ej. milímetros, centímetros, pulgadas, etc.) y la distancia recorrida en una revolución del motor.

- STEP 7-Micro/WIN incorpora un panel de control EM 253 que permite modificar el número de unidades por revolución tras haber configurado el módulo de posicionamiento.
- Si desea modificar posteriormente el sistema de medida, deberá borrar la configuración entera, incluyendo las operaciones creadas con el asistente de control de posición. Luego deberá introducir los datos de manera que coincidan con el nuevo sistema de medida.

Modificar las configuraciones estándar de las entradas y salidas

Haga clic en el botón "Opciones avanzadas" si desea modificar o visualizar las configuraciones estándar de las entradas y salidas integradas.

- Utilice la ficha "Nivel de actividad de las entradas" para seleccionar el nivel de actividad (alta o baja). Si ajusta la actividad alta, se leerá un "1" lógico cuando haya circulación de corriente en la entrada. Si ajusta la actividad baja, se leerá un "1" lógico cuando no haya circulación de corriente en la entrada. Un nivel de "1" lógico significa siempre que se ha activado esta condición. Los LEDs se encienden cuando haya circulación de corriente en la entrada, independientemente del nivel de actividad. El ajuste estándar es "actividad alta".
- Utilice la ficha "Retardo del filtro de entradas" para seleccionar la constante de tiempo del filtro (0,20 ms a 12,80 ms) para las entradas STP, RPS, LMT+ y LMT-. Si incrementa la constante de tiempo del filtro se reducirá el ruido, pero también se ralentizará el tiempo de respuesta al cambio de un estado de señal. El ajuste estándar es 6,4 ms.
- Utilice la ficha "Salidas y sentido de giro" para seleccionar la polaridad de las salidas, así como el método de control de sentido del giro. Para más información a este respecto, consulte las figuras 9-11 y 9-12.

Giro positivo Giro negativo	Giro positivo Giro negativo
P0	
P1	P1

Figura 9-11 Opciones de giro para la polaridad positiva

Figura 9-12 Opciones de giro para la polaridad negativa

Precaución

Un funcionamiento anormal de los equipos de control puede causar un funcionamiento inesperado del equipo controlado, lo que podría ocasionar la muerte o lesiones personales graves y/o daños al equipo.

Las funciones de límite y de paro del módulo de posicionamiento son controladas de forma electrónica y no ofrecen el nivel de protección que proporcionan los dispositivos de control electromecánicos. Prevea dispositivos de parada de emergencia, dispositivos electromecánicos de mayor jerarquía y otras medidas redundantes de seguridad que sean independientes del módulo de posicionamiento y de la CPU S7-200.

Configurar la reacción del módulo a las entradas físicas

Seleccione la reacción del módulo a las entradas LMT+, LMT- y STP. Elija una de las opciones siguientes en la lista desplegable: sin acción (ignorar la condición de entrada), desacelerar hasta parar (ajuste estándar), o bien parar inmediatamente.

Introducir las velocidades máxima y de arranque/paro

Indique la velocidad máxima (MAX_SPEED) y la velocidad de arranque/paro (SS_SPEED) de la aplicación.

Introducir los parámetros de marcha a impulsos

Introduzca los valores de los parámetros JOG_SPEED y JOG_INCREMENT.

- JOG_SPEED: La velocidad de marcha a impulsos (JOG_SPEED) es la velocidad máxima que se puede alcanzar mientras permanece activado el comando JOG.
- JOG_INCREMENT: Ésta es la distancia que la herramienta recorre como reacción a un comando JOG instantáneo.

La figura 9-13 muestra cómo funciona el comando JOG. El módulo de posicionamiento inicia un temporizador cuando recibe un comando JOG. Si este comando finaliza antes de haber transcurrido 0,5 segundos, el módulo desplazará la herramienta conforme a la distancia indicada en JOG_INCREMENT a la velocidad definida por SS_SPEED. Si el comando JOG activado al cabo de 0,5 segundos, el módulo acelerará al valor de JOG_SPEED. El movimiento continuará hasta que finalice el comando JOG. A continuación, el módulo ejecutará un paro desacelerado. El comando JOG se puede habilitar en el panel de control EM 253, o bien mediante una operación de posicionamiento.

Figura 9-13 Funcionamiento del comando JOG

Introducir el tiempo de aceleración

Introduzca los tiempos de aceleración y desaceleración en los respectivos cuadros de entrada.

Introducir el tiempo de compensación de sacudidas

Introduzca el tiempo de compensación de sacudidas para los movimientos de un solo paso. Ello ofrece un control de posición más suave, puesto que reduce las sacudidas durante las fases de aceleración y desaceleración (v. fig. 9-14).

La compensación de sacudidas se denomina también "perfilado de la curva S", aplicándose por igual a las fases inicial y final de las curvas de aceleración y desaceleración, mas no a los pasos inicial y final entre la velocidad cero ("0") y SS_SPEED.

La compensación de sacudidas se indica introduciendo un valor de tiempo (JERK_TIME). Este es el tiempo necesario para que la aceleración cambie de "0" a la frecuencia de aceleración máxima. Un tiempo de compensación de sacudidas prolongado ofrece un funcionamiento más suave y un menor incremento del tiempo de ciclo total de lo que resultaría al reducir los tiempos de aceleración (ACCEL_TIME) y desaceleración (DECEL_TIME). El valor "0" indica que no se debe aplicar compensación.

(Ajuste estándar = 0 ms)

Consejo

Es recomendable ajustar inicialmente el valor del tiempo de compensación de sacudidas (JERK_TIME) a un 40% del tiempo de aceleración (ACCEL_TIME).

Configurar el punto de referencia y los parámetros de búsqueda

Indique si en la aplicación se debe utilizar un punto de referencia.

- Si la aplicación exige que los movimientos comiencen en o sean referenciados a una posición absoluta, es preciso definir un punto de referencia (RP) o una posición cero que fije las mediciones de la posición en un punto conocido del sistema físico.
- Si desea utilizar un punto de referencia, puede definir una manera de reubicarlo automáticamente. El proceso de ubicar automáticamente el punto de referencia se denomina "búsqueda del punto de referencia". Para definir la búsqueda del punto de referencia es preciso realizar dos pasos en el asistente.

Introduzca las velocidades rápida y lenta de búsqueda del punto de referencia. Defina el sentido de búsqueda inicial y el sentido de aproximación final al punto de referencia. Haga clic en el botón "Opciones RP avanzadas" si desea introducir el offset del punto de referencia y el valor de compensación de movimientos no deseados.

RP_FAST es la velocidad inicial que utiliza el módulo al ejecutar un comando RP Seek. Por lo general, el valor de RP_FAST equivale aproximadamente a dos tercios del valor de MAX_SPEED.

RP_SLOW es la velocidad de aproximación final al RP. Para la aproximación al RP se utiliza una velocidad más lenta, de manera que el RP no se pase por alto. Por lo general, el valor de RP_SLOW es igual al valor de SS_SPEED.

RP_SEEK_DIR es el sentido inicial de búsqueda del RP. Por lo general, se trata del sentido expresado desde el área de trabajo hasta cerca del RP. Los interruptores de fin de carrera desempeñan un importante papel al definir el área donde se debe buscar el RP. Si durante una búsqueda del RP se encuentra un interruptor de fin de carrera, ello puede invertir el sentido, lo que permite proseguir la búsqueda. (Ajuste estándar = negativo).

RP_APPR_DIR es el sentido de aproximación final al RP. Para reducir los movimientos indeseados y ofrecer mayor precisión, la aproximación al punto de referencia debería efectuarse en el mismo sentido utilizado para desplazarse desde el RP hasta el área de trabajo. (Ajuste estándar = positivo).

El asistente de control de posición incorpora funciones avanzadas en relación con el punto de referencia (RP) que permiten indicar un offset del RP (RP_OFFSET). Dicho offset representa la distancia desde el RP hasta la posición cero (v. fig. 9-15).

RP_OFFSET: Distancia desde el RP hasta la posición cero del sistema físico de medida. (Ajuste estándar = 0).

Compensación de movimientos indeseados: Distancia que debe desplazarse el motor para eliminar los movimientos indeseados en el sistema cuando se produzca un cambio de sentido. La compensación de movimientos indeseados es siempre un valor positivo. (Ajuste estándar = 0).

Elija una secuencia de búsqueda del punto de referencia.

El módulo de posicionamiento incorpora un sensor del punto de referencia (RPS) que se utiliza para buscar el RP. El RP se identifica utilizando un método para ubicar la posición exacta, conforme al sensor del punto de referencia (RPS). El RP puede estar ubicado en el centro del área RPS activa, en el borde de esa área, o bien a un número determinado de impulsos cero (ZP) del borde de esa área.

Es posible configurar la secuencia que utiliza el módulo de posicionamiento para buscar el punto de referencia (RP). La figura 9-16 muestra un diagrama simplificado de la secuencia de búsqueda estándar del RP. Las opciones siguientes pueden seleccionarse para la secuencia de búsqueda del RP:

Modo 0 de búsqueda del RP: No ejecuta ninguna secuencia de búsqueda del RP.

Modo 1 de búsqueda del RP: El RP es el punto donde se activa la entrada RPS en la aproximación desde el área de trabajo. Éste es el ajuste estándar.

Modo 2 de búsqueda del RP: El RP está ubicado en el centro del área activa de la entrada RPS.

Modo 3 de búsqueda del RP: El RP está ubicado fuera del área activa de la entrada RPS. RP_Z_CNT indica cuántos ZP (impulsos cero) se deben recibir tras desactivarse la entrada RPS.

Modo 4 de búsqueda del RP: El RP está ubicado por lo general en el área activa de la entrada RPS. RP_Z_CNT indica cuántos ZP (impulsos cero) se deben recibir tras activarse la entrada RPS.

Figura 9-16 Secuencia estándar de búsqueda del RP (diagrama simplificado)

Consejo

El área RPS activa (es decir, la distancia en la que la entrada RPS permanece activada) debe ser mayor que la distancia necesaria para desacelerar desde la velocidad RP_FAST hasta la velocidad RP_SLOW. El módulo de posicionamiento generará un error si la distancia es demasiado corta.

Byte de comando

Introduzca la dirección de byte Q para el byte de comando. El byte de comando es la dirección de las 8 salidas digitales reservadas en la imagen del proceso para crear una interfaz con el módulo de posicionamiento. Para más información acerca de la numeración de las E/S, consulte la figura 4-10 en el capítulo 4.

Definir el perfil de movimiento

En la pantalla de definición del perfil de movimiento, haga clic en el botón "Nuevo perfil" para definir el perfil. Seleccione el modo de operación deseado.

Tratándose de un perfil de posición absoluta:

Introduzca la velocidad objetivo y la posición final. A continuación, puede hacer clic en el botón "Plotear paso" para visualizar una representación gráfica del paso.

Si se requiere más de un paso, haga clic en el botón "Nuevo paso" e introduzca las informaciones necesarias para el mismo.

Tratándose de un perfil de posición relativa:

Introduzca la velocidad objetivo y la posición final. A continuación, puede hacer clic en el botón "Plotear paso" para visualizar una representación gráfica del paso.

Si se requiere más de un paso, haga clic en el botón "Nuevo paso" e introduzca las informaciones necesarias para el mismo.

Tratándose de un giro continuo a velocidad única:

Introduzca el valor de la velocidad única en el cuadro de entrada.

Seleccione el sentido de giro.

Si desea finalizar el movimiento de giro continuo a velocidad única utilizando la entrada RPS, active la casilla de verificación correspondiente.

Tratándose de un giro continuo a dos velocidades:

Introduzca la velocidad objetivo al estar activada la entrada RPS.

Introduzca la velocidad objetivo al estar desactivada la entrada RPS.

Seleccione el sentido de giro.

Defina el número de perfiles y pasos necesarios para realizar el movimiento deseado.

Finalizar la configuración

Tras configurar el módulo de posicionamiento, haga clic en "Finalizar". El asistente de control de posición ejecutará entonces las tareas siguientes:

- Insertará la tabla de configuración/perfiles del módulo en el bloque de datos del programa S7-200.
- Creará una tabla de símbolos globales para los parámetros de movimiento.
- Insertará las subrutinas de las operaciones de movimiento en el bloque de programa para poder utilizarlo en la aplicación.

Ejecute de nuevo el asistente de control de posición si desea modificar una configuración o un perfil cualquiera.

Consejo

Puesto que el asistente de control de posición efectúa cambios en el bloque de programa, en el bloque de datos y en el bloque de sistema, vigile que estos tres bloques se carguen en la CPU S7-200. De lo contrario, podría suceder que el módulo de posicionamiento no disponga de todos los componentes del programa necesarios para funcionar correctamente.

Operaciones creadas con el asistente de control de posición para el módulo de posicionamiento

El asistente de control de posición permite controlar fácilmente el módulo de posicionamiento, creando para ello subrutinas de operaciones unívocas conforme a la ubicación del módulo y a las opciones de configuración seleccionadas. Todas las operaciones de posicionamiento van precedidas de "POSx_" representando la "x" la ubicación del módulo. Puesto que cada una de las operaciones de posicionamiento es una subrutina, las 11 operaciones de posicionamiento equivalen a 11 subrutinas.

Consejo

Las operaciones de posicionamiento incrementan hasta en 1700 bytes la cantidad de memoria necesaria para el programa. Para reducir el espacio de memoria necesario es posible borrar las operaciones de posicionamiento no utilizadas. Si desea restablecer una operación de posicionamiento borrada, ejecute de nuevo el asistente de control de posición.

Reglas para utilizar las operaciones de posicionamiento

Vigile que sólo una operación de posicionamiento esté activada a la vez.

Las operaciones POSx_RUN y POSx_GOTO pueden ejecutarse desde una rutina de interrupción. Sin embargo, es muy importante que no intente iniciar una operación en una rutina de interrupción si el módulo está procesando otro comando. Si inicia una operación en una rutina de interrupción, podrá utilizar las salidas de la operación POSx_CTRL para detectar cuándo el módulo de posicionamiento ha finalizado el movimiento.

Dependiendo del sistema de medida seleccionado, el asistente de control de posición configura automáticamente los valores de los parámetros de velocidad ("Speed" y "C_Speed") y de posición ("Pos" o "C_Pos"). En el caso de los impulsos, estos parámetros son valores en formato de entero doble (DINT). Tratándose de unidades de medida, los parámetros son formato de número REAL. Por ejemplo, si selecciona centímetros (cm), los parámetros de posición se almacenarán como valores reales en centímetros, en tanto que los parámetros de velocidad se guardarán como valores reales en centímetros por segundo (cm/seg).

Para controlar tareas de movimiento se precisan las operaciones de posicionamiento siguientes:

- Inserte la operación POSx_CTRL en el programa de usuario y utilice el contacto SM0.0 para ejecutar esta operación en cada ciclo.
- Para indicar un movimiento a una posición absoluta, deberá utilizar primero una operación POSx_RSEEK, o bien una operación POSx_LDPOS, con objeto de definir la posición cero.
- Utilice la operación POSx_GOTO para desplazarse a una posición determinada, conforme a las entradas del programa de usuario.
- Utilice la operación POSx_RUN para ejecutar los perfiles de movimiento configurados con el asistente de control de posición.

Las demás operaciones de posicionamiento son opcionales.

POSx_CTRL

La operación POSx_CTRL (Control) habilita e inicializa el módulo de posicionamiento, ordenándole automáticamente a cargar la tabla de configuración/perfiles cada vez que el S7-200 cambie a modo RUN.

Utilice esta operación sólo una vez en el proyecto y vigile que el programa de usuario la invoque en cada ciclo. Use la marca especial SM0.0 (Siempre ON) como entrada del parámetro EN.

El parámetro MOD_EN deberá estar activado para poder habilitar las demás operaciones de posicionamiento, con objeto de enviar comandos al módulo. Si se desactiva el parámetro MOD_EN, el módulo de posicionamiento interrumpirá los comandos que se estén ejecutando.

Los parámetros de salida de la operación POSx_CTRL indican el estado actual del módulo de posicionamiento.

El parámetro "Done" se activa cuando el módulo de posicionamiento finaliza una operación cualquiera.

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-20. SIMATIC / IEC1131

SIMATIC	
STL	POSx_CTRL, MOD_EN, Done,
CALL	Error, C_Pos, C_Speed, C_Dir

El parámetro "C_Pos" indica la posición actual del módulo. Dependiendo del sistema de medida seleccionado, este valor puede ser un número de impulsos (DINT), o bien el número de unidades de medida (REAL).

El parámetro "C_Speed" indica la velocidad actual del módulo. Si ha configurado impulsos como sistema de medida del módulo de posicionamiento, "C_Speed" será un valor DINT que contiene el número de impulsos por segundo. Si ha configurado unidades de medida, "C_Speed" será un valor REAL que contiene las unidades de medida por segundo que haya seleccionado (REAL).

El parámetro "C_Dir" indica el sentido de giro actual del motor.

Tabla 9-9 I	Parámetros de l	la operación	POSx_	
-------------	-----------------	--------------	-------	--

Entradas/salidas	Tipos de datos	Operandos
MOD_EN	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Done, C_Dir	BOOL	I, Q, V, M, SM, S, T, C, L
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
C_Pos, C_Speed	DINT, REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Consejo

El módulo de posicionamiento lee la tabla de configuración/perfiles sólo durante el arranque o cuando se le ordene cargar la configuración.

- Si utiliza el asistente de control de posición para modificar la configuración, la operación POSx_CTRL ordenará automáticamente al módulo de posicionamiento que cargue la tabla de configuración/perfiles cada vez que la CPU S7-200 cambie a modo RUN.
- Si utiliza el panel de control EM 253 para modificar la configuración y hace clic en el botón "Actualizar configuración", el módulo de posicionamiento cargará la nueva tabla de configuración/perfiles.
- Si utiliza un método diferente para modificar la configuración, también deberá enviar un comando "Cargar configuración de nuevo" para que el módulo de posicionamiento cargue la tabla de configuración/perfiles. En caso contrario, el módulo seguirá utilizando la tabla de configuración/perfiles antigua.

POSx_MAN

La operación POSx_MAN (Modo manual) conmuta el módulo de posicionamiento a modo manual. Gracias a ello, el motor puede funcionar a diferentes velocidades, o bien marchar a impulsos en sentido positivo o negativo. Mientras está habilitada la operación POSx_MAN, sólo se permiten las operaciones POSx_CTRL y POSx_DIS.

Sólo es posible habilitar una de las entradas RUN, JOG_P o JOG_N a la vez.

Habilitando el parámetro "RUN" (RUN/STOP) se ordena al módulo de posicionamiento que acelere a la velocidad indicada (parámetro "Speed") y en el sentido indicado (parámetro "Dir"). El valor del parámetro "Speed" se puede modificar estando el motor en marcha, pero el parámetro "Dir" debe permanecer constante. Si se inhibe el parámetro "RUN", se ordena al módulo de posicionamiento a desacelerar hasta que pare el motor.

Habilitando los parámetros "JOG_P" (Giro positivo a impulsos) o "JOG_N" (Giro negativo a impulsos) se ordena al módulo de posicionamiento a marchar a impulsos en sentido positivo o negativo, respectivamente. Si los parámetros "JOG_P" o "JOG_N" permanecen activados durante menos de 0,5 segundos, el módulo de posicionamiento emitirá impulsos de desplazamiento según la distancia indicada en JOG_INCREMENT. Si los parámetros "JOG_P" o "JOG_N" permanecen activados durante 0,5 segundos o más, el módulo comenzará a acelerar hasta la velocidad indicada en JOG_SPEED. SIMATIC / IEC1131 LAD FBD POS×_MAN POS×_MAN ΕN ΕN RUN RUN JOG_P JOG_N JOG P Speed Dir Error JOG_N C_Pos Speed Speed Error C_Dir C_Pos Dir C_Speed C_Dir

SIMATIC		
STL CALL	POS×_MAN, RUN, JOG_P, JOG_N, Speed, Dir, Error, C_Pos, C_Speed, C_Dir	

El parámetro "Speed" determina la velocidad cuando está activado el parámetro "RUN". Si ha configurado impulsos como sistema de medida del módulo de posicionamiento, la velocidad será un valor DINT expresado en impulsos por segundo. Si ha configurado unidades de medida, la velocidad será un valor REAL expresado en unidades por segundo. Este parámetro se puede modificar estando el motor en marcha.

Consejo

Puede suceder que el módulo de posicionamiento no reaccione a cambios leves del parámetro "Speed", especialmente si el tiempo de aceleración o desaceleración configurado es corto y si la diferencia entre la velocidad máxima configurada y la velocidad de arranque/paro es grande.

El parámetro "Dir" determina el sentido de movimiento cuando está activado el parámetro "RUN". Este valor no se puede modificar estando activado el parámetro "RUN".

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-20.

El parámetro "C_Pos" contiene la posición actual del módulo. Dependiendo del sistema de medida seleccionado, este valor puede ser un número de impulsos (DINT), o bien el número de unidades de medida (REAL).

El parámetro "C_Speed" contiene la velocidad actual del módulo. En función del sistema de medida seleccionado, el valor puede ser un número de impulsos por segundo (DINT), o bien las unidades de medida por segundo (REAL).

El parámetro "C_Dir" indica el sentido de giro actual del motor.

Entradas/salidas	Tipos de datos	Operandos
RUN, JOG_P, JOG_N	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Speed	DINT, REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, constante
Dir, C_Dir	BOOL	I, Q, V, M, SM, S, T, C, L
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
C_Pos, C_Speed	DINT, REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Tabla 9-10 Parámetros de la operación POSx_MAN

POSx_GOTO

La operación POSx_GOTO ordena al módulo de posicionamiento a efectuar un movimiento hasta una posición determinada.

Esta operación se habilita activando el bit EN. Vigile que éste permanezca activado hasta que el bit "Done" indique que ha finalizado la operación.

Activando el parámetro START se envía un comando GOTO al módulo de posicionamiento. En cada ciclo en el que parámetro START esté activado y el módulo no esté ocupado, la operación enviará un comando GOTO al módulo. Con objeto de garantizar que se envíe sólo un comando GOTO, utilice un elemento de detección de flancos para activar el parámetro START.

El parámetro "Pos" contiene un valor que representa bien sea la posición a dónde se debe desplazar (en un movimiento absoluto), o bien la distancia a recorrer (en un movimiento relativo). Dependiendo del sistema de medida seleccionado, este valor puede ser un número de impulsos (DINT), o bien las unidades de medida (REAL).

El parámetro "Speed" determina la velocidad máxima de este movimiento. En función del sistema de medida seleccionado, este valor puede ser un número de impulsos por segundo (DINT), o bien las unidades de medida por segundo (REAL).

El parámetro "Mode" selecciona el tipo de movimiento:

- 0 Posición absoluta
- 1 Posición relativa
- 2 Giro continuo positivo a velocidad única
- 3 Giro continuo negativo a velocidad única

El parámetro "Done" se activa cuando el módulo de posicionamiento finaliza esta operación.

Activando el parámetro "Abort" se ordena al módulo de posicionamiento a detener el perfil actual y a desacelerar hasta que pare el motor.

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-20.

El parámetro "C_Pos" contiene la posición actual del módulo. Dependiendo del sistema de medida seleccionado, este valor puede ser un número de impulsos (DINT), o bien el número de unidades de medida (REAL).

El parámetro "C_Speed" contiene la velocidad actual del módulo. En función del sistema de medida seleccionado, este valor puede ser un número de impulsos por segundo (DINT), o bien las unidades de medida por segundo (REAL).

Entradas/salidas	Tipos de datos	Operandos
START	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Pos, Speed	DINT, REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, constante
Mode	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, constante
Abort, Done	BOOL	I, Q, V, M, SM, S, T, C, L
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
C_Pos, C_Speed	DINT, REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Tabla 9-11 Parámetros de la operación POSx_GOTO

SIMATIC		
STL CALL	POSx_GOTO, START, Pos, Speed, Mode, Abort, Done, Error, C_Pos, C_Speed	

POSx_RUN

La operación POSx_RUN (Ejecutar perfil) ordena al módulo de posicionamiento a ejecutar la función de movimiento en un determinado perfil almacenado en la tabla de configuración/perfiles.

Esta operación se habilita activando el bit EN. Vigile que éste permanezca activado hasta que el bit "Done" indique que ha finalizado la operación.

Activando el parámetro START se envía un comando RUN al módulo de posicionamiento. En cada ciclo en el que parámetro START esté activado y el módulo no esté ocupado, la operación enviará un comando RUN al módulo. Con objeto de garantizar que se envíe sólo un comando, utilice un elemento de detección de flancos para activar el parámetro START.

El parámetro "Profile" contiene el número o el nombre simbólico del perfil de movimiento. También pueden seleccionarse los comandos de movimiento avanzados (118 a 127). Para más información sobre los comandos de movimiento, consulte la tabla 9-26.

Activando el parámetro "Abort" se ordena al módulo de posicionamiento a detener el perfil actual y a desacelerar hasta que pare el motor.

El parámetro "Done" se activa cuando el módulo finaliza esta operación.

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-20.

El parámetro "C_Profile" contiene el perfil que el módulo de posicionamiento está ejecutando actualmente.

El parámetro "C_Step" contiene el paso del perfil que se está ejecutando actualmente.

El parámetro "C_Pos" contiene la posición actual del módulo. Dependiendo del sistema de medida seleccionado, este valor puede ser un número de impulsos (DINT), o bien el número de unidades de medida (REAL).

El parámetro "C_Speed" contiene la velocidad actual del módulo. En función del sistema de medida seleccionado, este valor puede ser un número de impulsos por segundo (DINT), o bien las unidades de medida por segundo (REAL).

Entradas/salidas	Tipos de datos	Operandos
START	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Profile	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, constante
Abort, Done	BOOL	I, Q, V, M, SM, S, T, C, L
Error, C_Profile, C_Step	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
C_Pos, C_Speed	DINT, REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Tabla 9-12 Parámetros de la operación POSx_RUN

SIMATIC / IEC1131 FBD LBD POS×_RUN POS×_RUN ΕN ΕN START START Profile Abort Done Profile Error Abort | Done C_Profile Error (Step C Profile C_Pos C_Step CSpeed C_Pos CSpeed

SIMATIC	
STL CALL	POSx_RUN, START, Profile, Abort, Done, Error, C_Profile, C_Step, C_Pos, C_Speed

POSx_RSEEK

La operación POSx_RSEEK (Buscar punto de referencia) comienza a buscar el punto de referencia utilizando el método de búsqueda indicado en la tabla de configuración/perfiles. Cuando el módulo de posicionamiento localiza el punto de referencia y tras detenerse el movimiento, el módulo cargará en la posición actual el valor leído del campo RP_OFFSET y generará un impulso de 50 milisegundos en la salida CLR.

El valor estándar de RP_OFFSET es "0". Para modificar el valor de RP_OFFSET puede utilizar el asistente de control de posición, el panel de control EM 253, o bien la operación POSx_LDOFF (Cargar offset).

Esta operación se habilita activando el bit EN. Vigile que éste permanezca activado hasta que el bit "Done" indique que ha finalizado la operación.

Activando el parámetro START se envía un comando RSEEK al módulo de posicionamiento. En cada ciclo en el que parámetro START esté activado y el módulo no esté ocupado, la operación enviará un comando RSEEK al módulo. Con objeto de garantizar que se envíe sólo un comando, utilice un elemento de detección de flancos para activar el parámetro START. SIMATIC / IEC 1131

SIMATIC

STL		
CALL	POSx_RSEEK, START, Done, Error	
L		
		l

El parámetro "Done" se activa cuando el módulo finaliza esta operación.

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-20.

Entradas/salidas	Tipos de datos	Operandos
START	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Done	BOOL	I, Q, V, M, SM, S, T, C, L
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

Tabla 9-13 Parámetros de la operación POSx_RSEEK

POSx_LDOFF

La operación POSx_LDOFF (Cargar offset del punto de referencia) define una nueva posición cero en una ubicación diferente a la del punto de referencia.

Antes de ejecutar esta operación es preciso determinar la posición del punto de referencia. Asimismo, es necesario desplazar la máquina hasta la posición inicial. Cuando la operación envía el comando LDOFF, el módulo de posicionamiento calcula el offset entre la posición inicial (o posición actual) y la posición del punto de referencia. A continuación, el módulo almacena el offset calculado en el parámetro RP_OFFSET y ajusta a "0" la posición actual. Así se define que la posición inicial sea la posición cero.

Si el motor pierde la noción de su posición (por ejemplo, en caso de una caída de potencia o si se cambia manualmente la posición del motor), la operación POSx_RSEEK se puede utilizar para restablecer automáticamente la posición cero.

Esta operación se habilita activando el bit EN. Vigile que éste permanezca activado hasta que el bit "Done" indique que ha finalizado la operación.

SIMATIC / IEC1131	
LAD	FBD
POSx_LDOFF - EN - ST ART Done Error -	POSx_LDOFF - EN - START Done - Error -

SIMATIC	
STL	
CALL	POSX_LD/OFF, START, Done, Error
L	

Activando el parámetro START se envía un comando LDOFF al módulo de posicionamiento. En cada ciclo en el que parámetro START esté activado y el módulo no esté ocupado, la operación enviará un comando LDOFF al módulo. Con objeto de garantizar que se envíe sólo un comando, utilice un elemento de detección de flancos para activar el parámetro START.

El parámetro "Done" se activa cuando el módulo finaliza esta operación.

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-20.

Entradas/salidas	Tipos de datos	Operandos
START	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Done	BOOL	I, Q, V, M, SM, S, T, C, L
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

Tabla 9-14 Parámetros de la operación POSx_LDOFF

POSx_LDPOS

La operación POSx_LDPOS (Cargar posición) cambia el valor de la posición actual del módulo de posicionamiento a un nuevo valor. También se puede utilizar para definir una nueva posición cero para un comando cualquiera de movimiento absoluto.

Esta operación se habilita activando el bit EN. Vigile que éste permanezca activado hasta que el bit "Done" indique que ha finalizado la operación.

Activando el parámetro START se envía un comando LDPOS al módulo de posicionamiento. En cada ciclo en el que parámetro START esté activado y el módulo no esté ocupado, la operación enviará un comando LDPOS al módulo. Con objeto de garantizar que se envíe sólo un comando, utilice un elemento de detección de flancos para activar el parámetro START.

El parámetro "New_Pos" indica la nueva posición que debe sustituir al valor de la posición actual indicado por el módulo de posicionamiento y que éste utiliza para los movimientos absolutos. Dependiendo del sistema de medida seleccionado, este valor puede ser un número de impulsos (DINT), o bien las unidades de medida (REAL).

El parámetro "Done" se activa cuando el módulo finaliza esta operación.

SIMATIC / IEC1131 LAD FRD POSX_LDPOS POS×_LDPOS ΕN ΕN START START New_Pos Done New Pos Error Done C_Pos Error C_Pos

SIMATIC		
STL	L POSX_LDPOS, START, New_Pos, Done, Error, C_Pos	

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-20.

El parámetro "C_Pos" contiene la posición actual del módulo. Dependiendo del sistema de medida seleccionado, este valor puede ser un número de impulsos (DINT), o bien el número de unidades de medida (REAL).

Entradas/salidas	Tipos de datos	Operandos
START	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
New_Pos, C_Pos	DINT, REAL	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD
Done	BOOL	I, Q, V, M, SM, S, T, C, L
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

Tabla 9-15 Parámetros de la operación POSx_LDPOS

POSx_SRATE

La operación POSx_SRATE (Ajustar tiempo) ordena al módulo de posicionamiento a cambiar los tiempos de aceleración, desaceleración y compensación de sacudidas.

Esta operación se habilita activando el bit EN. Vigile que éste permanezca activado hasta que el bit "Done" indique que ha finalizado la operación.

Activando el parámetro START, los nuevos valores de tiempo se copian en la tabla de configuración/perfiles y se envía un comando SRATE al módulo de posicionamiento. En cada ciclo en el que parámetro START esté activado y el módulo no esté ocupado, la operación enviará un comando SRATE al módulo. Con objeto de garantizar que se envíe sólo un comando, utilice un elemento de detección de flancos para activar el parámetro START.

Los parámetros "ACCEL_Time", "DECEL_Time" y "JERK_Time" determinan los nuevos tiempos de aceleración, desaceleración y compensación de sacudidas en milisegundos (ms).

El parámetro "Done" se activa cuando el módulo finaliza esta operación.

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-20.

Entradas/salidas	Tipos de datos	Operandos
START	BOOL	I, Q, V, M, SM, S, T, C, L
ACCEL_Time, DECEL_Time, JERK_Time	DINT	ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, constante
Done	BOOL	I, Q, V, M, SM, S, T, C, L
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

POSx_DIS

La operación POSx_DIS activa (pone a "1") o desactiva (pone a "0") la salida DIS del módulo de posicionamiento. Gracias a ello, la salida DIS se puede utilizar para inhibir o habilitar un dispositivo de mando de motor. Si utiliza la salida DIS en el módulo de posicionamiento, esta operación se podrá invocar en cada ciclo, o bien sólo cuando sea necesario cambiar el valor de la salida DIS.

Cuando se activa el bit EN para habilitar la operación, el parámetro "DIS_ON" controla la salida DIS del módulo de posicionamiento. Para más información acerca de la salida DIS, consulte la tabla 9-8, o bien los datos técnicos del módulo de posicionamiento en el anexo A.

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-20.

STL CALL POSX_DIS, DIS_ON, Error

Tabla 9-17	Parámetros de la operación POSx_D	IS
------------	-----------------------------------	----

Entradas/salidas	Tipos de datos	Operandos
DIS_ON	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, constante
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

POSx_CLR

La operación POSx_CLR (Impulso en la salida CLR) ordena al módulo de posicionamiento a generar un impulso de 50 ms en la salida CLR.

Esta operación se habilita activando el bit EN. Vigile que éste permanezca activado hasta que el bit "Done" indique que ha finalizado la operación.

Activando el parámetro START se envía un comando CLR al módulo de posicionamiento. En cada ciclo en el que parámetro START esté activado y el módulo no esté ocupado, la operación enviará un comando CLR al módulo. Con objeto de garantizar que se envíe sólo un comando, utilice un elemento de detección de flancos para activar el parámetro START.

El parámetro "Done" se activa cuando el módulo finaliza esta operación.

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-20.

Tabla 9-18 Parámetros de la operación POSx_CLR

SIMATIC / IEC 1131

SIMATIC

STL		
CALL	POSX_CLR, START, Done, Error	
		J

Entradas/salidas	Tipos de datos	Operandos
START	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Done	BOOL	I, Q, V, M, SM, S, T, C, L
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

POSx_CFG

La operación POSx_CFG (Cargar configuración de nuevo) ordena al módulo de posicionamiento a leer el bloque de configuración en la dirección a la que señala el puntero de la tabla de configuración/perfiles.

A continuación, el módulo de posicionamiento compara la nueva configuración con la configuración existente y ejecuta los cambios deseados o ejecuta nuevos cálculos.

Esta operación se habilita activando el bit EN. Vigile que éste permanezca activado hasta que el bit "Done" indique que ha finalizado la operación.

Activando el parámetro START se envía un comando CFG al módulo de posicionamiento. En cada ciclo en el que parámetro START esté activado y el módulo no esté ocupado, la operación enviará un comando CFG al módulo. Con objeto de garantizar que se envíe sólo un comando, utilice un elemento de detección de flancos para activar el parámetro START.

El parámetro "Done" se activa cuando el módulo finaliza esta operación.

SIMATIC / IEC1131

SIMATIC	1
STL	
CALL	POSx_CFG, START, Done, Error
L	

El parámetro "Error" contiene el resultado de la operación. Los códigos de error se describen en la tabla 9-20.

Entradas/salidas	Tipos de datos	Operandos
START	BOOL	I, Q, V, M, SM, S, T, C, L, circulación de corriente
Done	BOOL	I, Q, V, M, SM, S, T, C, L
Error	BYTE	IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

Tabla 9-19 Parámetros de la operación POSx_CFG

Programas de ejemplo para el módulo de posicionamiento

.

El primer programa de ejemplo muestra un movimiento relativo sencillo que utiliza las operaciones POSx_CTRL y POSx_GOTO para una aplicación de corte a medida. Para este programa no se necesita un modo de búsqueda del punto de referencia (RP) ni tampoco un perfil de movimiento. La longitud a cortar se puede medir bien sea en impulsos, o bien en unidades de medida. Introduzca la longitud (VD500) y la velocidad objetivo (VD504). La cortadora arranca cuando se activa I0.0 (Start), finaliza la operación actual y se detiene cuando se activa I0.1 (Stop) e interrumpe cualquier movimiento y se detiene inmediatamente cuando se activa I0.2 (E_Stop).

En el segundo programa de ejemplo se utilizan las operaciones POSx_CTRL, POSx_RUN, POSx_RSEEK y POSx_MAN. Aquí es preciso configurar el modo de búsqueda del punto de referencia (RP) y un perfil de movimiento.

1er. programa de ejemplo: movimiento relativo sencillo (aplic	cación de corte a medida)
Network 1	Network 1 //Operación de control //(módulo en el slot 0).
E_Stop:10.2	LD SM0.0 = L60.0 LDN I0.2 = L63.7 LD L60.0 CALL POS0_CTRL, L63.7, M1.0, VB900, VD902, VD906, V910.0
	Network 2 //"Start" coloca la máquina //en modo automático
Network 2 Start:10.0 E_Stop:10.2 Flunning:00.2 Image: Start_Next_Move:M0.1 Image: Start_Next_Move:M0.1 Image: Start_Next_Move:M0.1 Image: Start_Next_Move:M0.1	LD I0.0 AN I0.2 EU S Q0.2, 1 S M0.1, 1
Network 3 E_Stop:10.2 Running:00.2	Network 3 //"E_Stop" para la cortadora //de inmediato //y desactiva el modo automático.
Network 4	R Q0.2, 1
Running:Q0.2 P0S0_G0T0 Start_Next_Move:M0.1 EN Image: Control of the start of the st	Network 4 //Desplazarse a un punto dado: //Introducir la longitud a cortar. //Introducir en "Speed" la //velocidad objetivo. //Ajustar el modo a "1" //(modo relativo).
Speed:VD504 Speed Error+VB920 1 - Mode C_Pos+VD922 E_Stop:10.2 - <u>Abort C_Speed</u> -VD926	LD Q0.2 = L60.0 LD M0.1 EU
Network 5 Running Q0.2 Q0.4 TON	= L63.7 LD L60.0 CALL POS0_GOTO, L63.7, VD500, VD504, 1, 10.2, Q0.4, VB920, VD922, VD926
+200- <u>PT</u> T33 Cutter_Output:Q0.3	Network 5 //Al estar en posición, activar la //cortadora durante 2 segundos //para finalizar el corte.
	LD Q0.2 A Q0.4 TON T33, +200 AN T33 = Q0.3

1er. programa de ejemplo: movimiento relativo sencillo (apli	cación de corte a medida), continuación
Network 6 Running:Q0.2 T33 Stop:I0.1 Start_Next_Move:M0.1 Image: Stop:I0.1 Stop:I0.1 Start_Option Stop:I0.1 Running:Q0.2 Image: Stop:I0.1 Stop:I0.1 Running:Q0.2 Stop:I0.1 Running:Q0.2 Image: Stop:I0.1 Stop:I0.1 Running:Q0.2 Image: Stop:I0.1 Running:Q0.2 Image: Stop:I0.1 Stop:I0.1 Running:Q0.2 Image: Stop:I0.1 Running:Q0.2 Image: Stop:I0.1 Image: Stop:I0.1 Running:Q0.2 Image: Stop:I0.1 Running:Q0.2	Network 6 //Cuando finalice el corte, reiniciar //a menos que "Stop" esté activado. LD Q0.2 A T33 LPS AN I0.1 = M0.1 LPP
	A I0.1 R Q0.2, 1

2º programa de ejemplo con las operaciones POSx_CTRL, POSx_	RUN, POSx_SEEK y POSx_MAN
Network 1	Network 1 //Habilitar el módulo de
SM0.0 POS0_CTRL	//posicionamiento.
SMUU HUSU_LIRL EN IO.1 IO.1 IO.1 MOD_EN Done - M1.0 Error - V8300 C_Pros - V0302 C_Speed - V0306 C_Dir - V910.0	LD SM0.0 = L60.0 LDN I0.1 = L63.7 LD L60.0 CALL POS0_CTRL, L63.7, M1.0, VB900, VD902, VD906, V910.0 Network 2 //Activar el modo manual //si no está en modo automático.
Network 2 11.0 M0.0 11.1 For a state of the state of th	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

2º programa de ejemplo con las operaciones POSx_CTRL, POSx_	RUN, POSx_S	EEK y POSx_MAN, continuación
Network 4	Network 4	//Paro de emergencia: //inhibir el módulo y el modo
$ \begin{bmatrix} -1 & 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} $	LD I0.1 R M0.0, R S0.1, R Q0.3,	1 9 3
	Network 5	//Si está activado el modo //automático: //Encender la lámpara de marcha.
Network 5 M0.0 00.1	LD M0.0 = Q0.1	
	Network 6	
	LSCR S0.1	
Network 6	Network 7	//Buscar el punto de referencia //(RP).
	LD S0.1	
361	= L60.0	
	LD S0.1	
Network 7	= L63.7	
	CALL POS	D_RSEEK, L63.7, M1.1, VB930
S0.1 START	Network 8	//En el punto de referencia (RP), //bloquear el material e //ir al paso siguiente.
Error - VB930	LD M1.1 LPS	
	AB= VB93 S Q0.3,	0, 0 1
Network 8 M1.1 VR930 00.3	SCRT S0.2	
		0.0
0 1 50.2	SCRT S1.0	0, 0
	Network 9	
VB930 S1.0	SCRE	
Network 9 0	Network 10	
	LOCK 30.2	
Network 10		

2º programa de ejemplo con las operaciones POSx_CTRL, POSx_	RUN, POSx_SEEK y POSx_MAN, continuación
Network 16	Network 16 //A menos que STOP esté activado, //reiniciar cuando finalica el corte
$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	LD T33 LPS R Q0.3, 1 R Q0.4, 1 AN I0.2
	LPP A I0.2 R M0.0, 4
4	Network 17
	SCRE
Network 17	Network 18
	LSCR S1.0
	Network 19 //Poner las salidas a "0".
Network 18 S1.0 SCR	LD S1.0 R Q0.3, 2
	Network 20 //Hacer que parpadee la lámpara //de error.
	LD SM0.5 = Q0.5
Network 20	Network 21 //Salir de la rutina de errores si //STOP está activado.
	LD 10.2 R M0.0, 9 R S0.1, 8
Network 21	Network 22 SCRE
Network 22	

Observar el módulo de posicionamiento con el panel de control EM 253

STEP 7-Micro/WIN incorpora un panel de control EM 253 que facilita el desarrollo de las soluciones de control de posición. Las fichas "Funcionamiento", "Configuración" y "Diagnóstico" permiten observar y controlar el funcionamiento del módulo de posicionamiento durante el arranque, así como comprobar las fases del proceso de desarrollo.

Utilice el panel de control EM 253 para verificar si el módulo de posicionamiento está cableado correctamente, para ajustar los datos de configuración y para comprobar los perfiles de movimiento.

Visualizar y controlar el funcionamiento del módulo de posicionamiento

La ficha "Funcionamiento" del panel de control sirve para vigilar el funcionamiento del módulo de posicionamiento. En el panel de control se visualizan la velocidad, así como la posición y el sentido actuales del módulo. También es posible apreciar el estado de los LEDs de las entradas y salidas (a excepción de los LEDs de impulsos).

El panel de control permite interactuar con el módulo de posicionamiento (por ejemplo, cambiar la velocidad y el sentido, detener y arrancar el movimiento, así como avanzar la herramienta a impulsos (si se ha detenido el movimiento).

También es posible generar los siguientes comandos de movimiento:

- Habilitar el modo manual. Este comando permite utilizar controles manuales para posicionar la herramienta.
- Ejecutar un perfil de movimiento. Este comando permite seleccionar un perfil a ejecutar. El panel de control visualiza el estado del perfil que está ejecutando el módulo de posicionamiento.

uncionamiento Configuración Diagnóstico	Usicion dy
Seleccione un comando de módulo	Estado del módulo Posición actual
Utilizar los controles manuales para posicionar la herramienta.	0.00 inch # FPS Velocidad actual # 27P 0.000 inch/sec. # LMT- Sentido actual # LMT+ positivo # DIS
Modo manual Velocidad objetivo 0	Estado del períl
Sentido de destino Paro	Paso actual Velocidad objetivo del inch/sec.
Haga clic en el botón Vog para enviar un solo comando JUG (marcha a impulsoci Mantenga oprinido el botón si desea acelerar la velocidad JUG_SPEED. 	Nodo de operación
	Cerrar

Figura 9-17 Ficha "Funcionamiento" del panel de control

- Buscar el punto de referencia. Este comando busca el punto de referencia utilizando el modo de búsqueda configurado.
- Cargar el offset del punto de referencia. El offset del punto de referencia se carga tras utilizar los controles manuales para avanzar la herramienta a la nueva posición cero.
- Cargar la posición actual de nuevo. Este comando actualiza el valor de la posición actual y define una nueva posición cero.
- Activar y desactivar la salida DIS. La salida DIS del módulo de posicionamiento se activa y se desactiva con estos comandos.
- Impulsar la salida CLR. Este comando genera un impulso de 50 ms en la salida CLR del módulo de posicionamiento.
- Guardar un perfil de movimiento. Este comando permite guardar la posición de destino y la velocidad objetivo de un perfil de movimiento y avanzar a medida que la herramienta se posiciona manualmente. El panel de control visualiza el estado del perfil que está ejecutando el módulo de posicionamiento.
- Cargar la configuración del módulo. Este comando carga una nueva configuración ordenando al módulo de posicionamiento que lea el bloque de configuración de la memoria V del S7-200.

- Mover a una posición absoluta. Este comando permite desplazarse a la velocidad objetivo hasta una posición específica. Para poder utilizar este comando es preciso haber definido previamente la posición cero.
- Mover a una distancia específica. Este comando permite desplazarse a la velocidad objetivo hasta una distancia específica de la posición actual. Es posible introducir una distancia positiva o negativa.
- Restablecer la interfaz de comandos. Este comando borra el byte de comando del módulo de posicionamiento y activa el bit "Done". Utilice este comando si el módulo de posicionamiento no reacciona a los demás comandos.

Visualizar y modificar la configuración del módulo de posicionamiento

La ficha "Configuración" del panel de control sirve para visualizar y modificar la configuración del módulo de posicionamiento almacenada en el bloque de datos del S7-200.

Tras modificar los ajustes de configuración, basta que haga clic en un botón para actualizar la configuración tanto en el proyecto de STEP 7-Micro/WIN como en el bloque de datos del S7-200.

Estos ajustes re	presentan la co	nfiguración actual d	el módulo en la CPU. E	s recomendai	ble crear la config	uración
utilizan do el 'Asi este cuadro de	istente de contr diálogo.	ol de movimiento'. Si	ólo el personal cualifica	ido debería m	odificar la configu	ración en
Permitir actu	ualizar la config	uración del módulo e	n la CPU.			
-Ajustes del pu	into de referenc	ia	Parámetros de a	plicación		
RP_FAST		RP_SEEK_DIR	MAX_SPEED		ACCEL_TIME	
13	inch/sec.	positivo	20	inch/sec.	1000	msec
RP_SLOW		RP_APPR_DIR	SS_SPEED		DECEL_TIME	
1	inch/sec.	negativo	1	inch/sec.	1000	msec
RP_Z_CNT		FND_RP_MODE	JDG_SPEED		JERK_TIME	
1		1	1	inch/sec.	0	msec
RP_OFFSET			JOG_INCREME	NT	UNITS/REV	
0	inch		1	inch	1	inch
			BKLSH_COMP			
			0	inch		
Leer config	uración	Votualizar configurac	ión			Cerrer

Figura 9-18 Ficha "Configuración" del panel de control

Visualizar las informaciones de diagnóstico del módulo de posicionamiento

La ficha "Diagnóstico" del panel de control sirve para visualizar las informaciones de diagnóstico del módulo de posicionamiento.

Aquí visualizan informaciones acerca del módulo de posicionamiento, tales como la ubicación del módulo en la cadena de E/S, el tipo de módulo y la versión del firmware, así como el byte de salida utilizado como byte de comando del módulo.

En el panel de control se visualizan los errores que se hayan detectado durante el funcionamiento del módulo. Para más información sobre las condiciones de error de la operación, consulte la tabla 9-20.

También es posible visualizar todos los demás errores detectados en el módulo de posicionamiento. Para más información sobre las condiciones de error del módulo, consulte la tabla 9-21.

Información del	módulo		
Posición	Tipo de módulo:	Versión:	
0	EM253 Position	03.15	
Estado de conf	iguración	Command Byte	
Configurado.		QB2	
Estado de com	andos		
Estado de com Error	Descripción		
U	Sin errores		

Figura 9-19 Ficha "Diagnóstico" del panel de control

Códigos de error del módulo de posicionamiento y de las operaciones

Código de error	Descripción		
0	Sin error.		
1	Interrupción causada por el usuario.		
2	Error de configuración. Utilice la ficha "Diagnóstico" del panel de control EM 253 para visualizar los códigos de error.		
3	Comando no válido.		
4	Interrupción debida a una configuración no válida. Utilice la ficha "Diagnóstico" del panel de control EM 253 para visualizar los códigos de error.		
5	Interrupción debida a la falta de alimentación externa.		
6	Interrupción debida a que no se ha definido ningún punto de referencia.		
7	Interrupción debida a que la entrada STP está activada.		
8	Interrupción debida a que la entrada LMT- está activada.		
9	Interrupción debida a que la entrada LMT+ está activada.		
10	Interrupción debida a un problema al ejecutar el movimiento.		
11	No se ha configurado ningún bloque para el perfil indicado.		
12	Modo de operación no válido.		
13	El comando no soporta este modo de operación.		
14	Número no válido de pasos en el bloque del perfil.		
15	Cambio de sentido no válido.		
16	Distancia no válida.		
17	RPS se ha disparado antes de alcanzar la velocidad objetivo.		
18	Ancho insuficiente del área RPS activa.		
19	Velocidad fuera del intervalo.		
20	Distancia insuficiente para ejecutar el cambio de velocidad deseado.		
21	Posición no válida		
22	Posición cero desconocida		
23 a 127	Reservados		
128	El módulo de posicionamiento no puede procesar esta operación. Puede ser que esté procesando una operación diferente, o bien que no haya un impulso START en esta operación.		
129	Error del módulo de posicionamiento. ID de módulo incorrecto o módulo fuera de sesión. Para más información sobre los errores, consulte las marcas especiales SMB8 a SMB21 (ID del módulo y registro de errores).		
130	El módulo de posicionamiento no está habilitado.		
131	El módulo de posicionamiento no está disponible debido a un error en el módulo, o bien no está habilitado. (Consulte el estado de POSx_CTRL).		
132	La dirección Q configurada con el asistente de control de posición no concuerda con la dirección del módulo en esta ubicación.		

Tabla 9-20 Códigos de error de las operaciones de posicionamiento

Código de error	Descripción			
0	Sin error.			
1	Falta alimentación externa.			
2	Falta el bloque de configuración.			
3	Error del puntero al bloque de configuración.			
4	El tamaño del bloque de configuración excede la memoria V disponible.			
5	Formato no válido del bloque de configuración.			
6	Se han definido demasiados perfiles.			
7	Definición de STP_RSP no válida.			
8	Definición de LMTRPS no válida.			
9	Definición de LMT+_RPS no válida.			
10	Definición de FILTER_TIME no válida.			
11	Definición de MEAS_SYS no válida.			
12	Definición de RP_CFG no válida.			
13	Valor de PLS/REV no válido.			
14	Valor de UNITS/REV no válido.			
15	Valor de RP_ZP_CNT no válido.			
16	Valor de JOG_INCREMENT no válido.			
17	Valor de MAX_SPEED no válido.			
18	Valor de SS_SPD no válido.			
19	Valor de RP_FAST no válido.			
20	Valor de RP_SLOW no válido.			
21	Valor de JOG_SPEED no válido.			
22	Valor de ACCEL_TIME no válido.			
23	Valor de DECEL_TIME no válido.			
24	Valor de JERK_TIME no válido.			
25	Valor BKLSH_COMP no válido			

Tabla 9-21 Códigos de error del módulo de posicionamiento

Temas avanzados

Descripción de la tabla de configuración/perfiles

El asistente de control de posición ha sido desarrollado para facilitar las aplicaciones de movimiento, generando automáticamente la tabla de configuración/perfiles conforme a la información del sistema proporcionada por el usuario. Las informaciones acerca de la tabla de configuración/perfiles están destinadas a los usuarios con experiencia que deseen crear rutinas de control de posición personalizadas.

La tabla de configuración/perfiles está ubicada en la memoria V del S7-200. Como muestra la tabla 9-22, la configuración se almacena en los bloques siguientes:

- El bloque de configuración contiene la información utilizada para configurar el módulo, de manera que éste pueda ejecutar los comandos de movimiento.
- El bloque interactivo soporta la configuración directa de los parámetros de movimiento desde el programa de usuario.
- Cada uno de los bloques de perfiles describe un movimiento predefinido que ejecuta el módulo de posicionamiento. Es posible configurar 25 bloques de perfiles como máximo.

Consejo

Si desea crear más de 25 perfiles de movimiento, puede intercambiar tablas de configuración/perfiles modificando el valor almacenado en el puntero que señala a la tabla de configuración/perfiles.

Offset	Nombre	Descripción del funcionamiento	Tipo de datos	
Bloque de configuración				
0	MOD_ID	Identificador del módulo.		
5	CB_LEN	Longitud del bloque de configuración en bytes (1 byte).		
6	IB_LEN	Longitud del bloque interactivo en bytes (1 byte).		
7	PF_LEN	Longitud de un solo perfil en bytes (1 byte).		
8	STP_LEN	Longitud de un solo paso en bytes (1 byte).		
9	STEPS	Cantidad admisible de pasos por perfil (1 byte).		
10	PROFILES	Cantidad de perfiles de 0 a 25 (1 byte).		
11	Reservados	Ajustado a 0x0000.		

Tabla 9-22 Tabla de configuración/perfiles
Unset	Nombre	Descripcion del funci	onamie	ento						lipo de datos
13	IN_OUT_CFG	Indica la utilización de las entradas y salidas	MSB 7	6	5	4	3	2	1	
		del módulo (1 byte).	P/D	POL	0	0	STP	RPS	LMT-	
		P/D Este bit indica	la utiliz	ación (de P0 v	/ P1.			I I	
		Polaridad posit	tiva (PC	DL=0):	,					
		0 - P0 impu B1 impu	lsos de	giro p	ositivo					
		1 - P0 impu	lsos de	giro n giro	egalive	,				
		P1 contr	ola el s	sentido	de giro	o (0 -	positiv	o, 1 - n	egativo).	
		0 - P0 impu	lsos de	giro p	ositivo					
		P1 impu 1 - P0 impu	lsos de Isos de	giro n giro	egativo)				
		P1 contr	ola el s iona la	entido polario	de giro ab ber	D (0 -	positiv P1	o, 1 - n	egativo).	
		(0 - polaridad p	ositiva	, 1 - po	plaridad	d neg	ativa)			
		STP Este bit contro	la el niv	/el de a	activida	ad de	la entr	ada ST	OP.	
		RPS Este bit contro	la el niv la el niv	/el de a	activida	ad de	la entr	ada RP ada de	'S. límite	
		de recorrido ne	egativo.						innite	
		LMT + Este bit contro límite de recor	la el niv rido pos	vel de a sitivo.	activida	ad de	la entr	ada de		
		0 - Actividad alta 1 - Actividad baja								
14	STP_RSP	Indica la reacción del a	cciona	miento	a la ei	ntrada	a STP	(1 byte)		
		1 Desacelerar h	iorar ia asta qu	condic le pare	el mot	entra or e i	ida. ndicar	que la		
		entrada STP e	stá acti	ivada.	car que	م دا د	otrada	STP		
		está activada.			ui qu		litudu	UII .		
15	IMT- RSP	3 a 255 Reserva	idos (si iccional	se sel miento	eccion	an, o htrada	curre u a de lín	n error)). Iativo	
15		(1 byte).		mente		niaud		nie neg	Janvo	
		0 Sin acción. Ignor	ar la co	ondició	n de ei	ntrada	a. licar qu	io so ha		
		alcanzado el lími	te.	pare e	motor	eine	icai qu	10 30 110	a	
		2 Terminar los imp 3 a 255 Reservado	ulsos e os (si se	e indica e seleo	r que s ccionar	se ha n, ocu	alcanz rre un	ado el l error).	límite.	
16	LMT+_RSP	Indica la reacción del a (1 byte).	iccional	miento	a la ei	ntrada	a de lín	nite pos	itivo	
		0 Sin acción. Ignor	ar la co	ondició	n de e	ntrada	a.			
		1 Desacelerar has alcanzado el lími	ta que te	pare e	l motor	e inc	licar qu	ie se ha	a	
		2 Terminar los imp	ulsos e	indica	r que s	se ha	alcanz	ado el l	límite.	
17	FILTER_TIME	Indica el tiempo de filtro	os (Si Si O MS	e seiec BB	Joional	i, UCU		enor).		
		de las entradas STP,	7		6 5 MT-IM	5 4 T±	1 3	2	1 RPS	
		(1 byte).		UIF, L	vi i-, ∟íVi					
		'0000' 200 μseg	'0101	1' 3	200 μs	eg				
		0001 400 μseg '0010' 800 μseg	'0110 '0111) 6 '12	9400 με 2800 με	eg eg				
		'0011' 1600 µseg	'1000 '1001)' 1 ' a '1'	Sin filt	ro Reser	vados			
		1000 μοεγ	(si se	e selec	cionan	, ocu	rre un o	error).		

 Tabla 9-22
 Tabla de configuración/perfiles, continuación

Offset	Nombre	Descripción del funcionamiento	Tipo de datos
18	MEAS_SYS	Indica el sistema de medida (1 byte). 0 Impulsos (la velocidad se expresa en impulsos por segundo v	
		los valores de posición se expresan en impulsos). Los valores se almacenan en formato DINT.	
		 Unidades de medida (la velocidad se expresa en unidades por segundo y los valores de posición se expresan en unidades). Los valores se almacenan en formato REAL de precisión sencilla. 	
		2 a 255 Reservados (si se seleccionan, ocurre un error).	
19		Reservado (puesto a "0").	
20	PLS/REV	Indica el número de impulsos por revolución del motor (4 bytes). Aplicable únicamente si el estado de señal de MEAS_SYS es "1".	DINT
24	UNITS/REV	Indica el número de unidades de medida por revolución del motor (4 bytes). Aplicable únicamente si el estado de señal de MEAS_SYS es "1".	REAL
28	UNITS	Reservado para que STEP 7-Micro/WIN pueda guardar una cadena de unidades personalizadas (4 bytes).	
32	RP_CFG	Indica la configuración ^{MSB} de búsqueda del 7 6 5 4 3 2 1	
		punto de referencia 0 0 MODE	
		(1 byte).	
		RP_SEEK_DIR Este bit indica el sentido inicial de búsqueda del punto de referencia.	
		RP_APPR_DIR Este bit indica el sentido de aproximación final al punto de referencia.	
		MODE Indica el método de búsqueda del punto de referencia	
		 '0000' Búsqueda del punto de referencia inhibida. '0001' El punto de referencia es donde se activa la entrada RPS. '0010' El punto de referencia está centrado en el área activa de la entrada RPS. '0011' El punto de referencia está fuera del área activa de la entrad '0011' El punto de referencia está dentro del área activa de la entrad '0100' El punto de referencia está dentro del área activa de la entrad '0101' a '1111' Reservados (si se seleccionan, ocurre un error). 	
33		Reservado (puesto a "0").	
34	RP_Z_CNT	Número de impulsos de la entrada ZP utilizados para definir el punto de referencia (4 bytes).	DINT
38	RP_FAST	Velocidad rápida de búsqueda del punto de referencia: MAX_SPEED o menos (4 bytes).	DINT REAL
42	RP_SLOW	Velocidad lenta de búsqueda del punto de referencia: velocidad máxima desde la que el motor puede parar instantáneamente (4 bytes).	DINT REAL
46	SS_SPEED	Velocidad de arranque/paro (4 bytes). La velocidad de arranque es la velocidad máxima a la que el motor puede marchar instantáneamente tras un paro y la velocidad máxima desde la que el motor puede parar instantáneamente. Aunque es posible el funcionamiento por debajo de esta velocidad, los tiempos de aceleración y desaceleración no serán aplicables en ese caso.	DINT REAL
50	MAX_SPEED	Velocidad de servicio máxima del motor (4 bytes).	DINT REAL
54	JOG_SPEED	Velocidad de marcha a impulsos. MAX_SPEED o menos (4 bytes).	
58	JOG_INCREMENT	Este valor representa la distancia (o número de impulsos) a recorrer como reacción a un solo impulso. (4 bytes)	DINT REAL
62	ACCEL_TIME	Tiempo (en milisegundos) necesario para acelerar desde la velocidad mínima hasta la máxima (4 bytes).	DINT
66	DECEL_TIME	Tiempo (en milisegundos) necesario para desacelerar desde la velocidad máxima hasta la mínima (4 bytes).	DINT

Tabla 9-22 Tabla de configuración/perfiles, continuación

Offset	Nombre	9	Descripción del funcionamiento	Tipo de datos
70	BKLSH	_COMP	Compensación de movimientos indeseados: distancia utilizada para compensar los movimientos indeseados de la máquina al ocurrir un cambio de sentido (4 bytes).	DINT REAL
74	JERK_1	TIME	Tiempo durante el que la compensación de sacudidas se aplica al comienzo y al final de una curva de aceleración o desaceleración (curva S). Indicando un valor "0" se inhibe la compensación de sacudidas. El tiempo de compensación de sacudidas se expresa en milisegundos. (4 bytes)	DINT
Bloque i	nteractiv	0		
78	MOVE_	CMD	 Selecciona el modo de operación (1 byte). Posición absoluta Posición relativa Velocidad única, funcionamiento continuo, giro positivo Velocidad única, funcionamiento continuo, giro negativo Control manual de velocidad, giro positivo Control manual de velocidad, giro negativo Control manual de velocidad, giro negativo Velocidad única, funcionamiento continuo, giro positivo con paro disparado (la entrada RPS indica un paro) Velocidad única, funcionamiento continuo, giro negativo con paro disparado (la entrada RPS indica un paro) a 255 - Reservados (si se seleccionan, ocurre un error) 	
79		T DO0	Reservados. (puesto a "0").	
80	TARGE		Posición de destino de este movimiento (4 bytes).	
84			Velocidad objetivo de este movimiento (4 bytes).	
Blogue	do porfilo	- 0 - 1	Posición absoluta del punto de referencia (4 bytes).	DINTREAL
92	STEPS	50	Número de pasos en esta secuencia de movimiento (1 byte)	
(+0)	0.5.0			
93 (+1)	MODE		 Selecciona el modo de operación de este bloque de perfiles (1 byte). Posición absoluta Posición relativa Velocidad única, funcionamiento continuo, giro positivo Velocidad única, funcionamiento continuo, giro negativo Reservado (si se indica, ocurre un error) Reservado (si se indica, ocurre un error) Velocidad única, funcionamiento continuo, giro negativo con paro disparado (RPS selecciona la velocidad) Velocidad única, funcionamiento continuo, giro negativo con paro disparado (RPS selecciona la velocidad) Velocidades, funcionamiento continuo, giro negativo con paro disparado (la entrada RPS indica un paro) Bos velocidades, funcionamiento continuo, giro negativo (RPS selecciona la velocidad) Dos velocidades, funcionamiento continuo, giro negativo (RPS selecciona la velocidad) Dos velocidades, funcionamiento continuo, giro negativo (RPS selecciona la velocidad) Dos velocidades, funcionamiento continuo, giro negativo (RPS selecciona la velocidad) Dos velocidades, funcionamiento continuo, giro negativo (RPS selecciona la velocidad) Dos velocidades, funcionamiento continuo, giro negativo (RPS selecciona la velocidad) Dos velocidades, funcionamiento continuo, giro negativo (RPS selecciona la velocidad) 	
94 (+2)	0	POS	Posición de destino del paso de movimiento 0 (4 bytes).	DINT REAL
98 (+6)		SPEED	Velocidad objetivo del paso de movimiento 0 (4 bytes).	DINT REAL
102 (+10)	1	POS	Posición de destino del paso de movimiento 1 (4 bytes).	DINT REAL
106 (+14)		SPEED	Velocidad objetivo del paso de movimiento 1 (4 bytes).	DINT REAL
110 (+18)	2	POS	Posición de destino del paso de movimiento 2 (4 bytes).	DINT REAL
114 (+22)		SPEED	Velocidad objetivo del paso de movimiento 2 (4 bytes).	DINT REAL

Tabla 9-22 Tabla de configuración/perfiles, continuación

Offset	Nombre)	Descripción del funcionamiento	Tipo de datos
118 (+26)	3	POS	Posición de destino del paso de movimiento 3 (4 bytes).	DINT REAL
122 (+30)		SPEED	Velocidad objetivo del paso de movimiento 3 (4 bytes).	DINT REAL
Bloque	de perfile	s 1		
126 (+34)	STEPS		Número de pasos en esta secuencia de movimiento (1 byte).	
127 (+35)	MODE		Selecciona el modo de operación de este bloque de perfiles (1 byte).	
128 (+36)	0	POS	Posición de destino del paso de movimiento 0 (4 bytes).	DINT REAL
132 (+40)		SPEED	Velocidad objetivo del paso de movimiento 0 (4 bytes).	DINT REAL

 Tabla 9-22
 Tabla de configuración/perfiles, continuación

Marcas especiales del módulo de posicionamiento

El S7-200 asigna 50 bytes de marcas especiales (SM) a cada uno de los módulos inteligentes. Estas marcas dependen de la posición física de los módulos en el bus de ampliación (v. tabla 9-23). Los módulos actualizan las marcas especiales cuando detectan un error o un cambio de estado de los datos. Si es el primer módulo, actualizará de SMB200 hasta SMB249 para indicar la condición de estado. El segundo módulo actualizará de SMB250 hasta SMB299, etc.

Tabla 9-23 Bytes de marcas SMB200 a SMB549

Marcas espec	iales (SM) de u	n módulo inteli	gente en el slot	:		
0	1	2	3	4	5	6
SMB200 a SMB249	SMB250 a SMB299	SMB300 a SMB349	SMB350 a SMB399	SMB400 a SMB449	SMB450 a SMB499	SMB500 a SMB549

La tabla 9-24 muestra la estructura del área de marcas especiales asignadas a un módulo inteligente. Esta área se ha definido suponiendo que el módulo inteligente está ubicado en el slot 0 del sistema.

Table 0.24	Maraga gangajalag	dal mádula da	noninionomionto	EN4 252
1abia 9-24	ivial cas especiales		posicionamiento	EIVI 200

Dirección SM	Descripción
SMB200 a SMB215	Nombre del módulo (16 caracteres ASCII). SMB200 es el primer carácter: "EM253 Position"
SMB216 a SMB219	Número de versión del software (4 caracteres ASCII). SMB216 es el primer carácter.
SMW220	Código de error del módulo. Los códigos de error se describen en la tabla 9-21.
SMB222	Estado de las entradas y salidas.MSBLSBRefleja el estado actual de las76543210
	entradas y salidas del módulo. DIS 0 0 STP LMT + RPS ZP
	DIS Inhibir las salidas. 0 = Sin circulación de corriente 1 = Circulación de corriente STP Entrada de paro 0 = Sin circulación de corriente 1 = Circulación de corriente LMT- Entrada de límite de recorrido negativo 0 = Sin circulación de corriente 1 = Circulación de corriente
	LMT+ Entrada de límite de recorrido positivo 0 = Sin circulación de corriente 1 = Circulación de corriente RPS Entrada del sensor de búsqueda del punto de 0 = Sin circulación de corriente 1 = Circulación de corriente
	referencia0 = Sin circulación de corriente1 = Circulación de corrienteSTPEntrada de impulso cero0 = Sin circulación de corriente1 = Circulación de corriente
SMB223	Estado del módulo. Refleja el estado MSB LSB actual de la configuración 7 6 5 4 3 2 1 0
	o Velocidad objetivo fuera del rango permitido. R Sentido de giro 0 = Correcta 1 = Fuera de rango CFG Módulo configurado 0 = No configurado 1 = Configurado
SMB224	CUR_PF es un byte que indica el perfil que se está ejecutando actualmente.
SMB225	CUR_STP es un byte que indica el paso del perfil que se está ejecutando actualmente.
SMD226	CUR_POS es un valor de palabra doble que indica la posición actual del módulo.
SMD230	CUR_SPD es un valor de palabra doble que indica la velocidad actual del módulo.
SMB234	Resultado de la operación. Los códigos de error se describen en la tabla 9-20. Las subrutinas creadas con el asistente generan condiciones de error MSB 7 6 LSB 0
	superiores a 127.
	D Bit "Done" (listo) 0= Operación en curso 1= Operación finalizada (el módulo ajusta este bit durante la inicialización)
SMB235 a SMB244	Reservados
SMB245	Offset al primer byte de salida (Q) utilizado como interfaz de comando de este módulo. El S7-200 suministra automáticamente el offset para facilitar el trabajo al usuario, aunque el módulo no lo necesita.
SMD246	Puntero a la dirección de la memoria V de la tabla de configuración/perfiles. No son válidos los valores de puntero a un área diferente a la memoria V. El módulo de posicionamiento observa esta dirección hasta que reciba un valor de puntero que no sea "0".

Descripción del byte de comando del módulo de posicionamiento

El módulo de posicionamiento dispone de un byte de salidas digitales que se utiliza como byte de comando. La figura 9-20 muestra la definición del byte de comando. Los comandos de "Command_code" se describen en la tabla 9-20.

Cuando se escribe en el byte de comando, cambiando de "0" a "1" el estado de señal del bit R, el módulo lo interpreta como un nuevo comando.

Si el módulo detecta un cambio a inactividad (es decir, cuando el estado de señal del bit R cambia a "0") estando activado un comando, se cancelará la operación actual y, si hay un movimiento en curso, se ejecutará un paro desacelerado.

Figura 9-20 Definición del byte de comando

Una vez finalizada una operación, el módulo deberá detectar un cambio a inactividad antes de aceptar un nuevo comando. Si se cancela una operación, el módulo deberá concluir la desaceleración antes de poder aceptar un nuevo comando. Si se modifica el valor de "Command_code" estando activado un comando, se ignorará ese cambio.

La reacción del módulo de posicionamiento Tabla 9-25 Comandos de "Command_code" a un cambio de modo de operación del S7-200 o a una condición de error depende del efecto que ejerce el S7-200 en las salidas digitales, conforme a la función definida en el S7-200:

- Si el S7-200 cambia de STOP a RUN, el programa del S7-200 controlará el funcionamiento del módulo de posicionamiento.
- Si el S7-200 cambia de RUN a STOP, el usuario podrá definir el estado que deben adoptar las salidas digitales al producirse un cambio a STOP, o bien indicar que las salidas deben conservar su último estado.
 - Si el bit R se desactiva al cambiar el S7-200 a STOP. el módulo de posicionamiento desacelerará hasta que pare el motor

Command_code	Comar	ndo
000 0000 a 000 1111	0 a 24	Ejecutar el movimiento indicado en los bloques de perfiles 0 a 24.
100 0000 a 111 0101	25 a 117	Reservados (si se seleccionan, ocurre un error).
111 0110	118	Activar la salida DIS.
111 0111	119	Desactivar la salida DIS.
111 1000	120	Impulsar la salida CLR.
111 1001	121	Cargar la posición actual de nuevo.
111 1010	122	Ejecutar el movimiento indicado en el bloque interactivo.
111 1011	123	Capturar el offset del punto de referencia.
111 1100	124	Giro positivo a impulsos.
111 1101	125	Giro negativo a impulsos.
111 1110	126	Buscar el punto de referencia.
111 1111	127	Cargar la configuración de nuevo.

- Si el bit R se activa al cambiar el S7-200 a STOP, el módulo de posicionamiento finalizará los comandos actuales. Si no se está ejecutando ningún comando, el módulo ejecutará el comando que indican los bits de "Command_code".
- Si el bit R conserva su último estado, el módulo de posicionamiento finalizará los movimientos en curso
- Si el S7-200 detecta un error fatal y desactiva todas las salidas digitales, el módulo de posicionamiento desacelerará hasta que pare el motor.

El módulo de posicionamiento incorpora un temporizador de vigilancia que desactiva las salidas si se interrumpe la comunicación con el S7-200. Cuando el temporizador de vigilancia detiene el contaje de tiempo, el módulo desacelerará hasta que pare el motor.

Si se detecta un error fatal en el hardware o en el firmware del módulo, el módulo de posicionamiento ajustará las salidas P0, P1, DIS y CLR a estado inactivo.

Comando	Descripción
Comandos 0 a 24: Ejecutar el movimiento indicado en los bloques de perfiles 0 a 24.	Cuando se ejecuta este comando, el módulo de posicionamiento ejecuta la operación de movimiento indicada en el campo MODE del bloque de perfiles, conforme a la sección "Command_code" del comando.
	 En el modo 0 (posición absoluta) se definen en el bloque del perfil de movimiento entre uno y cuatro pasos, conteniendo cada uno de ellos la posición (POS) y la velocidad (SPEED) que describe el segmento de movimiento. POS representa una posición absoluta conforme a la posición indicada como punto de referencia. La relación entre la posición actual y la posición del primer paso del perfil determina el sentido de movimiento. En un movimiento que comprenda varios pasos no se permite invertir el sentido del recorrido, indicándose en este caso una condición de error.
	 En el modo 1 (posición relativa) se definen en el bloque del perfil de movimiento entre uno y cuatro pasos, conteniendo cada uno de ellos la posición (POS) y la velocidad (SPEED) que describe el segmento de movimiento. El signo del valor de posición (POS) determina el sentido del movimiento. En un movimiento que comprenda varios pasos no se permite invertir el sentido del recorrido, indicándose en este caso una condición de error.
	 En los modos 2 y 3 (funcionamiento continuo a velocidad única) se ignora la indicación de posición (POS) y el módulo acelera hasta la velocidad indicada en el campo SPEED del primer paso. El modo 2 se utiliza para el giro positivo, en tanto que el modo 3 se utiliza para el giro negativo. El movimiento se detiene cuando el byte de comando pasa a estado inactivo.
	 En los modos 6 y 7 (funcionamiento continuo a velocidad única con paro disparado), el módulo acelera hasta la velocidad indicada en el campo SPEED del primer paso. Cuando se activa la entrada RPS, se detiene el movimiento tras haberse recorrido la distancia indicada en el campo POS del primer paso. (La distancia indicada en el campo POS debe incluir la distancia de desaceleración.) Si el valor del campo POS es "0" al activarse la entrada RPS, el módulo desacelerará hasta que pare el motor. El modo 6 se utiliza para el giro positivo, en tanto que el modo 7 se utiliza para el giro negativo.
	 En los modos 8 y 9, el valor binario de la entrada RPS selecciona uno de los dos valores de velocidad indicados en los dos primeros pasos del bloque de perfiles.
	 Si está desactivada la entrada RPS, el paso 0 controlará la velocidad del accionamiento.
	 Si está activada la entrada RPS, el paso 1 controlará la velocidad del accionamiento.
	El modo 8 se utiliza para el giro positivo, en tanto que el modo 9 se utiliza para el giro negativo. El valor de SPEED controla la velocidad de movimiento. Los valores de POS se ignoran en este modo.
Comando 118	Cuando se ejecuta este comando, el módulo de posicionamiento activa la salida
Activar la salida DIS.	Cuando os sissuito asta comando, al médulo de posicionamiente despetivo la solida
Desactivar la salida DIS.	DIS.
Comando 120 Impulsar la salida CLR.	Cuando se ejecuta este comando, el módulo de posicionamiento genera un impulso de 50 milisegundos en la salida CLR.
Comando 121 Cargar la posición actual de nuevo.	Cuando se ejecuta este comando, el módulo de posicionamiento ajusta la posición actual al valor encontrado en el campo TARGET_POS del bloque interactivo.

Comando	Descripción
Comando 122 Ejecutar el movimiento indicado en el bloque interactivo.	 Cuando se ejecuta este comando, el módulo de posicionamiento ejecuta la operación de movimiento indicada en el campo MOVE_CMD del bloque interactivo. En los modos 1 y 0 (movimiento absoluto y relativo), se ejecuta un movimiento de un solo paso conforme a la velocidad objetivo y a la información de posición indicada en los campos TARGET_SPEED y TARGET_POS del bloque interactivo. En los modos 2 y 3 (funcionamiento continuo a velocidad única) se ignora la indicación de posición (POS) y el módulo de posicionamiento acelera hasta la velocidad indicada en el campo TARGET_SPEED del bloque interactivo. El movimiento se detiene cuando el byte de comando pasa a estado inactivo. En los modos 4 y 5 (control manual de la velocidad) se ignora la indicación de posición (POS) y el programa carga el valor de los cambios de velocidad en el campo TARGET_SPEED del bloque interactivo.
Comando 123 <i>Capturar el offset del punto de referencia.</i>	Cuando se ejecuta este comando, el módulo de posicionamiento define una nueva posición cero que difiere de la posición del punto de referencia. Antes de enviar este comando, es preciso haber determinado la posición del punto de referencia y desplazar la máquina hasta la posición inicial de trabajo. Tras recibir este comando, el módulo de posicionamiento calcula el offset entre la posición inicial de trabajo (o posición actual) y la posición del punto de referencia. A continuación, escribe el offset calculado en el campo RP_OFFSET del bloque interactivo. La posición actual se ajusta después a "0" para definir la posición inicial de trabajo como posición cero. Si el motor paso a paso pierde la noción de su posición (por ejemplo, en caso de una caída de potencia o si se cambia manualmente la posición del motor), el comando "Buscar el punto de referencia" se puede utilizar para restablecer automáticamente la posición cero.
Comando 124 Giro positivo a impulsos.	Este comando sirve para enviar manualmente impulsos con objeto de desplazar el motor paso a paso en sentido positivo. Si el comando permanece activado durante menos de 0,5 segundos, el módulo de posicionamiento enviará impulsos para recorrer la distancia indicada en JOG_INCREMENT. Si el comando permanece activado durante 0,5 segundos o más, el módulo comenzará a acelerar hasta la velocidad indicada en JOG_SPEED. Si se detecta un cambio a inactividad, el módulo de posicionamiento desacelerará hasta que pare el motor.
Comando 125 <i>Giro negativo a impulsos.</i>	Este comando sirve para enviar manualmente impulsos con objeto de desplazar el motor paso a paso en sentido negativo. Si el comando permanece activado durante menos de 0,5 segundos, el módulo de posicionamiento enviará impulsos para recorrer la distancia indicada en JOG_INCREMENT. Si el comando permanece activado durante 0,5 segundos o más, el módulo de posicionamiento comenzará a acelerar hasta la velocidad indicada en JOG_SPEED. Si se detecta un cambio a inactividad, el módulo de posicionamiento desacelerará hasta que pare el motor.
Comando 126 <i>Buscar el punto de referencia.</i>	Cuando se ejecuta este comando, el módulo de posicionamiento comienza a buscar el punto de referencia utilizando el método de búsqueda indicado. Cuando se localiza el punto de referencia y tras detenerse el movimiento, el módulo cargará en la posición actual el valor leído del campo RP_OFFSET del bloque interactivo y generará un impulso de 50 milisegundos en la salida CLR.
Comando 127 Cargar la configuración de nuevo.	Cuando se ejecuta este comando, el módulo de posicionamiento lee el puntero de la tabla de configuración/perfiles de la dirección de la memoria de marcas especiales (SM) y, a continuación, lee el bloque de configuración de la dirección indicada en el puntero de la tabla de configuración/perfiles. El módulo compara luego los datos de configuración recién obtenidos con la configuración existente y efectúa los cambios deseados, o bien ejecuta nuevos cálculos. Los perfiles almacenados en caché se descartan.

Tabla 9-26 Comandos de movimiento, continuaci

Descripción del caché de perfiles del módulo de posicionamiento

El módulo de posicionamiento almacena en la memoria caché los datos de ejecución de 4 perfiles como máximo. Cuando el módulo recibe un comando para que ejecute un perfil, comprobará si el perfil solicitado está almacenado en la memoria caché. Si encuentra los datos en la caché, el módulo de posicionamiento ejecutará el perfil de inmediato. En caso contrario, leerá la información relativa al bloque del perfil de la tabla de configuración/perfiles del S7-200 y calculará los datos de ejecución del perfil antes de ejecutarlo.

El comando 122 (Ejecutar el movimiento indicado en el bloque interactivo) no utiliza la memoria caché para almacenar los datos de ejecución, sino que lee siempre el bloque interactivo de la tabla de configuración/perfiles del S7-200 y calcula los datos para ejecutar el movimiento.

Si reconfigura el módulo de posicionamiento se borrarán todos los datos de ejecución almacenados en la memoria caché.

Crear operaciones de control de posición personalizadas

El asistente de control de posición crea las operaciones de posicionamiento para controlar el funcionamiento del módulo de posicionamiento. Sin embargo, también es posible crear operaciones personalizadas. El siguiente programa de ejemplo en AWL (Lista de instrucciones) ilustra cómo crear operaciones personalizadas para controlar el módulo de posicionamiento.

En este programa de ejemplo se utiliza una CPU 224 con un módulo de posicionamiento ubicado en el slot 0. El módulo se configura durante el arranque. CMD_STAT es el símbolo de SMB234, CMD es el símbolo de QB2 y NEW_CMD es el símbolo del perfil.

Programa de ejemplo: para controlar el módulo de posicionamiento			
Network 1 //Nuevo estado del comando de movimiento.			
LSCR State_0			
Network 2 //CMD_STAT es el símbolo de SMB234, //CMD es el símbolo de QB2, //NEW_CMD es el símbolo del perfil. //1º Borrar el bit "Done" del módulo de posicionamiento. //2º Borrar el byte de comando del módulo de posicionamiento. //3º Enviar un nuevo comando. //4º Esperar hasta que se ejecute el comando.			
LD SM0.0 MOVB 0, CMD_STAT BIW 0, CMD BIW NEW_CMD, CMD SCRT State_1			
Network 3 SCRE			
Network 4 //Esperar hasta que finalice el comando.			
LSCR State_1			
Network 5//Si el comando finaliza sin errores, pasar al estado inactivo.LDB=CMD_STAT, 16#80			
SCRT Idle_State			
Network 6 //Si el comando finaliza con errores, pasar al estado de tratamiento de errores. LDB> CMD_STAT, 16#80 SCRT Error_State			
Network 7 SCRE			

Modos de búsqueda del RP soportados por el módulo de posicionamiento

Las figuras siguientes muestran las diversas opciones de los modos de búsqueda del punto de referencia (RP).

- □ La figura 9-21 muestra dos opciones del modo 1 de búsqueda del RP. En este modo, el RP es el punto donde se activa la entrada RPS en la aproximación desde el área de trabajo.
- □ La figura 9-22 muestra dos opciones del modo 2 de búsqueda del RP. En este modo, el RP se encuentra en el centro del área activa de la entrada RPS.
- □ La figura 9-23 muestra dos opciones del modo 3 de búsqueda del RP. En este modo, el RP se encuentra a un número determinado de impulsos cero (ZP) fuera del área activa de la entrada RPS.
- La figura 9-24 muestra dos opciones del modo 4 de búsqueda del RP. En este modo, el RP se encuentra a un número determinado de impulsos cero (ZP) dentro del área activa de la entrada RPS.

En cada modo existen cuatro combinaciones del sentido de búsqueda del RP y del sentido de aproximación al RP. (En la figura se representan sólo dos combinaciones.) Estas combinaciones determinan el patrón de búsqueda del RP. Cada una de ellas puede tener a su vez 4 puntos iniciales diferentes:

Las áreas de trabajo de cada uno de los diagramas se han ubicado de manera que el movimiento desde el punto de referencia hacia el área de trabajo se efectúe en el mismo sentido que al aproximarse al RP. Seleccionando así la ubicación del área de trabajo, se suprimen todos los movimientos indeseados del sistema mecánico desde el primer movimiento hacia el área de trabajo tras buscar el punto de referencia.

Figura 9-21 Modo 1 de búsqueda del RP

Figura 9-22 Modo 2 de búsqueda del RP

Figura 9-23 Modo 3 de búsqueda del RP

Figura 9-24 Modo 4 de búsqueda del RP

Seleccionar la ubicación del área de trabajo para suprimir los movimientos indeseados

El lado superior de la figura 9-25 muestra el área de trabajo en relación con el punto de referencia (RP), el área activa RPS y los interruptores de fin de carrera (LMT+ y LMT-) en un sentido de aproximación que suprime los movimientos indeseados. En el lado inferior de la figura no se eliminan los movimientos indeseados, debido a la ubicación del área de trabajo. La figura 9-25 muestra el modo 3 de búsqueda del RP. El área de trabajo se puede emplazar de forma similar en las demás secuencias de los otros modos de búsqueda del RP, aunque ello no es recomendable.

Figura 9-25 Ubicación del área de trabajo con y sin supresión de movimientos indeseados

Crear un programa para el módulo Módem

El módulo Módem EM 241 permite conectar el S7-200 directamente a una línea telefónica analógica y soporta la comunicación entre el S7-200 y STEP 7-Micro/WIN. El módulo Módem asiste también el protocolo de esclavo Modbus RTU. La comunicación entre el módulo Módem y el S7-200 se establece vía el bus de ampliación.

STEP 7-Micro/WIN incorpora un asistente de módems que permite configurar un módem remoto o un módulo Módem, con objeto de conectar un S7-200 local a un aparato remoto.

Índice del capítulo

Funciones del módulo Módem	326
Configurar el módulo Módem EM con el asistente de módems	332
Operaciones y restricciones de los módems	336
Operaciones del módulo Módem	337
Programa de ejemplo para el módulo Módem	341
CPUs S7-200 que soportan módulos inteligentes	341
Marcas especiales del módulo Módem	341
Temas avanzados	343
Formato de los números de teléfono para mensajería	345
Formato de los mensajes de texto	346
Formato de los mensajes de transferencia de datos con la CPU	347

Funciones del módulo Módem

El módulo Módem permite conectar el S7-200 directamente a una línea telefónica analógica, ofreciendo las funciones siguientes:

- Incorpora un enchufe telefónico internacional.
- Incorpora una conexión de módem a STEP 7-Micro/WIN para la programación y la eliminación de errores (teleservicio).
- Soporta el protocolo Modbus RTU.
- Soporta la radiobúsqueda numérica y textual.
- Soporta la mensajería SMS.
- Permite transferir datos entre CPUs, o bien de una CPU a Modbus.
- Ofrece protección con contraseña.
- Soporta la devolución de llamadas.

- Figura 10-1 Módulo Módem EM 241
- La configuración del módulo Módem se guarda en la CPU.

El asistente de módems de STEP 7-Micro/WIN sirve para configurar el módulo Módem. Los datos técnicos del módulo Módem se indican en el anexo A.

Enchufe telefónico internacional

El módulo Módem es un módem estándar de 10 bits V.34 (33,6 kbit/s), compatible con la mayoría de los módems internos y externos para PCs. El módulo Módem no se comunica con módems de 11 bits.

123456	<u>Pin</u> 3 4	<u>Descripción</u> Timbre Consejo	Se permite la conexión inversa.
--------	----------------------	---	------------------------------------

Figura 10-2 Enchufe RJ11

El módulo Módem se conecta a la línea telefónica utilizando el enchufe RJ11 de seis pines y cuatro hilos incorporado en el lado frontal del módulo (v. fig. 10-2).

Para conectar el enchufe RJ11 a la línea telefónica estándar en diversos países puede resultar necesario utilizar un adaptador. Para más información a este respecto, consulte la documentación del adaptador.

El módem y el enchufe telefónico son alimentados por una fuente de alimentación externa de 24 V c.c. Ésta se puede conectar a la alimentación de sensores de la CPU, o bien a una fuente externa. Conecte el terminal a tierra del módulo Módem a la toma de tierra del sistema.

Al aplicar tensión al módulo Módem, éste configura automáticamente el enchufe telefónico conforme al país en cuestión. Los dos interruptores rotativos del módulo sirven para seleccionar el código de país. Antes de conectar la alimentación del módulo Módem es preciso ajustar el país deseado utilizando los selectores. En la tabla 10-1 figuran los ajustes de los selectores para los países soportados.

Tabla 10-1 Países soportados por el EM 241			
Ajuste	País		
00	Australia		
01	Austria		
02	Bélgica		
05	Canadá		
06	China		
08	Dinamarca		
09	Finlandia		
10	Francia		
11	Alemania		
12	Grecia		
16	Irlanda		
18	Italia		
22	Luxemburgo		
25	Países Bajos		
26	Nueva Zelanda		
27	Noruega		
30	Portugal		
34	España		
35	Suecia		
36	Suiza		
38	Reino Unido		
39	EE UU		

Conexión a STEP 7-Micro/WIN

El módulo Módem sirve para comunicarse con STEP 7-Micro/WIN vía una línea telefónica (teleservicio). No es necesario configurar ni programar la CPU S7-200 para utilizar el módulo Módem en calidad de módem remoto en combinación con STEP 7-Micro/WIN.

Proceda de la manera siguiente para utilizar el módulo Módem con STEP 7-Micro/WIN:

- Desconecte la alimentación de la CPU S7-200 y conecte el módulo Módem al bus de ampliación. No conecte ningún módulo de ampliación durante el arranque de la CPU S7-200.
- 2. Conecte la línea telefónica al módulo Módem. En caso necesario, utilice un adaptador.
- 3. Aplique una tensión de 24 voltios c.c. al bloque de terminales del módulo Módem.
- 4. Conecte el terminal a tierra del módulo Módem a la toma de tierra del sistema.
- 5. Seleccione el país en cuestión utilizando los interruptores rotativos.
- 6. Conecte la alimentación de la CPU S7-200 y del módulo Módem.
- 7. Configure STEP 7-Micro/WIN para la comunicación con un módem de 10 bits.

Protocolo Modbus RTU

El módulo Módem se puede configurar de manera que actúe de esclavo Modbus RTU. El módulo recibe peticiones Modbus vía la interfaz del módem, interpreta esas peticiones y transfiere datos de o a la CPU. A continuación, genera una respuesta Modbus y la envía a través de la interfaz del módem.

Consejo

Si el módulo Módem se configura de manera que actúe de esclavo Modbus RTU, STEP 7-Micro/WIN no podrá comunicarse con él a través de la línea telefónica.

El módulo Módem soporta las funciones Modbus que figuran en la tabla 10-2.

Las funciones Modbus 4 y 16 permiten leer o escribir como máximo 125 registros de retención (250 bytes de la memoria V) en una petición. Las funciones 5 y 15 escriben datos en la imagen del proceso de las salidas de la CPU. El programa de usuario puede sobrescribir estos valores. Tabla 10-2 Función 01 Función 01 Función 02 Leer el estado de las bobinas (o salidas). Función 02 Leer el estado de las entradas.

Por lo general, las direcciones Modbus se escriben como valores de 5 ó 6 caracteres, conteniendo el tipo de datos y el offset. El primer carácter o los dos primeros caracteres determinan el tipo de datos, en tanto que los últimos cuatro caracteres seleccionan el valor apropiado dentro del tipo de datos en cuestión. El maestro Modbus asigna luego las direcciones de manera que correspondan a las funciones correctas.

Módem			
Función	Descripción		
Función 01	Leer el estado de las bobinas (o salidas).		
Función 02	Leer el estado de las entradas.		
Función 03	Leer los registros de retención.		
Función 04	Leer los registros de las entradas (analógicas).		
Función 05	Escribir en una bobina (o salida).		
Función 06	Preseleccionar un registro.		
Función 15	Escribir en varias bobinas (o salidas).		
Función 16	Preseleccionar varios registros.		

La tabla 10-3 muestra las direcciones Modbus que soporta el módulo Módem, así como la asignación de las direcciones Modbus a las direcciones de la CPU S7-200.

Utilice el asistente de módems con objeto de crear un bloque de configuración, de manera que el módulo Módem soporte el protocolo Modbus RTU. Para poder utilizar el protocolo Modbus, el bloque de configuración del módulo Módem se deberá cargar previamente en el bloque de datos de la CPU.

Dirección Modbus	Dirección en la CPU S7-200
000001	Q0.0
000002	Q0.1
000003	Q0.2
000127	Q15.6
000128	Q15.7
010001	10.0
010002	I0.1
010003	10.2
010127	l15.6
010128	115.7
030001	AIWO
030002	AIW2
030003	AIW4
030032	AIW62
040001	VW0
040002	VW2
040003	VW4
04xxxx	VW 2*(xxxx-1)

Tabla 10-3 Asignar direcciones Modbus a la CPU S7-200

Radiobúsqueda y mensajería SMS

El módulo Módem soporta el envío de mensajes de radiobúsqueda numéricos y textuales, así como de mensajes SMS (servicio de mensajería corta o "Short Message Service") a teléfonos móviles o celulares (si el proveedor correspondiente asiste esta función). Los mensajes y los números de teléfono se almacenan en el bloque de configuración del módulo Módem que, a su vez, se debe cargar en el bloque de datos de la CPU S7-200. El asistente de módems se puede utilizar para crear los mensajes y los números de teléfono del bloque de configuración del módulo Módem. Este asistente genera también el código para que el programa de usuario pueda iniciar el envío de mensajes.

Radiobúsqueda numérica

La radiobúsqueda numérica utiliza los tonos de un teléfono de marcación por tonos para enviar valores numéricos a un buscapersonas ("bíper"). El módulo Módem marca el servicio de radiobúsqueda deseado, espera que concluya el mensaje de voz y envía luego los tonos correspondientes a los dígitos del mensaje de radiobúsqueda. En los mensajes de radiobúsqueda son admisibles los dígitos 0 a 9, los asteriscos (*), así como las letras A, B, C y D. Los caracteres correspondientes al asterisco y a las letras A, B, C y D que se visualizan en el buscapersonas no están estandarizados, sino que dependen del buscapersonas y del proveedor del servicio de radiobúsqueda.

Radiobúsqueda textual

La radiobúsqueda textual permite transmitir mensajes alfanuméricos al proveedor del servicio de radiobúsqueda y, de allí, a un buscapersonas. Por lo general, los proveedores de radiobúsqueda textual disponen de una línea de módem que acepta páginas de texto. El módulo Módem utiliza el protocolo TAP (Telelocator Alphanumeric Protocol) para transmitir los mensajes de texto al proveedor de servicios. Numerosos proveedores de radiobúsqueda textual utilizan este protocolo para aceptar mensajes.

Servicio de mensajería corta (SMS)

El servicio de mensajería corta SMS (Short Message Service) es soportado por algunos servicios de telefonía móvil (por lo general, compatibles con GSM). Gracias a ello, el módulo Módem puede enviar mensajes vía una línea telefónica analógica a un proveedor de SMS. Éste transmite entonces el mensaje al teléfono móvil (o celular). A continuación, el mensaje aparece en el visualizador de textos del teléfono. El módulo Módem utiliza los protocolos TAP (Telelocator Alphanumeric Protocol) y UCP (Universal Computer Protocol) para transmitir mensajes al proveedor de SMS. Los mensajes SMS sólo se pueden enviar a proveedores de SMS que soporten estos protocolos en la línea de módem.

Variables intercaladas en mensajes de texto y en mensajes SMS

El módulo Módem puede insertar valores de datos de la CPU en los mensajes de texto y formatear estos valores conforme a lo especificado en el mensaje. Es posible indicar el número de dígitos a la izquierda y a la derecha del separador decimal, así como si éste debe ser un punto o una coma. Cuando el programa de usuario ordena al módulo Módem que transmita un mensaje de texto, el módulo obtiene el mensaje de la CPU, determina qué valores de la CPU se necesitan en el mensaje, obtiene esos valores de la CPU, formatea y deposita los valores en el mensaje de texto y, a continuación, transmite el mensaje al proveedor de servicios.

A lo largo de varios ciclos, la CPU lee el número de teléfono del proveedor de mensajería, así como el mensaje y las variables intercaladas en el mismo. El programa de usuario no debería modificar los números de teléfono ni los mensajes mientras se está enviando un mensaje. Las variables intercaladas se pueden seguir actualizando durante el envío del mensaje. Si un mensaje contiene diversas variables, éstas se leerán a lo largo de varios ciclos de la CPU. Si desea que sean coherentes todas las variables intercaladas en un mensaje, no cambie ninguna de ellas tras enviar el mensaje.

Transferencia de datos

Gracias al módulo Módem, el programa de usuario puede transferir datos vía la línea telefónica a una CPU diferente, o bien a un aparato Modbus. Las transferencias de datos y los números de teléfono se configuran utilizando el asistente de módems y se almacenan en el bloque de configuración del módulo Módem. El bloque de configuración se debe cargar después en el bloque de datos de la CPU S7-200. El asistente de módems genera también el código para que el programa de usuario pueda iniciar las transferencias de datos.

Una transferencia de datos puede ser una petición de leer o escribir datos en un aparato remoto. En una transferencia de datos se pueden leer o escribir 1 a 100 palabras de datos. Estas transferencias transmiten datos de o a la memoria V de la CPU asociada.

El asistente de módems permite crear transferencias de datos que comprendan una lectura única del aparato remoto, una escritura única en el aparato remoto, o bien, tanto una lectura como una escritura en el aparato remoto.

Las transferencias de datos utilizan el protocolo configurado en el módulo Módem. Si el módulo se ha configurado de manera que soporte el protocolo PPI (para comunicarse con STEP 7-Micro/WIN), utilizará el protocolo PPI para transferir datos. Si se ha configurado de manera que soporte el protocolo Modbus RTU, los datos se transferirán usando el protocolo Modbus.

A lo largo de varios ciclos, la CPU lee el número de teléfono del aparato remoto, la petición de transferencia de datos y los datos que se están transfiriendo. El programa de usuario no debería modificar los números de teléfono ni los mensajes mientras se está enviando un mensaje. Tampoco se deben cambiar los datos transferidos durante el envío de mensajes.

Si el aparato remoto es otro módulo Módem, la función de contraseña se podrá utilizar para las transferencias de datos. Para ello es preciso introducir la contraseña del módulo Módem remoto en la configuración del número de teléfono. La función de devolución de llamadas no se puede utilizar en las transferencias de datos.

Protección con contraseña

La protección con contraseña del módulo Módem es opcional, pudiéndose habilitar con el asistente de módems. Esta contraseña es diferente a la de la CPU. La contraseña del módulo Módem comprende 8 caracteres que el llamador deberá introducir para que el módulo pueda acceder a la CPU asociada. La contraseña se almacena en la memoria V de la CPU como parte del bloque de configuración del módulo Módem. Este bloque de configuración se debe cargar en el bloque de datos de la CPU asociada.

Si la protección con contraseña de la CPU se ha habilitado en el bloque de sistema, el llamador deberá introducirla para poder acceder a las funciones protegidas con contraseña.

Devolución de llamadas

La función de devolución de llamadas del módulo Módem es opcional y se configura con el asistente de módems. Esta función ofrece seguridad adicional a la CPU asociada, puesto que permite el acceso a la CPU sólo desde números de teléfono predefinidos. Si está habilitada la función de devolución de llamadas, el módulo Módem responderá a todas las llamadas entrantes, verificará el llamador y desconectará luego la comunicación. Si el llamador está autorizado, el módulo Módem marcará el número de teléfono predefinido del llamador, permitiéndole acceder a la CPU.

El módulo Módem soporta tres modos de devolución de llamadas, a saber:

- Devolución de llamadas a un solo número de teléfono predefinido.
- Devolución de llamadas a varios números de teléfono predefinidos.
- Devolución de llamadas a un número de teléfono cualquiera.

Para seleccionar el modo de devolución de llamadas, elija la opción correspondiente en el asistente de módems y defina luego los números de teléfono correspondientes. Estos números de teléfono se guardan en el bloque de configuración del módulo Módem que se almacena en el bloque de datos de la CPU asociada.

La forma más sencilla de devolver llamadas es a un solo número de teléfono predefinido. Si en el bloque de configuración del módulo Módem se almacena sólo un número para la devolución de llamadas, cada vez que el módulo Módem reciba una llamada, le avisará al llamador que se ha habilitado la devolución de llamadas, desconectará al llamador y marcará luego el número contenido en el bloque de configuración.

El módulo Módem soporta también la devolución de llamadas a varios números de teléfono predefinidos. En este caso, el número de teléfono se solicita al llamador. Si el llamador indica un número que concuerde con uno de los números de teléfono predefinidos en el bloque de configuración del módulo Módem, éste desconectará al llamador y devolverá la llamada al número de teléfono contenido en el bloque de configuración. El usuario puede configurar como máximo 250 números para la devolución de llamadas.

Si ha predefinido varios números para la devolución de llamadas, el número indicado al conectar al módulo Módem deberá coincidir exactamente con uno de los números de teléfono contenidos en el bloque de configuración del módulo Módem, a excepción de los dos primeros dígitos. Por ejemplo, si el número configurado es 91(123)4569999 - puesto que se debe marcar un número especial para tener acceso a una línea externa (9) y de larga distancia (1) - el número indicado para la devolución de llamadas podría ser uno de los siguientes:

- 91(123)4569999
- 1(123)4569999
- (123)4569999

Todos los números de teléfono indicados arriba se consideran coincidentes para la devolución de llamadas. Cuando el módulo Módem devuelve la llamada, utiliza el número contenido en el bloque de configuración (en este ejemplo, 91(123)4569999). Si desea configurar varios números de teléfono para la devolución de llamadas, vigile que todos ellos sean unívocos, a excepción de los dos primeros dígitos. Al comparar los números para la devolución de llamadas se tienen en cuenta sólo los caracteres numéricos del número de teléfono, ignorándose todos los demás caracteres (por ejemplo, comas o paréntesis).

La devolución de llamadas a un número de teléfono cualquiera se configura con el asistente de módems, activando para ello la opción "Habilitar la devolución de llamadas a un número cualquiera". Si selecciona esta opción, el módulo Módem responderá la llamada entrante y solicitará un número para devolver la llamada. Una vez que el llamador indique el número de teléfono, el módulo Módem desconectará la línea y marcará ese número. Este modo de devolución de llamadas sirve sólo para que las tarifas telefónicas se cobren a la conexión de teléfono del módulo Módem, sin proporcionarle ninguna seguridad a la CPU S7-200. Si utiliza este modo de devolución de llamadas es recomendable que defina una contraseña del módulo Módem para garantizar la seguridad.

La contraseña del módulo Módem y las funciones de devolución de llamadas se pueden habilitar simultáneamente. En este caso, el módulo Módem le solicita al llamador que introduzca la contraseña correcta antes de devolver la llamada.

Tabla de configuración del módulo Módem

Todos los mensajes de texto, números de teléfono, informaciones de transferencia de datos, números para devolución de llamadas y otras opciones se guardan en la tabla de configuración del módulo Módem que se debe cargar en la memoria V de la CPU S7-200. El asistente de módems le guía por el proceso de creación de la tabla de configuración del módulo Módem. STEP 7-Micro/WIN deposita la tabla de configuración del módulo Módem en el bloque de datos que se carga luego en la CPU S7-200.

El módulo Módem lee esta tabla de configuración durante el arranque de la CPU y en los 5 segundos posteriores a cualquier cambio de STOP a RUN de la CPU. El módulo Módem no lee una nueva tabla de configuración de la CPU mientras que esté conectado a STEP 7-Micro/WIN. Si se carga una tabla de configuración estando conectado el módulo Módem, éste leerá la nueva tabla cuando finalice la sesión en línea.

Si el módulo Módem detecta un error en la tabla de configuración, parpadeará el LED "Módulo OK" (MG) ubicado en la placa frontal del módulo. Para más información acerca del error de configuración detectado, abra el cuadro de diálogo "Información CPU" en STEP 7-Micro/WIN o lea el valor de SMW220 (módulo en el slot 0). Los errores de configuración del módulo Módem figuran en la tabla 10-4. STEP 7-Micro/WIN comprueba los datos antes de crear la tabla de configuración del módulo Módem con el asistente de módems.

Decembration

LIIU	Descripcion
0000	Sin error.
0001	Sin alimentación externa de 24 V c.c.
0002	Fallo del módem.
0003	Falta el ID del bloque de configuración. El identificador del EM 241 al comienzo de la tabla de configuración no es válido para este módulo.
0004	Bloque de configuración fuera de rango. El puntero de la tabla de configuración no señala a la memoria V, o bien una parte de la tabla está fuera del rango permitido de la memoria V de la CPU asociada.
0005	Error de configuración. La devolución de llamadas está habilitada y la cantidad de números de teléfono para devolución de llamadas es igual a 0 o superior a 250. El número de mensajes es superior a 250. La cantidad de números de teléfono para mensajería es superior a 250 o la longitud de estos números excede 120 bytes.
0006	Error de selección de país. No se soporta el país seleccionado con los dos interruptores rotativos.
0007	Número de teléfono demasiado largo. Se ha habilitado la devolución de llamadas y la longitud del número para la devolución de llamadas excede el valor máximo.
0008 a 00FF	Reservados
01xx	Error en el número para la devolución de llamadas xx. El número xx contiene caracteres no válidos. El valor xx es "1" para el primer número, "2" para el segundo, etc.
02xx	Error en el número de teléfono xx. Uno de los campos del número de teléfono para mensajería xx o del número de teléfono para transferir datos xx contiene un valor no válido. El valor xx es "1" para el primer número, "2" para el segundo, etc.
03xx	Error en el mensaje xx. El mensaje o la transferencia de datos xx excede la longitud máxima. El valor xx es "1" para el primer mensaje, "2" para el segundo, etc.
0400 a FFFF	Reservados

Tabla 10-4 Errores de configuración del módulo EM 241 (en formato hexadecimal)

F-----

LEDs de estado del módulo Módem

El módulo Módem dispone de 8 LEDs de estado en la placa frontal (v. tabla 10-5).

Tabla 10-5 LEDs de estado del módulo Módem EM 24	1
--	---

LED	Descripción
MF	Fallo del módulo. Este LED se enciende si el módulo detecta uno de los fallos siguientes:
	Sin alimentación externa de 24 V c.c.
	Timeout del temporizador de vigilancia.
	Fallo del módem.
	Error de comunicación con la CPU local.
MG	Módulo OK. Este LED se enciende si no hay errores en el módulo. El LED "MG" parpadea si hay un error en la tabla de configuración, o bien si el usuario ha seleccionado un ajuste de país no válido para la conexión a la línea telefónica. Para más información acerca del error de configuración, abra el cuadro de diálogo "Información CPU" en STEP 7-Micro/WIN o lea el valor de SMW220 (módulo en el slot 0).
OH	Descolgado. Este LED se enciende si el EM 241 está usando activamente la línea telefónica.
NT	No hay tono para marcar. Este LED indica una condición de error y se enciende si el EM 241 debe enviar un mensaje, pero no hay tono para marcar en la línea telefónica. Este error sólo se presenta si el EM 241 se ha configurado para que compruebe si hay tono para marcar antes de efectuar la marcación. El LED permanece encendido durante aproximadamente 5 segundos tras haber fallado el intento de marcar.
RI	Indicador de timbre. Este LED indica que el EM 241 está recibiendo una llamada.
CD	Detector de portadora. Este LED indica que se ha establecido una conexión con un módem remoto.
Rx	Recepción de datos. Este LED parpadea cuando el módem está recibiendo datos.
Tx	Transmisión de datos. Este LED parpadea cuando el módem está transmitiendo datos.

Configurar el módulo Módem EM con el asistente de módems

En STEP 7-Micro/WIN, inicie el asistente de módems a partir del menú Herramientas, o bien desde el área "Herramientas" de la barra de navegación.

Asistente de módems Para poder utilizar el asistente, es preciso compilar el proyecto y ajustar el modo de direccionamiento simbólico. Compile ahora el programa si no lo ha hecho todavía.

- 1. En la primera pantalla del asistente de módems, seleccione "Configurar un módulo Módem EM 241" y haga clic en "Siguiente>".
- 2. Para poder generar el código de programa correcto, el asistente de módems requiere la posición del módulo Módem en relación con la CPU S7-200. Haga clic en el botón "Leer módulos" para leer automáticamente las posiciones de los módulos inteligentes conectados a la CPU. Los módulos de ampliación están numerados consecutivamente a partir de "0". Haga doble clic en el módulo Módem que desea configurar, o bien introduzca en el campo "Posición del módulo" la ubicación del mismo. Haga clic en "Siguiente>".

En el caso de las CPUs S7-200 con firmware anterior a la versión 1.2, los módulos inteligentes se deberán disponer directamente junto a la CPU, de manera que el asistente de módems pueda configurarlos.

3. En la pantalla "Protección con contraseña" es posible asignarle al módulo Módem una contraseña que puede comprender entre 1 y 8 caracteres. Esta contraseña es independiente de la contraseña de la CPU S7-200. Si el módulo está protegido con contraseña, cualquiera que intente establecer una conexión con la CPU S7-200 vía el módulo Módem deberá introducir la contraseña correcta. En caso necesario, seleccione la protección con contraseña e introduzca una contraseña. Haga clic en "Siguiente>".

- 4. El módulo Módem soporta dos protocolos de comunicación, a saber: el protocolo PPI (para comunicarse con STEP 7-Micro/WIN) y el protocolo Modbus RTU. El protocolo a seleccionar depende del tipo de aparato utilizado como interlocutor remoto. Este ajuste determina el protocolo de comunicación a utilizar cuando el módulo Módem responda una llamada, así como cuando inicie una transferencia de datos a la CPU. Seleccione el protocolo apropiado y haga clic en "Siguiente>".
- 5. El módulo se puede configurar para que envíe mensajes numéricos y de texto a buscapersonas ("bípers"), o bien mensajes SMS (servicio de mensajería corta o "Short Message Service") a teléfonos móviles (celulares). Active la casilla de verificación "Habilitar mensajería" y haga clic en el botón "Configurar mensajería..." para definir los mensajes y los números de teléfono de los destinatarios.
- 6. Al configurar un mensaje que se deba enviar a un buscapersonas, o bien a un teléfono móvil, deberá definir el mensaje y el número de teléfono. En la pantalla "Configurar mensajería", seleccione la ficha "Mensajes" y haga clic en el botón "Nuevo mensaje". Introduzca el texto del mensaje y, en caso necesario, indique los valores de datos de la CPU que se deben insertar en el mismo. Para insertar en el mensaje un valor de datos de la CPU, desplace el cursor hasta la posición de los datos y haga clic en el botón "Insertar datos...". Indique la dirección del valor de datos de la CPU (por ejemplo, VW100), el formato de visualización (por ejemplo, entero con signo), así como los dígitos a la izquierda y a la derecha del separador decimal. También puede determinar si el separador decimal debe ser una coma, o bien un punto.
 - Los mensajes de radiobúsqueda numérica pueden comprender sólo los dígitos 0 a
 9, las letras A, B, C y D, así como asteriscos (*). La longitud máxima admisible de un mensaje de radiobúsqueda numérica depende del proveedor de servicios.
 - Los mensajes de texto pueden comprender como máximo 119 caracteres alfanuméricos de cualquier tipo.
 - Los mensajes de texto pueden contener un número cualquiera de variables intercaladas.

 - Los datos hexadecimales se representan precedidos de un '16#'. El número de caracteres del valor depende del tamaño de la variable. Por ejemplo, VW100 se visualiza así: 16#0123.
 - El número de dígitos a la izquierda del separador decimal debe ser lo suficientemente grande para poder visualizar el rango de variables previsto (incluyendo el signo negativo si el valor de datos es un entero con signo o un número en coma flotante).
 - Si el formato de datos es un entero y el número de dígitos a la derecha del separador decimal no es cero, el valor de entero se visualizará como entero escalado. Por ejemplo, si VW100 = 1234 y hay 2 dígitos a la derecha del separador decimal, los datos se visualizarán así: '12.34'.
 - Si el valor de datos excede el tamaño del campo indicado, el módulo Módem depositará el carácter # en todas las posiciones de caracteres del valor de datos.

7. Los números de teléfono se configuran seleccionando la ficha "Números de teléfono" en la pantalla "Configurar mensajería". Haga clic en el botón "Nuevo nº de teléfono..." para agregar números de teléfono. Tras configurar un número de teléfono, éste se deberá agregar al proyecto. En la columna "Números de teléfono disponibles", destaque el número deseado y haga clic en el cuadro de flecha derecha para agregarlo al proyecto actual. A continuación, podrá seleccionar ese número y asignarle un nombre simbólico a utilizar en el programa de usuario.

El número de teléfono comprende varios campos, según el tipo de mensajería seleccionado por el usuario.

- La selección del protocolo de mensajería le indica al módulo Módem qué protocolo debe utilizar para enviar mensajes al correspondiente proveedor de servicios. Los buscapersonas ("bípers") numéricos soportan únicamente el protocolo numérico. Por lo general, los servicios de radiobúsqueda textual requieren en protocolo TAP (Telelocator Alphanumeric Protocol). Los proveedores de servicios SMS (servicio de mensajería corta o "Short Message Service") soportan los protocolos TAP y UCP (Universal Computer Protocol). Por lo general, en la mensajería SMS se utilizan tres servicios UCP diferentes. La mayoría de los proveedores soportan los comandos 1 ó 51. Diríjase al proveedor de SMS para determinar el protocolo y los comandos a utilizar.
- En el campo "Descripción" puede introducir un texto que describa el número de teléfono.
- En el campo "Nº de teléfono" debe indicar el número de teléfono del proveedor de servicios de mensajería. En el caso de los mensajes de texto, se trata del número de teléfono de la línea de módem que utiliza el proveedor de servicios para aceptar mensajes de texto. En la radiobúsqueda numérica, se trata del número de teléfono del buscapersonas en sí. El módulo Módem permite introducir 40 caracteres como máximo en este campo. Los caracteres siguientes son admisibles en los números de teléfono que utiliza por el módulo Módem para marcar:

0 a 9	Permitidos en un teclado de teléfono.
A, B, C, D, *, #	Dígitos DTMF (sólo para marcación por tonos).
,	Pausa de marcación de 2 segundos.
!	Le indica al módem que genere un "hook flash".
@	Esperar 5 segundos de silencio.
W	Esperar un tono para marcar antes de continuar.
()	Se ignora (se puede utilizar para formatear el número de teléfono).

- En el campo "ID del buscapersonas o nº de teléfono móvil", introduzca el número del buscapersonas ("bíper") o del teléfono móvil (celular) del destinatario del mensaje.
 Este número sólo puede comprender los dígitos 0 a 9. Es posible introducir 20 caracteres como máximo.
- El campo "Contraseña" es opcional para los mensajes TAP. Algunos proveedores exigen una contraseña. Sin embargo, este campo debería permanecer vacío por lo general. El módulo Módem admite contraseñas que comprendan 15 caracteres como máximo.
- El campo "Nº de teléfono de origen" permite identificar al módulo Módem en el mensaje SMS. Ello puede resultar necesario si el proveedor de servicios utiliza comandos UCP. Algunos proveedores de servicios pueden requerir que se introduzca un número mínimo de caracteres en este campo. El módulo Módem permite introducir aquí 15 caracteres como máximo.
- El campo "Velocidad del módem" se puede utilizar si el módulo Módem y el proveedor de servicios de módem no pueden negociar la velocidad del módem. El ajuste estándar es V.34 (33,6 kbit/s).
- En el campo "Formato de datos" puede configurar los bits de datos y la paridad que utiliza el módem al transmitir un mensaje a un proveedor de servicios. Por lo general, TAP utiliza 7 bits de datos y paridad par. Sin embargo, algunos proveedores de servicios usan 8 bits de datos sin paridad. UCP utiliza siempre 8 bits de datos sin paridad. Diríjase al proveedor de servicios para determinar los ajustes a utilizar.

- 8. El módulo Módem se puede configurar para que transfiera datos a una CPU S7-200 (si se ha seleccionado el protocolo PPI), o bien a un aparato Modbus (si se ha seleccionado el protocolo Modbus). Active la casilla de verificación "Configurar transferencias de datos entre CPUs" y haga clic en el botón "Configurar CPU a..." para definir las transferencias de datos y los números de teléfono de los aparatos remotos.
- 9. Al configurar transferencias de datos entre CPUs, o bien de una CPU a un aparato Modbus, deberá definir los datos a transferir y el número de teléfono del aparato remoto. En el cuadro de diálogo "Transferencias de datos", seleccione la ficha de ese mismo nombre y haga clic en el botón "Nueva transferencia". Una transferencia de datos comprende los datos leídos del aparato remoto, los datos escritos en el aparato remoto, o bien, la lectura de y la escritura en el aparato remoto. Si ha seleccionado tanto la lectura como la escritura, se leerá primero y se escribirá después.

En cada lectura o escritura se pueden transmitir 100 palabras como máximo. Las transferencias de datos se deben efectuar de o a la memoria V de la CPU local. El asistente describe siempre las direcciones del aparato remoto como si éste fuese una CPU S7-200. Si el aparato remoto es un aparato Modbus, la transferencia se efectuará de o a los registros de retención del aparato Modbus (dirección 04xxxx). La dirección Modbus equivalente (xxxx) se determina de la manera siguiente:

Dirección Modbus	= 1 + (dirección de la memoria V / 2)
Dirección de la memoria V	= (dirección Modbus - 1) * 2

10. En la ficha "Números de teléfono" del cuadro de diálogo "Configurar transferencias de datos" puede definir los números de teléfono para las transferencias de datos entre CPUs, o bien de una CPU a un aparato Modbus. Haga clic en el botón "Nuevo nº de teléfono..." para agregar números de teléfono. Tras configurar un número de teléfono, éste se deberá agregar al proyecto. En la columna "Números de teléfono disponibles", destaque el número deseado y haga clic en el cuadro de flecha derecha para agregarlo al proyecto actual. A continuación, podrá seleccionar ese número y asignarle un nombre simbólico a utilizar en el programa de usuario.

Los campos "Descripción" y "Nº de teléfono" son idénticos a los descritos arriba en relación con la mensajería. El campo "Contraseña" se necesita si el aparato remoto es un módulo Módem para el que se ha habilitado la protección con contraseña. El campo "Contraseña" del módulo Módem local se debe ajustar a la contraseña del módulo Módem remoto. El módulo Módem local suministra esta contraseña cuando se la solicita el módulo Módem remoto.

- 11. La devolución de llamadas hace que el módulo Módem desconecte automáticamente la comunicación y marque un número de teléfono predefinido tras haber recibido una llamada de STEP 7-Micro/WIN remoto. Active la casilla de verificación "Habilitar devolución de llamadas" y haga clic en el botón "Configurar devolución de llamadas...", con objeto de definir los números de teléfono para devolver llamadas. Haga clic en "Siguiente>".
- 12. En la pantalla "Configurar devolución de llamadas" podrá introducir los números de teléfono que debe utilizar el módulo Módem al responder a una llamada. Active la casilla de verificación "Habilitar la devolución de llamadas sólo a determinados números de teléfono" si desea predefinir números para la devolución de llamadas. Seleccione la opción "Habilitar la devolución de llamadas a un número cualquiera" si el módulo Módem debe poder devolver llamadas a un número cualquiera suministrado por el llamador (para que las llamadas se efectúen a cobro revertido).

Si desea que la devolución de llamadas se permita sólo a determinados números de teléfono, haga clic en el botón "Nuevo nº de teléfono" con objeto de agregar números de teléfono. En el cuadro de diálogo "Propiedades de devolución de llamadas" podrá introducir los números de teléfono predefinidos y una descripción de los mismos. Los números que introduzca aquí serán los que marcará el módulo Módem para devolver llamadas. Estos números deberían incluir todos los dígitos necesarios para conectar a una línea externa, para esperar hasta obtener la línea, para conectar a larga distancia, etc.

Tras introducir un nuevo número de teléfono para la devolución de llamadas, éste se deberá agregar al proyecto. En la columna "Números para devolución de llamadas disponibles", destaque el número deseado y haga clic en el cuadro de flecha derecha con objeto de agregarlo al proyecto actual.

13. Opcionalmente, puede ajustar el número de intentos de marcación que el módulo Módem debe hacer al enviar un mensaje o durante una transferencia de datos. El módulo Módem le indicará un error al programa de usuario sólo si han sido infructuosos todos los intentos de marcar y de enviar el mensaje.

Algunas líneas telefónicas no tienen un tono para marcar presente cuando se descuelga el teléfono. Por lo general, el módulo Módem le indicará un error al programa de usuario si no hay tono para marcar cuando el módulo deba enviar un mensaje o devolver una llamada. Para poder marcar sin tener tono, active la casilla de verificación "Permitir marcar sin tener tono".

- 14. El asistente de módems crea el bloque de configuración del módulo Módem y le solicita al usuario que introduzca la dirección inicial de la memoria donde se deben guardar esos datos de configuración. El bloque de configuración del módulo Módem se almacena en la memoria V de la CPU. STEP 7-Micro/WIN escribe el bloque de configuración en el bloque de datos del proyecto. El tamaño del bloque de configuración depende de la cantidad de mensajes y de los números de teléfono configurados. Puede determinar la dirección de la memoria V donde se debe almacenar el bloque de configuración, o bien hacer clic en el botón "Proponer dirección" si desea que el asistente sugiera una dirección que represente un bloque de tamaño suficiente en la memoria V no utilizado todavía. Haga clic en "Siguiente>".
- 15. Por último deberá indicar la dirección en la memoria Q del byte de comando del módulo Módem. Esta dirección se determina contando los bytes de salida utilizados por los módulos de salidas digitales conectados al S7-200 antes del módulo Módem. Haga clic en "Siguiente>".
- 16. El asistente de módems generará entonces los componentes del proyecto para la configuración seleccionada (bloque de programa y bloque de datos), poniéndolos a la disposición del programa de usuario. En la pantalla final del asistente se visualizan los componentes del proyecto solicitados. A continuación, cargue en la CPU S7-200 el bloque de configuración del módulo Módem (bloque de datos) y el bloque de programa.

Operaciones y restricciones de los módems

El asistente de módems permite controlar fácilmente el módulo Módem, creando para ello subrutinas de operaciones unívocas conforme a la posición del módulo y a las opciones de configuración seleccionadas. Todas las operaciones van precedidas de "MODx_", representando la "x" la ubicación del módulo.

Requisitos para utilizar las operaciones del módulo Módem EM 241

Considere los requisitos siguientes en relación con las operaciones del módulo Módem:

- Las operaciones del módulo Módem utilizan tres subrutinas.
- Las operaciones del módulo Módem incrementan hasta en 370 bytes la cantidad de memoria necesaria para el programa. Si borra una subrutina no utilizada, podrá reiniciar el asistente de módems con objeto de crearla de nuevo en caso necesario.
- U Vigile que sólo una operación esté activada a la vez.
- Las operaciones no se pueden utilizar en rutinas de interrupción.
- El módulo Módem lee la información de la tabla de configuración en el primer arranque y tras un cambio de STOP a RUN. El módulo no detectará los cambios que el programa de usuario efectúe en la tabla de configuración hasta que cambie el modo de operación, o bien hasta el arranque siguiente.

Utilizar las operaciones del módulo Módem EM 241

Para utilizar las operaciones del módulo Módem en el programa del S7-200, proceda de la manera siguiente:

- 1. Cree la tabla de configuración del módulo Módem utilizando el asistente de módems.
- 2. Inserte la operación MODx_CTRL en el programa de usuario y utilice el contacto SM0.0 para ejecutar esta operación en cada ciclo.
- 3. Inserte una operación MODx_MSG por cada mensaje que desee enviar.
- 4. Inserte una operación MODx_XFR por cada transferencia de datos.

Operaciones del módulo Módem

MODx_CTRL

La operación MODx_CTRL (Control) se utiliza para habilitar e inicializar el módulo Módem. Esta operación se debe invocar en cada ciclo, pudiéndose utilizar sólo una vez en el proyecto.

SIMATIC / IEC1131

STL CALL MOD×_CTRL	SIMATIC			
	STL	CALL	MOD×_CTRL	

MODx_XFR

La operación MODx_XFR (Transferir datos) se utiliza para ordenar al módulo Módem que lea y escriba datos en una CPU S7-200 o en un aparato Modbus. Esta operación necesita 20 a 30 segundos desde que se dispara la entrada START hasta que se activa el bit "Done".

El bit EN deberá estar activado ("ON") para poder enviar un comando al módulo y deberá permanecer en ese estado hasta que se active el bit "Done", indicando que ha finalizado el proceso. Cuando la entrada START está activada y el módulo Módem no está ocupado, se envía en cada ciclo un comando XFR al módulo. La entrada START puede permanecer activada al detectarse un flanco positivo, lo que permite enviar un solo comando.

"Phone" indica uno de los números de teléfono para transferir datos. También es posible utilizar los nombres simbólicos asignados a esos números, si éstos se han definido utilizando el asistente de módems.

"Data" es el número correspondiente a una de las transferencias de datos definidas. También es posible utilizar los nombres simbólicos asignados a esas transferencias, si éstas se han definido utilizando el asistente de módems. SIMATIC / IEC1131

LAD	FBD
MOD×_XFR	MOD×_XFR
= EN ENO =	- EN ENO -
= START	- START
= Phone Done =	- Phone Done -
- Data Error =	- Data Error -

SIMATIC

"Done" es un bit que se activa cuando el módulo Módem finaliza la transferencia de datos.

"Error" es un byte que contiene el resultado de la transferencia de datos. En la tabla 10-4 figuran los errores que pueden ocurrir.

Entradas/salidas	Tipo de datos	Operandos
START	BOOL	I, Q, M, S, SM, T, C, V, L, circulación de corriente
Phone, Data	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, constante, *VD, *AC, *LD
Done	BOOL	I, Q, M, S, SM, T, C, V, L
Error	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Tabla 10-6 Parámetros de la operación MODx_XFR

MODx_MSG

La operación MODx_MSG (Enviar mensajes) se utiliza para enviar mensajes de radiobúsqueda, o bien mensajes SMS desde el módulo Módem. Esta operación necesita 20 a 30 segundos desde que se dispara la entrada START hasta que se activa el bit "Done".

El bit EN deberá estar activado ("ON") para poder enviar un comando al módulo y deberá permanecer en ese estado hasta que se active el bit "Done", indicando que ha finalizado el proceso. Cuando la entrada START está activada y el módulo Módem no está ocupado, se envía en cada ciclo un comando MSG al módulo. La entrada START puede permanecer activada al detectarse un flanco positivo, lo que permite enviar un solo comando.

"Phone" indica uno de los números de teléfono para enviar mensajes. También es posible utilizar los nombres simbólicos asignados a esos números, si éstos se han definido utilizando el asistente de módems.

"Msg" es el número correspondiente a uno de los mensajes definidos. También es posible utilizar los nombres simbólicos asignados a los mensajes, si éstos se han definido utilizando el asistente de módems.

SIMATIC / IEC1131

SIMATIC

STL	MOD×_MSG, START, Phone,
CALL	Msg, Done, Error
<u> </u>	/

proveedor de servicios. "Error" es un byte de error que contiene el resultado de esta petición al módulo. En la tabla 10-8

"Done" es un bit que se activa cuando el módulo Módem finaliza el envío del mensaje al

Entradas/salidas	Tipos de datos	Operandos
START	BOOL	I, Q, M, S, SM, T, C, V, L, circulación de corriente
Phone, Msg	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, constante, *VD, *AC, *LD
Done	BOOL	I, Q, M, S, SM, T, C, V, L
Error	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Tabla 10-7 Parámetros de la operación MODx_MSG

figuran los errores que pueden ocurrir.

Error	Descripción		
0	Sin error.		
Errores en la línea t	elefónica		
1	Sin tono para marcar.		
2	Línea ocupada.		
3	Error de marcación.		
4	Sin respuesta.		
5	Timeout de conexión (sin conexión al cabo de 1 minuto).		
6	Conexión interrumpida o respuesta desconocida.		
Errores en el coma	ndo		
7	El mensaje de radiobúsqueda numérica contiene dígitos no válidos.		
8	Número de teléfono (entrada "Phone") fuera de rango.		
9	Mensaje o transferencia de datos (entradas "Msg" o "Data") fuera de rango.		
10	Error en un mensaje de texto o de transferencia de datos.		
11	Error en un número de teléfono de mensajería de transferencia de datos.		
12	Función no permitida (por ejemplo, intento de poner a "0").		
Errores del proveec	lor de servicios		
13	Sin respuesta del servicio de mensajería (timeout).		
14	Servicio de mensajería desconectado debido a una razón desconocida.		
15	El usuario ha interrumpido el mensaje (bit de comando inhibido).		
TAP - Errores de mensajes de radiobúsqueda textual y mensajes SMS devueltos por el proveedor de servicios			
16	Desconexión remota (el proveedor de servicios ha interrumpido la sesión).		
17	El servicio de mensajería no ha aceptado el inicio de sesión (contraseña incorrecta).		
18	El servicio de mensajería no ha aceptado el bloque (error en la suma de verificación o error de transferencia).		
19	El servicio de mensajería no ha aceptado el bloque (debido a una razón desconocida).		
UCP - Errores de m	nensajes SMS devueltos por el proveedor de servicios		
20	Error desconocido.		
21	Error en la suma de verificación.		
22	Error de sintaxis.		
23	Función no soportada por el sistema (comando no válido).		
24	Función no permitida en este momento.		
25	Bloqueo de llamadas activo (lista negra).		
26	Dirección de llamador no válida.		
27	Fallo de autenticación.		
28	Fallo del código de legitimación.		
29	GA no válido.		
30	Repetición no admisible.		
31	Fallo del código de legitimación para la repetición.		
32	Llamada prioritaria no admisible.		
33	Fallo del código de legitimación para la llamada prioritaria.		
34	Mensaje urgente no admisible.		
35	Fallo del código de legitimación para el mensaje urgente.		
36	Cobro revertido no admisible.		
37	Fallo del código de legitimación para el cobro revertido.		

Tabla 10-8 Códigos de error de las operaciones MODx_MSG y MODx_XFR

Error	Descripción		
UCP - Errores de mensajes SMS devueltos por el proveedor de servicios (continuación)			
38	Entrega diferida no admisible.		
39	Nuevo AC no válido.		
40	Nuevo código de legitimación no admisible.		
41	Texto estándar no válido.		
42	Período no válido.		
43	Tipo de mensaje no soportado por el sistema.		
44	Mensaje demasiado largo.		
45	Texto estándar solicitado no válido.		
46	Tipo de mensaje no válido para el tipo de buscapersonas.		
47	Mensaje no localizado en SMSC.		
48	Reservados		
49	Reservados		
50	El abonado ha colgado.		
51	Grupo de fax no soportado.		
52	Tipo de mensaje de fax no soportado.		
Errores de transfere	encia de datos		
53	Timeout del mensaje (sin respuesta del aparato remoto).		
54	CPU remota ocupada (proceso de carga).		
55	Error de acceso (memoria fuera de rango, tipo de datos no válido).		
56	Error de comunicación (respuesta desconocida).		
57	Error de suma de verificación o error CRC en la respuesta.		
58	EM 241 remoto ajustado para devolver llamadas (no admisible).		
59	El EM 241 remoto ha rechazado la contraseña indicada.		
60 a 127	Reservados		
Errores de uso de las operaciones			
128	Imposible procesar esta petición. Puede ser que el módulo Módem esté procesando una petición diferente, o que no haya un impulso START en esta petición.		
129	Error del módulo Módem:		
	 La ubicación del módulo Módem, o bien la dirección Q configurada con el asistente de módems no concuerdan con la ubicación real, o bien con la dirección configurada. 		
	 Consulte las marcas especiales SMB8 a SMB21 (identificadores de los módulos de ampliación y bytes de estado de error). 		

Tabla 10-8 Códigos de error de las operaciones MODx_MSG y MODx_XFR, continuación

Programa de ejemplo para el módulo Módem

CPUs S7-200 que soportan módulos inteligentes

El módulo Módem es un módulo de ampliación inteligente diseñado para su utilización junto con las CPUs S7-200 que muestra la tabla 10-9.

Tabla 10-9	Compatibilidad del módulo Módem EM 214 con las CPUs S7-200
10010 10 0	

CPU	Descripción
CPU 222, versión 1.10 o superior	CPU 222 DC/DC/DC y CPU 222 AC/DC/relé
CPU 224, versión 1.10 o superior	CPU 224 DC/DC/DC y CPU 224 AC/DC/relé
CPU 224XP, versión 2.00 o superior	CPU 224XP DC/DC/DC y CPU 224XP AC/DC/relé
CPU 226, versión 1.00 o superior	CPU 226 DC/DC/DC y CPU 226 AC/DC/relé

Marcas especiales del módulo Módem

A cada uno de los módulos inteligentes se asignan 50 bytes de marcas especiales (SM) que dependen de la posición física del módulo en el bus de ampliación. Si se detecta un error o un cambio de estado, el módulo actualizará las marcas especiales correspondientes a su posición. Si es el primer módulo, actualizará de SMB200 hasta SMB249 para indicar el estado y los errores. Si es el segundo módulo, actualizará de SMB250 hasta SMB299, etc. (v. tabla 10-10).

Bytes de marcas SMB200 a SMB549						
Módulo	Módulo	Módulo	Módulo	Módulo	Módulo	Módulo
inteligente	inteligente	inteligente	inteligente	inteligente	inteligente	inteligente
en el slot 0	en el slot 1	en el slot 2	en el slot 3	en el slot 4	en el slot 5	en el slot 6
SMB200 a	SMB250 a	SMB300 a	SMB350 a	SMB400 a	SMB450 a	SMB500 a
SMB249	SMB299	SMB349	SMB399	SMB449	SMB499	SMB549

La tabla 10-11 muestra el área de marcas especiales asignadas al módulo Módem. Esta área se ha definido suponiendo que el módulo inteligente está ubicado en el slot 0 del sistema.

Dirección SM	Descripción		
SMB200 a SMB215:	Nombre del módulo (16 caracteres ASCII). SMB200 es el primer carácter. "EM241 Modem"		
SMB216 a SMB219	Nº de versión del software (4 caracteres ASCII). SMB216 es el primer carácter.		
SMW220	Código de error 0000 - Sin error 0001 - Sin alimentación externa 0002 - Fallo del módem 0003 - Sin ID del bloque de configuración 0004 - Bloque de configuración fuera de rango 0005 - Error de configuración 0006 - Error de selección del código de país 0007 - Número de teléfono demasiado largo 0008 - Mensaje demasiado largo 0009 a 00FF - Reservados 01xx - Error en el número para la devolución de llamadas xx 02xx - Error en el número del buscapersonas xx		
	0400 a FFFF - Reservados		
SMB222	Estado del módulo (indicado por el LED) MSB 7 6 5 4 3 2 1 0 F G H T R C 0 0		
	F - EM_FAULT0 - sin fallo1 - falloG - EM_GOOD0 - error1 - OKH - OFF_HOOK0 - colgado,1 - descolgadoT - NO DIALTONE0 - tono de marcar1 - sin tono de marcarR - RING0 - el teléfono no está sonando1 - el teléfono está sonandoC - CONNECT0 - desconectado1 - conectado		
SMB223	Código de país ajustado con los interruptores rotativos (valor decimal).		
SMW224	Velocidad de transferencia a la que se ha establecido la conexión (valor decimal sin signo).		
SMB226	Resultado del comando de usuario		
	MSB LSB		
	D 0 ERROR		
	D - Bit "Done"; 0 - operación en curso 1 - operación finalizada ERROR: los códigos de error se describen en la tabla 10-8.		
SMB227	Selector del número de teléfono. Este byte indica qué número de teléfono se debe utilizar para enviar mensajes. Los valores válidos están comprendidos entre 1 y 250.		
SMB228	Selector de mensajes. Este byte indica qué mensaje se debe enviar. Los valores válidos están comprendidos entre 1 y 250.		
SMB229 a SMB244	Reservados		
SMB245	Offset al primer byte de salida (Q) utilizado como interfaz de comando de este módulo. La CPU suministra el offset para facilitar el trabajo al usuario, aunque el módulo no lo necesita.		
SMD246	Puntero a la tabla de configuración del módulo Módem en la memoria V. No se aceptan punteros a un área diferente a la memoria V. El módulo continua examinando esta dirección hasta obtener un valor de puntero que no sea cero.		

 Tabla 10-11
 Marcas especiales (SM) del módulo Módem EM 241

Temas avanzados

Descripción de la tabla de configuración

El asistente de módems ha sido desarrollado para facilitar las aplicaciones de módems, generando automáticamente la tabla de configuración conforme a la información del sistema proporcionada por el usuario. Las informaciones acerca de la tabla de configuración están destinadas a los usuarios con experiencia que deseen crear rutinas de control personalizadas para el módulo Módem y formatear mensajes propios.

La tabla de configuración está ubicada en la memoria V del S7-200. En la columna "Offset de bytes" de la tabla 10-12 figura el offset (o desplazamiento) de bytes desde la dirección a la que señala el puntero del área de configuración en la memoria de marcas especiales (SM). La información de la tabla de configuración comprende cuatro secciones, a saber:

- El bloque de configuración contiene la información para configurar el módulo.
- El bloque del número para la devolución de llamadas contiene los números de teléfono predefinidos y autorizados para la devolución de llamadas.
- El bloque del número de teléfono para mensajería contiene los números de teléfono utilizados al llamar a servicios de mensajería o para transferir datos de y a la CPU.
- El bloque de mensajes contiene los mensajes predefinidos que se deben enviar a los servicios de mensajería.

Tabla 10-12 Tabla de configuración del módulo Módem

Offset de bytes	Descripción
0 a 4	Identificador (ID) del módulo (5 caracteres ASCII utilizados para asociar la tabla de configuración a un módulo inteligente). EL ID de la versión 1.00 del módulo Módem EM 241 es "M241A".
5	Longitud del bloque de configuración (24 en la actualidad).
6	Longitud del número de teléfono para devolución de llamadas (puede estar comprendida entre 0 y 40).
7	Longitud del número de teléfono para mensajería (puede estar comprendida entre 0 y 120).
8	Cantidad de números de teléfono para devolución de llamadas (puede estar comprendida entre 0 y 250).
9	Cantidad de números de teléfono para mensajería (puede estar comprendida entre 0 y 250).
10	Cantidad de mensajes (puede estar comprendida entre 0 y 250).
11 y 12	Reservados (2 bytes).
13	Este byte contiene los bits de habilitación de las funciones soportadas.
	MSB LSB 7 6 5 4 3 2 1 0
	PD CB PW MB BD 0 0 0
	PD- 0 = marcación por tonos1 = marcación por impulsosCB- 0 = devolución de llamadas inhibida1 = devolución de llamadas habilitadaPW- 0 = contraseña inhibida1 = contraseña habilitadaMB- 0 = protocolo PPI habilitado1 = protocolo Modbus habilitadoBD- 0 = marcación a ciegas inhibida1 = marcación a ciegas habilitadaEl módulo ignora los bits 2, 1 y 0.1
14	Reservados
15	Intentos de marcación. Este valor indica las veces que el módem intenta marcar y enviar un mensaje antes de devolver un error. El valor "0" evita que el módem marque.
16 a 23	Contraseña (8 caracteres ASCII).

Bloque de configuración

Bloque del número de teléfono para la devolución de llamadas (opcional)	
Offset de bytes	Descripción
24	Primer número de teléfono para la devolución de llamadas. Esta cadena representa el primer número al que el módulo Módem EM 241 puede devolver llamadas. A todos los números de teléfono se les debe asignar la misma cantidad de espacio indicada en la longitud del número (offset 6 del bloque de configuración).
24+ número de teléfono para devolución de llamadas	Segundo número de teléfono para la devolución de llamadas.
:	:
:	Número de teléfono n-ésimo para la devolución de llamadas.
Bloque del número para mensajería (opcional)	
Offset de bytes	Descripción
М	Primer número de teléfono para mensajería. Esta cadena representa un número de teléfono para enviar mensajes, incluyendo el protocolo y las opciones de marcación. A todos los números de teléfono se les debe asignar la misma cantidad de espacio indicada en la longitud del número (offset 7 del bloque de configuración).
	El formato de los números de teléfono para mensajería se describe más abajo.
M + longitud del número de teléfono para mensajería	Segundo número de teléfono para mensajería.
:	:
:	Número de teléfono n-ésimo para mensajería.
Bloque de mensajes (opcional)	
Offset de bytes	Descripción
N	Offset de la memoria V (relativo a VB0) del primer mensaje (2 bytes).
N+2	Longitud del primer mensaje.
N+3	Longitud del segundo mensaje.
:	
:	Longitud del mensaje n-ésimo.
Р	Primer mensaje. Esta cadena (máx. 120 bytes) representa el primer mensaje. Incluye texto y variables intercaladas o puede indicar una transferencia de datos con la CPU.
	Los formatos de los mensajes de texto y de las transferencias de datos con la CPU se describen más abajo.
P + longitud del primer mensaje	Segundo mensaje.
:	:
:	Mensaje n-ésimo.

Tabla 10-12 Tabla de configuración del módulo Módem, continuación

El módulo Módem vuelve a leer la tabla de configuración si ocurre uno de los eventos siguientes:

- Dentro de los 5 segundos siguientes a todo cambio de STOP a RUN de la CPU S7-200 (a menos que el módem esté actualmente en línea).
- Cada 5 segundos hasta que se encuentre una configuración válida (a menos que el módem esté actualmente en línea).
- Cada vez que el módem cambie de "online" (en línea o conectado) a "offline" (fuera de línea o desconectado).

Formato de los números de teléfono para mensajería

Un número de teléfono para mensajería representa una estructura que contiene la información que el módulo Módem necesita para enviar mensajes. Este número es una cadena ASCII encabezada por un byte de longitud seguido de caracteres ASCII. La longitud máxima de un número de teléfono para mensajería es de 120 bytes (incluyendo el byte de longitud).

Los números de teléfono para mensajería pueden contener como máximo 6 campos separados por barras inclinadas (/). Las barras inversas (\) representan un campo vacío ("0"). El módulo Módem ajusta los campos vacíos a los valores estándar.

Formato: <Nº de teléfono>/<ID>/<Contraseña>/<Protocolo>/<Estándar>/<Formato>

El campo "N^o de teléfono" representa el número que marca el módulo Módem al enviar un mensaje. Si el mensaje a enviar es un texto o un mensaje SMS, este campo indica el número de teléfono del proveedor de servicios. Si el mensaje es de tipo numérico, este campo representa el número de teléfono del buscapersonas (o "bíper"). Si el mensaje es una transferencia de datos con la CPU, este campo contiene el número de teléfono del aparato remoto. Aquí se pueden introducir 40 caracteres como máximo.

El campo "ID" es el número del buscapersonas (o "bíper"), o bien el número del teléfono móvil (o celular). Este campo sólo puede comprender los dígitos 0 a 9. Si el protocolo define una transferencia de datos con la CPU, este campo se utiliza para indicar la dirección del aparato remoto. Aquí se pueden introducir 20 caracteres como máximo.

El campo "Contraseña" se utiliza para indicar la contraseña de los mensajes enviados vía TAP (si el proveedor de servicios exige una contraseña). En el caso de los mensajes enviados vía UCP, este campo se utiliza como dirección de origen o número de teléfono. Si el mensaje es una transferencia de datos con un módulo Módem diferente, este campo se puede usar para indicar la contraseña del módulo Módem remoto. La contraseña puede comprender 15 caracteres como máximo.

El campo "Protocolo" contiene un carácter ASCII que le indica al módulo Módem cómo formatear y transmitir el mensaje. Se permiten los valores siguientes:

- 1 Protocolo de radiobúsqueda numérica (ajuste estándar)
- 2 TAP
- 3 Comando UCP 1
- 4 Comando UCP 30
- 5 Comando UCP 51
- 6 Transferencia de datos con la CPU

El campo "Estándar" obliga al módulo Módem a utilizar un módem en particular. Este campo contiene un carácter ASCII. Se permiten los valores siguientes:

1 - Bell 103 2 - Bell 212 3 - V.21 4 - V.22 5 - V.22 bits 6 - V.23c 7 - V.32 8 - V.32 bits 9 - V.34 (ajuste estándar)

El campo "Formato" comprende 3 caracteres ASCII que indican el número de bits de datos y la paridad a utilizar al transmitir los mensajes. Este campo no es aplicable si se ajusta el protocolo de radiobúsqueda numérica. Sólo se permite uno de los ajustes siguientes:

8N1 - 8 bits de datos, sin paridad, un bit de parada (ajuste estándar) 7E1 - 7 bits de datos, paridad par, un bit de parada

Formato de los mensajes de texto

Este formato define la estructura de los mensajes de radiobúsqueda textual o de los mensajes SMS. Estos tipos de mensajes pueden contener texto y variables intercaladas. Un mensaje de texto es una cadena ASCII encabezada por un byte de longitud seguido de caracteres ASCII. La longitud máxima de un mensaje de texto es de 120 bytes (incluyendo el byte de longitud).

Formato: <Texto><Variable><Texto><Variable>...

El campo "Texto" comprende caracteres ASCII.

El campo "Variable" define un valor de datos intercalado que el módulo Módem lee de la CPU local, formatéandolo luego y depositándolo en el mensaje. El carácter de porcentaje (%) se utiliza para indicar el comienzo y el final de la variable. La dirección y el campo "Izquierda" se separan mediante dos puntos (:). El delimitador entre los campos "Izquierda" y "Derecha" puede ser un punto o una coma que se utiliza como separador decimal en la variable formateada. La sintaxis del campo "Variable" es la siguiente:

%Dirección:Izquierda.Derecha Formato%

El campo "Dirección" indica la dirección, el tipo de datos y el tamaño del valor de datos intercalado (por ejemplo, VD100, VW50, MB20 ó T10). Se permiten los tipos de datos siguientes: I, Q, M, SM, V, T (sólo palabra), C (sólo palabra) y AI (sólo palabra). Son admisibles los tamaños siguientes: byte, palabra y palabra doble.

El campo "Izquierda" define el número de dígitos que se deben visualizar a la izquierda del separador decimal. Este valor debería ser lo suficientemente grande para poder procesar el rango esperado de la variable intercalada, incluyendo un signo negativo (si se necesita). Si el campo "Izquierda" es cero, el valor se visualizará precedido de un "0". El rango válido de este campo está comprendido entre 0 y 10.

El campo "Derecha" define el número de dígitos que se deben visualizar a la derecha del separador decimal. Los ceros a la derecha del separador decimal se visualizan siempre. Si el campo "Derecha" es cero, el valor se visualizará sin separador decimal. El rango válido de este campo está comprendido entre 0 y 10.

El campo "Formato" indica el formato de visualización del valor intercalado. En este campo se permiten los caracteres siguientes:

- i Entero con signo
- u Entero sin signo
- h Hexadecimal
- f Número en coma flotante (real)

Ejemplo "Temperatura = %VW100:3.1i% Presión = %VD200:4.3f%"
Formato de los mensajes de transferencia de datos con la CPU

Las transferencias de datos con la CPU (bien sea entre dos CPUs, o bien entre una CPU y un aparato Modbus) se indican utilizando este formato. Un mensaje de transferencia de datos con la CPU es una cadena ASCII que representa un número cualquiera de transferencias de datos entre aparatos, pudiendo abarcar hasta la longitud máxima del mensaje de 120 bytes (119 caracteres más un byte de longitud). Para separar las transferencias de datos se puede utilizar un espacio ASCII, aunque ello no es obligatorio. Todas las transferencias de datos se ejecutan durante una misma conexión, en el orden definido en el mensaje. Si se detecta un error en una transferencia de datos, finalizará la conexión con el aparato remoto y no se procesarán las transacciones subsiguientes.

Tratándose de una operación de lectura, el contaje de palabras se leerá del aparato remoto (comenzando en "Dirección_remota") y se escribirá luego en la memoria V de la CPU local (comenzando en "Dirección_local").

Tratándose de una operación de escritura, el contaje de palabras se leerá de la CPU local (comenzando en "Dirección_local") y se escribirá luego en el aparato remoto (comenzando en "Dirección_remota").

Formato: <Operación>=<Contaje>,<Dirección_local>,<Dirección_remota>

El campo "Operación" contiene un carácter ASCII que define el tipo de transferencia.

- R Leer datos del aparato remoto
- W Escribir datos en el aparato remoto

El campo "Contaje" indica el número de palabras a transferir. El rango válido de este campo está comprendido entre 1 y 100 palabras.

El campo "Dirección_local" indica la dirección de la memoria V de la CPU local para la transferencia de datos (por ejemplo, VW100).

El campo "Dirección_remota" indica la dirección del aparato remoto para la transferencia de datos (por ejemplo, VW500). Esta dirección se representa siempre como dirección de la memoria V, aunque se transfieran datos a un aparato Modbus. Si el aparato remoto es un aparato Modbus, la dirección de la memoria V se convierte a la dirección Modbus de la manera siguiente:

Dirección Modbus = 1 + (dirección de la memoria V/2) Dirección de la memoria V = (dirección Modbus - 1) * 2

Ejemplo R=20,VW100, VW200 W=50,VW500,VW1000 R=100,VW1000,VW2000

Utilizar la librería del protocolo USS para controlar un accionamiento MicroMaster

Las librerías de operaciones de STEP 7-Micro/WIN permiten controlar accionamientos MicroMaster fácilmente, ya que incorporan subrutinas y rutinas de interrupción preconfiguradas y diseñadas especialmente para utilizar el protocolo USS en la comunicación con el accionamiento. Las operaciones USS sirven para controlar el accionamiento físico y los parámetros de lectura/escritura del mismo.

Estas operaciones se encuentran en la carpeta "Librerías" del árbol de operaciones de STEP 7-Micro/WIN. Cuando se selecciona una operación USS, se agregan automáticamente una o más subrutinas asociadas (USS1 hasta USS7).

Las librerías de Siemens se venden en un CD por separado (STEP 7-Micro/WIN Add-On): Librería de operaciones, nº de referencia: 6ES7 830-2BC00-0YX0. Tras adquirir e instalar la versión 1.1 de la librería de Siemens, cualquier actualización de STEP 7-Micro/WIN V3.2x y V4.0 que se instale actualizará también las librerías existentes de forma gratuita (si las librerías se han complementado o modificado).

Índice del capítulo

Requisitos para utilizar el protocolo USS 3	350
Calcular el tiempo necesario para la comunicación con los accionamientos	351
Utilizar las operaciones USS 3	352
Operaciones del protocolo USS 3	353
Programa de ejemplo para el protocolo USS 3	360
Códigos de error de las operaciones USS 3	361
Conectar y configurar accionamientos MicroMaster 3 3	361
Conectar y configurar accionamientos MicroMaster 4 3	364

Requisitos para utilizar el protocolo USS

Las librerías de operaciones de STEP 7-Micro/WIN incorporan 14 subrutinas, 3 rutinas de interrupción y 8 operaciones que soportan el protocolo USS. Las operaciones del protocolo USS utilizan los siguientes recursos del S7-200:

Si se inicializa el protocolo USS, el puerto 0 se dedicará a la comunicación USS.

La operación USS_INIT permite seleccionar USS, o bien PPI para el puerto 0. (USS hace referencia al protocolo USS utilizado para los accionamientos SIMOTION MicroMaster.) Tras seleccionar el protocolo USS para la comunicación con accionamientos, el puerto 0 no se podrá utilizar para ninguna otra función, incluyendo la comunicación con STEP 7-Micro/WIN.

Al desarrollar programas para aplicaciones que usen el protocolo USS, es recomendable utilizar una CPU 224XP, una CPU 226, o bien un módulo de ampliación EM 277 PROFIBUS-DP conectado a una tarjeta PROFIBUS CP incorporada en el PC. Este segundo puerto de comunicación permite observar la aplicación mediante STEP 7-Micro/WIN mientras se está ejecutando el protocolo USS.

- Las operaciones del protocolo USS afectan a todas las direcciones de marcas especiales (SM) asociadas a la comunicación Freeport por el puerto 0.
- Las operaciones USS utilizan 14 subrutinas y 3 rutinas de interrupción.
- Las operaciones USS incrementan hasta 3600 bytes la cantidad de memoria necesaria para el programa. Dependiendo de las operaciones USS utilizadas, las rutinas que soportan estas operaciones pueden incrementar el uso de memoria por parte del programa de control en 2300 bytes (como mínimo) hasta 3600 bytes (como máximo).
- Las variables de las operaciones USS necesitan un bloque de 400 bytes en la memoria V.
 El usuario asigna la dirección inicial de este bloque, que se reserva para las variables USS.
- Algunas de las operaciones USS requieren también un búfer de comunicación de 16 bytes. Como parámetro de la operación se indica una dirección inicial en la memoria V para este búfer. Es aconsejable asignar un búfer unívoco para cada instancia de las operaciones del USS.
- Las operaciones USS utilizan los acumuladores AC0 a AC3 para efectuar cálculos. Los acumuladores también se pueden usar en el programa. Sin embargo, es preciso considerar que las operaciones USS modificarán los valores de los acumuladores.
- Las operaciones USS no se pueden utilizar en rutinas de interrupción.

Consejo

Para conmutar el puerto 0 a modo PPI, de manera que pueda comunicarse con STEP 7-Micro/WIN, utilice otra operación USS_INIT para reasignar el puerto 0.

Alternativamente, utilice el selector de modos de operación del S7-200 para cambiar a modo STOP. Ello restablece los parámetros estándar del puerto 0. Tenga en cuenta que si interrumpe la comunicación con los accionamientos, éstos también se detendrán.

Calcular el tiempo necesario para la comunicación con los accionamientos

La comunicación con los accionamientos es asíncrona al ciclo del S7-200. Por lo general, pueden transcurrir varios ciclos del S7-200 antes de que finalice una transacción de comunicación con un accionamiento. Los factores siguientes contribuyen a determinar el tiempo necesario: el número de accionamientos presentes, la velocidad de transferencia y el tiempo de ciclo del S7-200.

Tabla 11-1

Algunos accionamientos requieren más tiempo al utilizar las operaciones de acceso a parámetros. El tiempo necesario para acceder a los parámetros depende del tipo de accionamiento y del parámetro al que se debe acceder.

Una vez que una operación USS_INIT le asigne el puerto 0 al protocolo USS, el S7-200 muestreará con regularidad todos los accionamientos activos en los intervalos indicados en la tabla 11-1. El parámetro de timeout de todos los accionamientos se deberá activar para que éstos acepten el tiempo de muestreo.

Velocidad de transferencia	Tiempo entre muestreos de accionamientos activos (sin operaciones activas con acceso a parámetros)
1200	240 ms (máx.) x el número de accionamientos
2400	130 ms (máx.) x el número de accionamientos
4800	75 ms (máx.) x el número de accionamientos
9600	50 ms (máx.) x el número de accionamientos
19200	35 ms (máx.) x el número de accionamientos
38400	30 ms (máx.) x el número de accionamientos
57600	25 ms (máx.) x el número de accionamientos
115200	25 ms (máx.) x el número de accionamientos

Tiempos de comunicación

Consejo

Sólo puede estar activada una operación USS_RPM_x ó USS_WPM_x a la vez. Antes de que el programa pueda iniciar una nueva operación, la salida "Done" de cada operación deberá señalar que ha finalizado la ejecución.

Utilice sólo una operación USS_CTRL por accionamiento.

Utilizar las operaciones USS

Para utilizar las operaciones del protocolo USS en el programa del S7-200, proceda de la manera siguiente:

 Inserte la operación USS_INIT en el programa y ejecute la operación USS_INIT sólo durante un ciclo. La operación USS_INIT se puede utilizar bien sea para iniciar, o bien para modificar los parámetros de comunicación USS.

Cuando inserte la operación USS_INIT, varias subrutinas y rutinas de interrupción ocultas se agregarán automáticamente al programa.

2. Disponga en el programa sólo una operación USS_CTRL por cada accionamiento activo.

Puede agregar un número cualquiera de operaciones USS_RPM_x y USS_WPM_x, pero sólo una de éstas podrá estar activada.

 Asigne la memoria V de las operaciones de librería haciendo clic con el botón derecho del ratón (para acceder al menú contextual) en el nodo "Bloque de programa" del árbol de operaciones.

Seleccione el comando "Asignar memoria a librería" para visualizar el cuadro de diálogo correspondiente.

 Configure los parámetros de los accionamientos, de manera que concuerden con la velocidad de transferencia y la dirección utilizada en el programa.

Project1(CPU 221 REL 1.10)	•
MAIN (C Insert	
Library Memory	

Figura 11-1 Asignar memoria V a la librería de operaciones

5. Conecte el cable de comunicación entre el S7-200 y los accionamientos.

Vigile que todos los equipos controlados que estén unidos al accionamiento (por ejemplo, el S7-200) se conecten a la misma toma de tierra o al mismo punto neutro que el accionamiento, utilizando para ello un cable corto y grueso.

Cuidado

Si se interconectan equipos con potenciales de referencia diferentes, podrían circular corrientes indeseadas por el cable de conexión. Estas corrientes pueden causar errores de comunicación o deteriorar los equipos.

Para evitar corrientes indeseadas, vigile que todos los equipos conectados con un cable de comunicación compartan un circuito de referencia, o bien que estén aislados entre sí.

El blindaje deberá conectarse a tierra o al pin 1 del conector de 9 pines. Es recomendable conectar a tierra el terminal 2-0V del accionamiento MicroMaster.

Operaciones del protocolo USS

USS_INIT

La operación USS_INIT sirve para activar e inicializar, o bien para desactivar la comunicación con los accionamientos MicroMaster. USS_INIT se deberá ejecutar sin errores antes de poder utilizar cualquier otra operación USS. La operación se finaliza y el bit "Done" se pone a "1" inmediatamente, antes de continuar con la siguiente operación.

La operación se ejecuta en cada ciclo cuando está activada la entrada EN.

Ejecute la operación USS_INIT sólo una vez por cada cambio del estado de la comunicación. Utilice una operación de detección de flanco para activar la entrada EN. Si desea cambiar los parámetros de inicialización, ejecute de nuevo la operación USS_INIT.

El valor de "Mode" selecciona el protocolo de comunicación. Si la entrada tiene el valor "1", el puerto 0 se asignará al protocolo USS y se habilitará el protocolo. Si la entrada tiene el valor "0", el puerto 0 se asignará a PPI y se inhibirá el protocolo USS.

SIMATIC		
STL CALL	USS_INIT, Mode, Baud, Active, Done, Error	

La entrada "Baud" permite ajustar la velocidad de transferencia a 1200, 2400, 4800, 9600, 19200, 38400, 57600, o bien 115200 bit/s. Las CPUs S7-200 (versión 1.2 o posterior) soportan velocidades de transferencia comprendidas entre 57,6 y 115,2 kbit/s.

La entrada "Active" indica qué accionamientos están activos. Algunos accionamientos soportan únicamente direcciones comprendidas entre 0 y 30.

Entradas/salidas	Tipos de datos	Operandos
Mode	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, constante, *VD, *AC, *LD
Baud, Active	DWORD	VD, ID, QD, MD, SD, SMD, LD, constante, AC *VD, *AC, *LD
Done	BOOL	I, Q, M, S, SM, T, C, V, L
Error	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Tabla 11-2 Parámetros de la operación USS_INIT

La figura 11-2 muestra la descripción y el formato de la entrada del accionamiento activo. Todos los accionamientos activos ("Active") se muestrean

automáticamente en segundo plano, con objeto de controlarlos, recoger el estado y evitar timeouts en el enlace serie.

Consulte la tabla 11-1 para calcular el tiempo entre los muestreos de estado.

MSB LSB 31 30 0 29 2 D1 D31 D30 D29 D2 D0 D0 Bit de activación del accionamiento 0: 0=accionamiento desactivado, 1=accionamiento activado D1 Bit de activación del accionamiento 1:

0=accionamiento desactivado, 1=accionamiento activado

Figura 11-2 Formato del parámetro del accionamiento activo

La salida "Done" se activa una vez finalizada la operación USS_INIT. El byte de salida "Error" contiene el resultado de ejecución de la operación. En la tabla 11-6 figuran los errores que pueden ocurrir.

USS_CTRL

La operación USS_CTRL sirve para controlar un accionamiento MicroMaster activo. Esta operación deposita en un búfer de comunicación los comandos seleccionados. El búfer se envía después al accionamiento direccionado (parámetro "Drive"), si éste se ha seleccionado en el parámetro "Active" de la operación USS_INIT.

Utilice sólo una operación USS_CTRL por accionamiento.

Algunos accionamientos indican la velocidad sólo como valor positivo. Si la velocidad es negativa, el accionamiento indicará la velocidad como valor positivo, pero invertirá el bit D_Dir (bit de sentido).

El bit EN deberá estar puesto a 1 para poder activar la operación USS_CTRL. Esta operación deberá estar activada siempre.

RUN (RUN/STOP) indica si el accionamiento está activado (1) o desactivado (0). Si está activado el bit RUN, el accionamiento MicroMaster recibirá un comando para que se ponga en marcha a la velocidad indicada y en el sentido deseado. Para que el accionamiento se pueda poner en marcha, se deberán cumplir los siguientes requisitos:

- "Drive" deberá estar seleccionado como "Active" en USS_INIT.
- OFF2 y OFF3 deberán estar puestos a 0.
- G "Fault" e "Inhibit" deberán estar puestos a 0.

Si está desactivado el bit RUN, el accionamiento MicroMaster recibirá un comando para que disminuya la velocidad hasta que pare el motor. El bit OFF2 sirve para que el accionamiento MicroMaster pueda parar por inercia. El bit OFF3 le ordena al accionamiento MicroMaster que pare rápidamente.

El bit "Resp_R" (Respuesta recibida) confirma que se ha recibido una respuesta del accionamiento. Todos los accionamientos activos ("Active") se muestrean para recoger las informaciones de estado más recientes. Cada vez que el S7-200 recibe una respuesta del accionamiento, el bit "Resp_R" se activa durante un ciclo, actualizándose todos los valores siguientes.

El bit "F_ACK" (Confirmación de fallo) indica que se ha detectado un fallo en el accionamiento. El accionamiento borra el fallo ("Fault") cuando el estado de señal de "F_ACK" cambia de "0" a "1".

El bit "Dir" (Sentido) indica en qué sentido debe girar el accionamiento.

Entradas/salidas	Tipos de datos	Operandos
RUN, OFF 2, OFF 3, F_ACK, DIR	BOOL	I, Q, M, S, SM, T, C, V, L, circulación de corriente
Resp_R, Run_EN, D_Dir, Inhibit, Fault	BOOL	I, Q, M, S, SM, T, C, V, L
Drive, Type	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD, constante
Error	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD
Status	WORD	VW, T, C, IW, QW, SW, MW, SMW, LW, AC, AQW, *VD, *AC, *LD
Speed_SP	REAL	VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD, constante
Speed	REAL	VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD

Tabla 11-3 Parámetros de la operación USS_CTRL

SIMATIC / IEC 1131

USS_CTRL EN RUN OFF2 OFF2 OFF3 OFF3 OFF3 OFF3 OFF3 DIR Drive F_ACK DIR Drive F_ACK DIR Drive F_ACK DIR Drive F_ACK DIR Drive F_ACK DIR Drive F_ACK DIR Drive F_ACK DIR Drive Fror Speed_SP Speed_SP Speed Speed Speed C Fror Foult Foult Foult Foult
/

SIMATIC

STL CALL USS_CTRL, RUN, OFF2, OFF3, F.ACK, DIR, Drive, Type, Speed_SP, Resp_R, Error, Status, Speed, Run_EN, D_Dir, Inhibit, Fault La entrada "Drive" (Dirección del accionamiento) es la dirección del accionamiento MicroMaster a la que se debe enviar el comando USS_CTRL. Las direcciones válidas están comprendidas entre 0 y 31

La entrada "Type" (Tipo de accionamiento) selecciona el tipo de accionamiento. Si utiliza un accionamiento MicroMaster 3 (o anterior), ajuste "Type" a "0". Si utiliza un accionamiento MicroMaster 4, ajuste "Type" a "1".

"Speed_SP" (consigna de velocidad) representa la velocidad del accionamiento indicada como porcentaje de la velocidad máxima. Si "Speed_SP" es un valor negativo, se invertirá el sentido de giro del accionamiento. El rango puede estar comprendido entre -200,0% y 200,0%.

"Error" es un byte de error que contiene el resultado de la última petición de comunicación con el accionamiento. En la tabla 11-6 figuran los errores que pueden ocurrir.

"Status" es el valor sin procesar de la palabra de estado que envía el accionamiento. La figura 11-3 muestra los bits de estado de la palabra de estado estándar y de la realimentación principal.

"Speed" representa la velocidad del accionamiento indicada como porcentaje de la velocidad máxima. El rango puede estar comprendido entre -200,0% y 200,0%.

"Run_EN" indica si el accionamiento está en marcha (1) o parado (0).

"D_Dir" representa el sentido de giro del accionamiento.

"Inhibit" indica el estado del bit de desactivación del accionamiento (0 = activado, 1 = desactivado). Para borrar el bit de desactivación, el bit "Fault" deberá estar puesto a 0 (OFF) y las entradas RUN, OFF2 y OFF3 también deberán estar desactivadas.

"Fault" representa el estado del bit de fallo (0 = sin fallo, 1 = fallo). El accionamiento visualiza el código del fallo. (Consulte a este respecto el manual del accionamiento). Para borrar el bit "Fault", corrija el fallo y active el bit "F_ACK".

Figura 11-3 Bits de estado de la palabra de estado estándar de MicroMaster 3 y realimentación principal

Byte alto											By	te bajo) –				-				
15	14	1	13	12	11	1	0	9	8	7	6	6	5	4	1 3	3	2	2 1	0)	
		Image: Second																			
							1 = 0 =	Fre Fre	ecue	enci enci	a al a no	can o ale	izac can	da Izad	а						
	0 = Precaución: límite de potencia del motor																				
	0 = Freno de motor activo																				
	0 = Motor sobrecargado																				
	1 = Sentido de giro correcto del motor																				
' (= 0	So	bre	carg	ja d	el in	verso	or													

Figura 11-4 Bits de estado de la palabra de estado estándar de MicroMaster 4 y realimentación principal

USS RPM x

El protocolo USS incluye tres operaciones de lectura, a saber:

- La operación USS_RPM_W lee un parámetro de palabra sin signo.
- La operación USS_RPM_D lee un parámetro de palabra doble sin signo.
- La operación USS RPM R lee un parámetro de número real (en coma flotante).

Sólo puede estar activada una operación de lectura (USS_RPM_x) o de escritura (USS_WPM_x) a la vez.

La transacción USS_RPM_x se finaliza cuando el accionamiento MicroMaster confirma que ha recibido el comando, o bien cuando se detecta un error. El programa se sigue ejecutando mientras se está esperando una respuesta.

El bit EN deberá estar puesto a "1" para poder transmitir una petición, debiendo permanecer activado hasta que se active el bit "Done", lo que indica que ha finalizado el proceso. Por ejemplo, una petición USS RPM x se transmite al accionamiento MicroMaster en cada ciclo, en caso de estar activada la entrada XMT_REQ. Por consiguiente, la entrada XMT_REQ se debe activar cuando se detecte un flanco positivo, puesto que en cada flanco positivo de la entrada EN se envía una petición.

La entrada "Drive" es la dirección del accionamiento MicroMaster a la que se debe enviar el comando USS_RPM_x. Las direcciones válidas de los accionamientos están comprendidas entre 0 y 31.

SIMATIC / IEC1131 LAD FBD USS_RPM_W USS_RPM_W **FN** FN XMT_REQ XMT_REQ Drive Done Param Error Drive Done Inde× Value Param Error DB_Ptr Index Value - DB_Ptr USS_RPM_W_USS_RPM_D_USS_RPM_R

SIMATIC		
STL		
CALL	USS_RPM_W, XMT_REQ, Drive, Param, Index, DB_Ptr, Done, Error, Value	
CALL	USS_RPM_D, XMT_REQ, Drive, Param, Index, DB_Ptr, Done, Error, Value	
CALL	USS_RPM_R, XMT_REQ, Drive,	

- L (

Param, Index, DB_Ptr, Done, Error, Value

"Param" representa el número de parámetro. "Index" es el valor del índice del parámetro a leer. "Value" es el valor del parámetro devuelto. La dirección del búfer de 16 bytes se le debe suministrar a la entrada "DB_Ptr". La operación USS_RPM_x utiliza este búfer para almacenar los resultados del comando enviado al accionamiento MicroMaster.

La salida "Done" se activa una vez finalizada la operación USS_RPM_x. El byte de salida "Error" y la salida "Value" contienen el resultado de ejecución de la operación. En la tabla 11-6 figuran los errores que pueden ocurrir. Las salidas "Error" y "Value" no son válidas hasta que no se haya activado la entrada "Done".

Entradas/salidas	Tipos de datos	Operandos
XMT_REQ	BOOL	I, Q, M, S, SM, T, C, V, L, circulación de corriente (si se ha detectado un flanco positivo)
Drive	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD, constante
Param, Index	WORD	VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AIW, *VD, *AC, *LD, constante
DB_Ptr	DWORD	&VB
Value	WORD DWORD, REAL	VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AQW, *VD, *AC, *LD VD, ID, QD, MD, SD, SMD, LD, *VD, *AC, *LD
Done	BOOL	I, Q, M, S, SM, T, C, V, L
Error	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC. *VD, *AC, *LD

Tabla 11-4	Operandos	válidos i	nara las	operaciones	USS	RPM x
	Operanuos	valiuus	para las	operaciones	000_	

USS_WPM_x

El protocolo USS incluye tres operaciones de escritura, a saber:

- La operación USS_WPM_W escribe un parámetro de palabra sin signo.
- La operación USS_WPM_D escribe un parámetro de palabra doble sin signo.
- □ La operación USS_WPM_R escribe un parámetro de número real (en coma flotante).

Sólo puede estar activada una operación de lectura (USS_RPM_x) o de escritura (USS_WPM_x) a la vez.

La transacción USS_WPM_x se finaliza cuando el accionamiento MicroMaster confirma que ha recibido el comando, o bien cuando se detecta un error. El programa se sigue ejecutando mientras se está esperando una respuesta.

El bit EN deberá estar puesto a "1" para poder transmitir una petición, debiendo permanecer activado hasta que se active el bit "Done", lo que indica que ha finalizado el proceso. Por ejemplo, una petición USS_WPM_x se transmite al accionamiento MicroMaster en cada ciclo, en caso de estar activada la entrada XMT_REQ. Por consiguiente, la entrada XMT_REQ se debe activar cuando se detecte un flanco positivo, puesto que en cada flanco positivo de la entrada EN se envía una petición.

La entrada "Drive" es la dirección del accionamiento MicroMaster a la que se debe enviar el comando USS_WPM_x. Las direcciones válidas de los accionamientos están comprendidas entre 0 y 31.

"Param" representa el número de parámetro. "Index" es el valor del índice del parámetro a escribir. "Value" es el valor del parámetro a escribir en la memoria RAM del accionamiento. Este valor también se puede escribir en la memoria EEPROM de los accionamientos MicroMaster 3. Ello depende de cómo se ha configurado P971 (control de almacenamiento en EEPROM).

La dirección del búfer de 16 bytes se le debe suministrar a la entrada "DB_Ptr". La operación USS_WPM_x utiliza este búfer para almacenar los resultados del comando enviado al accionamiento MicroMaster.

La salida "Done" se activa una vez finalizada la operación USS_WPM_x. El byte de salida "Error" contiene el resultado de ejecución de la operación. En la tabla 11-6 figuran los errores que pueden ocurrir.

Cuando se activa la entrada EEPROM, la operación escribe tanto en la RAM como en la EEPROM del accionamiento. Cuando se desactiva la entrada EEPROM, la operación escribe sólo en la RAM. Puesto que los accionamientos MicroMaster 3 no soportan esta función, vigile que esta entrada esté desactivada, a fin de poder utilizar esta operación con los accionamientos MicroMaster 3.

Tabla 11-5 Operandos válidos para las operaciones USS_WPM_x

Entradas/salidas	Tipos de datos	Operandos
XMT_REQ	BOOL	I, Q, M, S, SM, T, C, V, L, circulación de corriente (si se ha detectado un flanco positivo)
EEPROM	BOOL	I, Q, M, S, SM, T, C, V, L, circulación de corriente
Drive	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD, constante
Param, Index	WORD	VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AIW, *VD, *AC, *LD, constante
DB_Ptr	DWORD	&VB

SIMATIC / IEC1131

SIMATIC STL CALL USS_WPM_W, XMT_REQ, EEPROM, Drive, Param, Index, Value, DB_Ptr, Done, Error CALL USS_WPM_D, XMT_REQ, EEPROM, Drive, Param, Index, Value, DB_Ptr, Done, Error CALL USS_WPM_R, XMT_REQ, EEPROM, Drive, Param, Index, Value, DB_Ptr, Done, Error

Entradas/salidas	Tipos de datos	Operandos
Value	WORD	VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AQW, *VD, *AC, *LD
	DWORD, REAL	VD, ID, QD, MD, SD, SMD, LD, *VD, *AC, *LD
Done	BOOL	I, Q, M, S, SM, T, C, V, L
Error	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC. *VD, *AC, *LD

Tabla 11-5	Operandos válidos	para las operaciones	USS_WPM_x, continuacio
------------	-------------------	----------------------	------------------------

Cuidado

Cuando utilice la operación USS_WPM_x para actualizar el juego de parámetros almacenado en la EEPROM del accionamiento, vigile que no se exceda el número máximo de ciclos de escritura en la EEPROM (aprox. 50.000).

En caso de excederse el número máximo de ciclos de escritura, se dañarán los datos almacenados y se perderán los datos subsiguientes. El número de ciclos de lectura es ilimitado.

Si necesita escribir con frecuencia en los parámetros del accionamiento, es recomendable que ajuste a "0" el parámetro de control de almacenamiento en la EEPROM (en los accionamientos MicroMaster 3) y que desactive la entrada EEPROM (en los accionamientos MicroMaster 4).

Ejemplo de las operaciones USS_RPM_x y USS_WPM_x

Programa de ejemplo para el protocolo USS

Ljempio de un programa con operaciones obo que se vi	sualizari correctamente en AWL
Network 1 SM0.1 EN	Network 1 //Inicializar el protocolo USS: //En el primer ciclo, habilitar el //protocolo USS para el puerto 0 //a 19200 con la dirección del
1 - Mode Done - Q0.0 19200 - Baud Error - VB1 16#00000001 - <u>Active</u>	//accionamiento "0" activa. LD SM0.1 CALL USS_INIT, 1, 19200, 16#00000001, Q0.0, VB1
	Network 2 //Parámetros de control del //accionamiento 0
RUN	LD SM0.0 CALL USS_CTRL, I0.0, I0.1, I0.2, I0.3, I0.4, 0, 1, 100.0, M0.0, VB2, VW4, VD6, Q0.1, Q0.2, Q0.3, Q0.4
0FF2 10.2 10.3 10.3 10.4 10.4 0-Drive Resp_R - M0.0 1-Type Error - VB2 100.0-Speed_SP Status - VW4 Speed - VD6 Run_EN - Q0.1 D_Dir - Q0.2 Inhibit - Q0.4 Speed - VD6	Network 3 //Leer un parámetro de palabra del // accionamiento 0. //Leer el parámetro 5, índice 0. //1º Guardar el estado de I0.5 en // una dirección temporal para que este // segmento se visualice en KOP. //2º Guardar el flanco positivo de I0.5 // en una dirección temporal L // para que se pueda transmitir a la subrutina. LD I0.5 = L60.0 LD I0.5 EU = L63.7 LD L0 L63.7
USS_RPM_W EN 10.5 10.5 10.5 0 - Drive Done + M0.1 5 - Param Error + VB10 0 - Index Value - VW12 &VB20 - DB Ptr	VB10, VW12 Network 4 //Escribir un parámetro de palabra en //el accionamiento 0. //Escribir el parámetro 2000, índice 0. LD I0.6 EU = L63.7 LDN SM0.0 = L63.6
Network 4 10.6 III.6 III.7 IIII	LD L60.0 CALL USS_WPM_R, L63.7, L63.6, 0, 2000, 0, 50.0, &VB40, M0.2, VB14 Nota: este programa AWL no se puede compilar a KOP ni a FUP.

Códigos de error de las operaciones USS

Tabla 11-6 Codig	os de error de las operaciones 055
Código de error	Descripción
0	Sin error.
1	El accionamiento no ha respondido.
2	Error de suma de verificación en la respuesta del accionamiento.
3	Error de paridad en la respuesta del accionamiento.
4	Una interferencia del programa de usuario ha causado un error.
5	Se ha intentado ejecutar un comando no válido.
6	Se ha indicado una dirección no válida del accionamiento.
7	El puerto de comunicación no se ha ajustado para el protocolo USS.
8	El puerto de comunicación está ocupado procesando una operación.
9	La velocidad del accionamiento está fuera del rango permitido
10	La longitud de respuesta del accionamiento no es correcta.
11	El primer carácter de la respuesta del accionamiento no es correcto.
12	Las operaciones USS no soportan la longitud de caracteres en la respuesta del accionamiento.
13	No ha respondido el accionamiento correcto.
14	La dirección "DB_Ptr" indicada no es correcta.
15	El número de parámetro indicado no es correcto.
16	Se ha seleccionado un protocolo no válido.
17	Está activado el protocolo USS. No es posible cambiar.
18	Se ha indicado una velocidad de transferencia no válida.
19	Sin comunicación: el accionamiento no está activo.
20	El parámetro o el valor en la respuesta del accionamiento no son correctos o contienen un código de error.
21	Se ha devuelto un valor de palabra doble, en vez del valor de palabra solicitado.
22	Se ha devuelto un valor de palabra, en vez del valor de palabra doble solicitado.

Tabla 11-6 Códigos de error de las operaciones USS

Conectar y configurar accionamientos MicroMaster 3

Conectar accionamientos MicroMaster 3

El cable estándar PROFIBUS y los conectores correspondientes se pueden utilizar para conectar el S7-200 a un accionamiento MicroMaster 3 (MM3). La figura 11-5 muestra cómo cerrar y polarizar el cable de interconexión.

Cuidado

Si se interconectan equipos con potenciales de referencia diferentes, podrían circular corrientes indeseadas por el cable de conexión.

Estas corrientes pueden causar errores de comunicación o deteriorar los equipos.

Para evitar corrientes indeseadas, vigile que todos los equipos conectados con un cable de comunicación compartan un circuito de referencia, o bien que estén aislados entre sí.

El blindaje deberá conectarse a tierra o al pin 1 del conector de 9 pines. Es recomendable conectar a tierra el terminal 2-0V del accionamiento MicroMaster.

Blindaje del cable: aprox. 12 mm deben hacer contacto con la guía de metal en todos los puntos.

Figura 11-5 Polarizar y cerrar el cable de red

Configurar accionamientos MicroMaster 3

Antes de conectar un accionamiento al S7-200, vigile que tenga los siguientes parámetros de sistema. Utilice el teclado del accionamiento para ajustar los parámetros:

- Restablezca los ajustes de fábrica del accionamiento (opcional). Pulse la tecla P: se visualizará P000. Pulse las teclas con flecha arriba o abajo hasta que se visualice P944. Pulse P para introducir el parámetro. P944=1
- Habilite el acceso de lectura/escritura a todos los parámetros. Pulse la tecla P. Pulse las teclas con flecha arriba o abajo hasta que se visualice P009. Pulse P para introducir el parámetro. P009=3
- Compruebe los ajustes del motor. Los ajustes varían dependiendo del (de los) motor(es) utilizados. Pulse la tecla P. Pulse las teclas con flecha arriba o abajo hasta que se visualicen los ajustes del motor. Pulse P para introducir el parámetro.

P081=Frecuencia nominal del motor (Hz) P082=Velocidad nominal del motor (rpm) P083=Intensidad nominal del motor (A) P084=Tensión nominal del motor (V) P085=Potencia nominal del motor (kW/HP)

- Ajuste el modo de control (local o remoto). Pulse la tecla P. Pulse las teclas con flecha arriba o abajo hasta que se visualice P910. Pulse P para introducir el parámetro. P910=1 Modo de control remoto
- 5. Ajuste la velocidad de transferencia del puerto serie RS-485. Pulse la tecla P. Pulse las teclas con flecha arriba o abajo hasta que se visualice P092. Pulse P para introducir el parámetro. Pulse las teclas con flecha arriba o abajo hasta que se visualice el número correspondiente a la velocidad de transferencia del puerto serie RS-485. Pulse P para aceptar el ajuste.
 - P092 3 (1200 bit/s)
 - 4 (2400 bit/s)
 - 5 (4800 bit/s)
 - 6 (9600 bit/s ajuste estándar)
 - 7 (19200 bit/s)

- 6. Introduzca la dirección del esclavo. Todos los accionamientos (31 como máximo) se pueden controlar a través del bus. Pulse la tecla P. Pulse las teclas con flecha arriba o abajo hasta que se visualice P091. Pulse P para introducir el parámetro. Pulse las teclas con flecha arriba o abajo hasta que se visualice la dirección del esclavo deseada. Pulse P para aceptar el ajuste. P091=0 a 31.
- 7. Tiempo de aceleración (opcional). Éste es el tiempo (indicado en segundos) que el motor necesita para acelerar hasta la frecuencia máxima. Pulse la tecla P. Pulse las teclas con flecha arriba o abajo hasta que se visualice P002. Pulse P para introducir el parámetro. Pulse las teclas con flecha arriba o abajo hasta que se visualice el tiempo de aceleración deseado. Pulse P para aceptar el ajuste. P002=0 a 650.00
- 8. Tiempo de desaceleración (opcional). Éste es el tiempo (indicado en segundos) que el motor necesita para desacelerar hasta parar por completo. Pulse la tecla P. Pulse las teclas con flecha arriba o abajo hasta que se visualice P003. Pulse P para introducir el parámetro. Pulse las teclas con flecha arriba o abajo hasta que se visualice el tiempo de desaceleración deseado. Pulse P para aceptar el ajuste. P003=0 a 650,00
- Timeout de enlace serie. Éste es el intervalo máximo admisible entre la recepción de dos telegramas de datos. Esta función se utiliza para desactivar el inversor en caso de un fallo de comunicación.

La temporización comienza tras haberse recibido un telegrama de datos válido. Si no se recibe otro telegrama de datos dentro del período de tiempo indicado, el inversor se desactivará y se visualizará el código de error F008. El control se desconecta ajustando el valor a "0". Utilice la tabla 11-1 para calcular los intervalos de muestreo del accionamiento.

Pulse la tecla P. Pulse las teclas con flecha arriba o abajo hasta que se visualice P093. Pulse P para introducir el parámetro. Pulse las teclas con flecha arriba o abajo hasta que se visualice el timeout de enlace serie deseado. Pulse P para aceptar el ajuste. P093=0 a 240 (0 es el ajuste estándar. El tiempo se indica en segundos.)

- 10. Consigna nominal del enlace serie. Este valor puede variar, pero equivale típicamente a 50 Hz ó 60 Hz, definiendo el correspondiente valor del 100% de las PVs (variables del proceso) o de las SPs (consignas). Pulse la tecla P. Pulse las teclas con flecha arriba o abajo hasta que se visualice P094. Pulse P para introducir el parámetro. Pulse las teclas con flecha arriba o abajo hasta que se visualice la consigna nominal deseada para el enlace serie. Pulse P para aceptar el ajuste. P094=0-400,00
- 11. Compatibilidad con el protocolo USS (opcional). Pulse la tecla P. Pulse las teclas con flecha arriba o abajo hasta que se visualice P095. Pulse P para introducir el parámetro. Pulse las teclas con flecha arriba o abajo hasta que se visualice el número correspondiente a la compatibilidad deseada con el protocolo USS. Pulse P para aceptar el ajuste.

P095 = 0 0,1 Hz de resolución (ajuste estándar) 1 0,01 Hz de resolución

- 12. Control de almacenamiento en la EEPROM (opcional). Pulse la tecla P. Pulse las teclas con flecha arriba o abajo hasta que se visualice P971. Pulse P para introducir el parámetro. Pulse las teclas con flecha arriba o abajo hasta que se visualice el número correspondiente al control deseado de almacenamiento en la EEPROM. Pulse P para aceptar el ajuste.
 - P971 = 0 Los cambios de parametrización (incluyendo P971) se pierden
 - cuando se desconecta la alimentación (ajuste estándar).
 - 1 Los cambios de parametrización se conservan durante períodos cuando se desconecta la alimentación.
- 13. Display de operación. Pulse P para salir del modo de parametrización.

Conectar y configurar accionamientos MicroMaster 4

Conectar accionamientos MicroMaster 4

Para conectar un accionamiento MicroMaster 4 (MM4), inserte los extremos del cable RS-485 en los terminales fijadores sin tornillos previstos para el protocolo USS. El cable PROFIBUS y los conectores estándar sirven para conectar el S7-200.

Cuidado

Si se interconectan equipos con potenciales de referencia diferentes, podrían circular corrientes indeseadas por el cable de conexión.

Estas corrientes pueden causar errores de comunicación o deteriorar los equipos.

Para evitar corrientes indeseadas, vigile que todos los equipos conectados con un cable de comunicación compartan un circuito de referencia, o bien que estén aislados entre sí.

El blindaje deberá conectarse a tierra o al pin 1 del conector de 9 pines. Es recomendable conectar a tierra el terminal 2-0V del accionamiento MicroMaster.

Como muestra la figura 11-6, los dos hilos del extremo opuesto del cable RS-485 se deben insertar en el bloque de terminales del accionamiento MM4. Para conectar el cable a un accionamiento MM4, desmonte la(s) tapa(s) del accionamiento para acceder al bloque de terminales. Para más información sobre cómo desmontar la(s) tapa(s), consulte el manual del accionamiento MM4.

Las conexiones del bloque de terminales están etiquetadas de forma numérica. Utilizando un conector PROFIBUS en el lado del S7-200, conecte el terminal A del cable al terminal 15 del accionamiento (si es un MM420), o bien al terminal 30 (si es un MM440). Conecte el terminal B del cable al terminal 14 (si es un MM420), o bien al terminal 29 (si es un MM440).

Figura 11-6 Conexión al bloque de terminales del MM420

Si el S7-200 está situado en un extremo de la red o si se trata de una conexión punto a punto, será preciso utilizar los terminales A1 y B1 (en vez de A2 y B2) del conector, puesto que éstos permiten ajustar el cierre (por ejemplo, utilizando el conector DP con el número de referencia 6ES7 972-0BA40-0X40).

Cuidado

Monte correctamente de nuevo las tapas del accionamiento antes de conectar la alimentación.

Si el accionamiento está situado en un extremo de la red, los resistores de cierre y polarización se deberán conectar también a los terminales correctos. La figura 11-7 muestra un ejemplo de las conexiones necesarias para cerrar y polarizar un accionamiento MM4.

Figura 11-7 Cerrar y polarizar (ejemplo)

Configurar accionamientos MicroMaster 4

Antes de conectar un accionamiento al S7-200, vigile que tenga los siguientes parámetros de sistema. Utilice el teclado del accionamiento para ajustar los parámetros:

1.	Restablezca los ajustes de	e fábrica del ac	ccionamient	o (opcion	al):	P0010=30 P0970=1
	Si omite este paso, vigile q Longitud USS PZD: Longitud USS PKW:	ue los paráme P2012 índice P2013 índice	etros siguie 0=2 0=127	ntes se aj	usten a es	tos valores:
2.	Habilite el acceso de lectur parámetros (modo avanza	ra/escritura a t do):	odos los			P0003=3
3.	Compruebe los ajustes del	motor:	P0304=Te P0305=Int P0307=Pc P0310=Fr P0311=Ve	nsión nor ensidad r otencia no ecuencia locidad no	ninal del m nominal de minal del r nominal de ominal del	otor (V) I motor (A) notor (W) I motor (Hz) motor (rpm)
	Los ajustes varían depend	iendo del (de	los) motor(e	es) utilizad	dos.	
	Para poder configurar los p primero el parámetro P010 configuración, ajuste el par P311 sólo se pueden camb	parámetros P3 a "1" (modo c rámetro P010 piar en el mod	804, P305, F le puesta e a "0". Los p o de modo	P307, P31 n servicio arámetros de puesta	l0 y P311, rápida). Tr s P304, P3 a en servici	deberá ajustar ras concluir la 105, P307, P310 y o rápida.
4.	Ajuste el modo de control (local o remoto	o):			P0700 índice 0=5
5.	Seleccione la consigna de	frecuencia a l	JSS en el p	uerto CO	M:	P1000 índice 0=5
6.	Tiempo de aceleración (op	Tiempo de aceleración (opcional): P1120=0 a 650,00				
	Éste es el tiempo (indicado frecuencia máxima.	en segundos	s) que el mo	otor neces	ita para ac	elerar hasta la
7.	Tiempo de desaceleración	(opcional):		P1121=0) a 650.00	
	Éste es el tiempo (indicado parar por completo.	en segundos	s) que el mo	otor neces	ita para de	sacelerar hasta
8.	Ajuste la frecuencia de refe	erencia del pu	erto serie:	P2000=1	1 a 650 Hz	
9.	Ajuste la normalización US	S:		P2009 ír	ndice 0=0	
10.	Ajuste la velocidad de tran puerto serie RS-485:	sferencia del	P2010 ind	dice 0=	4 5 6 7 8 9 12	(2400 bit/s) (4800 bit/s) (9600 bit/s) (19200 bit/s) (38400 bit/s) (57600 bit/s) (115200 bit/s)
11.	Introduzca la dirección del	esclavo:		P2011 ín	ndice 0=0 a	, . 31
	Todos los accionamientos	(31 como máx	(imo) se pu	eden cont	trolar a trav	vés del bus.
12.	Ajuste el timeout del puerto	o serie:	-, p.	P2014 ír (0=sin tir	ndice 0=0 a meout)	a 65.535 ms
	Éste es el intervalo máximo función se utiliza para desa temporización comienza tr	o admisible er activar el inver	ntre la recep sor en caso cibido un te	oción de d o de un fa legrama o	los telegrai llo de comi le datos vá	mas de datos. Esta unicación. La álido, Si no se

temporización comienza tras haberse recibido un telegrama de datos valido. Si no se recibe otro telegrama de datos dentro del período de tiempo indicado, el inversor se desactivará y se visualizará el código de error F0070. El control se desconecta ajustando el valor a "0". Utilice la tabla 11-1 para calcular los intervalos de muestreo del accionamiento.

13. Transfiera los datos de la RAM a la EEPROM:

P0971=1 (iniciar la transferencia) Guardar los cambios de los parámetros en la EEPROM

Utilizar la librería del protocolo Modbus

Las librerías de operaciones de STEP 7-Micro/WIN facilitan la comunicación con los aparatos maestros Modbus, ya que incorporan subrutinas y rutinas de interrupción preconfiguradas y diseñadas especialmente para la comunicación Modbus. Las operaciones del protocolo Modbus permiten configurar el S7-200 para que actúe de esclavo Modbus RTU y se comunique con maestros Modbus.

Estas operaciones se encuentran en la carpeta "Librerías" del árbol de operaciones de STEP 7-Micro/WIN. Gracias a estas nuevas operaciones, el S7-200 puede actuar de esclavo Modbus. Cuando se selecciona una operación del protocolo Modbus, se agregan automáticamente una o más subrutinas asociadas al proyecto.

Las librerías de Siemens se venden en un CD por separado (STEP 7-Micro/WIN Add-On): Librería de operaciones, nº de referencia: 6ES7 830-2BC00-0YX0. Tras adquirir e instalar la versión 1.1 de la librería de Siemens, cualquier actualización de STEP 7-Micro/WIN V3.2x y V4.0 que se instale actualizará también las librerías existentes de forma gratuita (si las librerías se han complementado o modificado).

Índice del capítulo

Requisitos para utilizar el protocolo Modbus	368
Inicialización y tiempo de ejecución del protocolo Modbus	368
Direccionamiento Modbus	369
Utilizar las operaciones del protocolo para esclavos Modbus	370
Operaciones del protocolo para esclavos Modbus	371

Requisitos para utilizar el protocolo Modbus

Las operaciones del protocolo para esclavos Modbus utilizan los siguientes recursos del S7-200:

La inicialización del protocolo para esclavos Modbus utiliza el puerto 0 para la comunicación Modbus.

Si el puerto 0 se está utilizando para las operaciones del protocolo para esclavos Modbus, no se podrá usar para ninguna otra función, incluyendo la comunicación con STEP 7-Micro/WIN. La operación MBUS_INIT asigna el puerto 0 al protocolo para esclavos Modbus, o bien al protocolo PPI.

- Las operaciones del protocolo para esclavos Modbus afectan a todas las direcciones de marcas especiales (SM) asociadas a la comunicación Freeport por el puerto 0.
- Las operaciones del protocolo para esclavos Modbus utilizan 3 subrutinas y 2 rutinas de interrupción.
- □ Las operaciones del protocolo para esclavos Modbus necesitan 1857 bytes de espacio en el programa para las dos operaciones Modbus y las rutinas de soporte.
- Las variables de las operaciones del protocolo para esclavos Modbus necesitan un bloque de 779 bytes de la memoria V. El usuario asigna la dirección inicial de este bloque, que se reserva para las variables Modbus.

Consejo

Para conmutar el puerto 0 a modo PPI, de manera que pueda comunicarse con STEP 7-Micro/WIN, utilice otra operación MBUS_INIT para reasignar el puerto 0.

Alternativamente, utilice el selector de modos de operación del S7-200 para cambiar a modo STOP. Ello restablece los parámetros estándar del puerto 0.

Inicialización y tiempo de ejecución del protocolo Modbus

La comunicación Modbus utiliza una CRC (comprobación de redundancia cíclica) para garantizar la integridad de los mensajes de comunicación. El protocolo para esclavos Modbus usa una tabla de valores precalculados (tabla CRC), con objeto de decrementar el tiempo necesario para procesar los mensajes. La inicialización de la tabla CRC tarda aproximadamente 425 milisegundos, efectuándose en la subrutina MBUS_INIT. Por lo general, ello sucede en el primer ciclo del programa de usuario tras pasar el S7-200 a modo RUN. El usuario debe borrar el temporizador de vigilancia y mantener las salidas habilitadas (si lo exigen los módulos de ampliación), en caso de que el tiempo necesario para la subrutina MBUS_INIT y otras inicializaciones exceda los 500 milisegundos de vigilancia del ciclo. El temporizador de vigilancia del módulo de salidas de borra escribiendo en las salidas del módulo. Consulte la descripción de la operación "Borrar temporizador de vigilancia" en el capítulo 6.

El tiempo de ciclo se prolonga cuando la subrutina MBUS_SLAVE procesa una petición. Puesto que la mayor parte del tiempo se dedica a calcular la CRC, el tiempo de ciclo se alarga unos 650 microsegundos por cada byte de la petición y de la respuesta. Una petición/respuesta máxima (lectura o escritura de 120 palabras) prolonga el tiempo de ciclo en aproximadamente 165 milisegundos.

Direccionamiento Modbus

Por lo general, las direcciones Modbus se escriben como valores de 5 ó 6 caracteres, conteniendo el tipo de datos y el offset. El primer carácter o los dos primeros caracteres determinan el tipo de datos, en tanto que los últimos cuatro caracteres seleccionan el valor apropiado dentro del tipo de datos en cuestión. El maestro Modbus asigna luego las direcciones de manera que correspondan a las funciones correctas. Las operaciones para esclavos Modbus soportan las direcciones siguientes:

- 000001 hasta 000128 son salidas digitales asignadas a Q0.0 hasta Q15.7
- O10001 hasta 010128 son entradas digitales asignadas a I0.0 hasta I15.7
- 030001 hasta 030032 son registros de entradas analógicas asignados a AIW0 hasta AIW62
- 040001 hasta 04xxxx son registros de retención asignados a la memoria V.

Todas las direcciones Modbus se basan en "1". La tabla 12-1 muestra la asignación de las direcciones Modbus a las direcciones del S7-200.

El protocolo para esclavos Modbus permite limitar la cantidad de entradas, salidas, entradas analógicas y registros de retención (memoria V) accesibles a un maestro Modbus.

El parámetro MaxIQ de la operación MBUS_INIT indica la cantidad máxima de entradas o salidas digitales (I o Q) a las que puede acceder el maestro Modbus.

El parámetro MaxAI de la operación MBUS_INIT indica la cantidad máxima de registros de entradas analógicas (AIW) a los que puede acceder el maestro Modbus.

El parámetro MaxHold de la operación MBUS_INIT indica la cantidad máxima de registros de retención (palabras de la memoria V) a los que puede acceder el maestro Modbus.

Para más información sobre cómo ajustar las restricciones de memoria de los esclavos Modbus, consulte la descripción de la operación MBUS_INIT.

Configurar la tabla de símbolos

Una vez que el usuario haya introducido la dirección del primer símbolo, la tabla calculará y asignará automáticamente los demás símbolos contenidos en la misma.

Asigne una dirección inicial de la memoria V a la tabla que ocupa 779 bytes. Vigile que la asignación de los símbolos de los esclavos Modbus no se solape con la memoria V asignada a los registros de retención Modbus que contienen los parámetros HoldStart y MaxHold de la operación MBUS_INIT. Si se solapan las áreas de memoria, la operación MBUS_INIT devolverá un error.

Tabla 12-1 Asignar direccior	nes Modbus al S7-200	
Dirección Modbus	Dirección del S7-200	
000001	Q0.0	
000002	Q0.1	
000003	Q0.2	
000127	Q15.6	
000128	Q15.7	
010001	10.0	
010002	l0.1	
010003	10.2	
010127	I15.6	
010128	115.7	
030001	AIW0	
030002	AIW2	
030003	AIW4	
030032	AIW62	
040001	HoldStart	
040002	HoldStart+2	
040003	HoldStart+4	
04xxxx	HoldStart+2 x (xxxx-1)	

Utilizar las operaciones del protocolo para esclavos Modbus

Para utilizar las operaciones del protocolo para esclavos Modbus en el programa del S7-200, proceda de la manera siguiente:

1. Inserte la operación MBUS_INIT en el programa y ejecútela operación sólo durante un ciclo. Esta operación se puede utilizar bien sea para iniciar, o bien para modificar los parámetros de comunicación Modbus.

Cuando inserte la operación MBUS_INIT, varias subrutinas y rutinas de interrupción ocultas se agregarán automáticamente al programa.

- 2. Asigne una dirección inicial a los 779 bytes consecutivos de la memoria V necesarios para ejecutar las operaciones del protocolo Modbus.
- 3. Disponga en el programa sólo una operación MBUS_SLAVE. Esta operación se invoca en cada ciclo para procesar las peticiones que se hayan recibido.
- 4. Utilizando el cable de comunicación, conecte el puerto 0 del S7-200 a los maestros Modbus.

Cuidado

Si se interconectan equipos con potenciales de referencia diferentes, podrían circular corrientes indeseadas por el cable de conexión. Estas corrientes pueden causar errores de comunicación o deteriorar los equipos.

Para evitar corrientes indeseadas, vigile que todos los equipos conectados con un cable de comunicación compartan un circuito de referencia, o bien que estén aislados entre sí.

Las operaciones para esclavos Modbus utilizan los acumuladores (AC0, AC1, AC2, AC3). Éstos aparecen en la lista de referencias cruzadas. Antes de ejecutar una operación para esclavos Modbus, los valores de los acumuladores se guardan y se restablecen en los acumuladores antes de que finalice la operación. Así se conservan todos los datos de usuario contenidos en los acumuladores mientras se ejecuta la operación.

Las operaciones del protocolo para esclavos Modbus asisten el protocolo Modbus RTU. Estas operaciones utilizan las funciones Freeport del S7-200 para soportar las funciones Modbus más habituales. Se asisten las funciones Modbus siguientes:

Tabla 12-2	Soporte de operaciones de	protocolo	para esclavos Modbus
------------	---------------------------	-----------	----------------------

Función	Descripción
1	Leer una o varias bobinas (salidas digitales). La función 1 indica el estado ON/OFF de un número cualquiera de salidas (Q).
2	Leer uno o varios contactos (entradas digitales). La función 2 indica el estado ON/OFF de un número cualquiera de entradas (I).
3	Leer uno o varios registros de retención. La función 3 indica el contenido de la memoria V. En Modbus, los registros de retención son valores de palabra que permiten leer hasta 120 palabras en una sola petición.
4	Leer uno o varios registros de entrada. La función 4 indica los valores de las entradas analógicas.
5	Escribir en una bobina (salida digital). La función 5 ajusta una salida digital al valor indicado. La salida no se fuerza y el programa puede sobrescribir el valor escrito por la petición Modbus.
6	Escribir en un registro de retención. La función 6 escribe un registro de retención en la memoria V del S7-200.
15	Escribir en varias bobinas (salidas digitales). La función 15 escribe los valores de varias salidas digitales en la imagen del registro de las salidas del S7-200. La salida inicial debe comenzar en un límite de byte (por ejemplo, Q0.0 ó Q2.0) y la cantidad de salidas escritas debe ser un múltiplo de 8. Ello representa una restricción de las operaciones del protocolo para esclavos Modbus. Las salidas no se fuerzan y el programa puede sobrescribir los valores escritos por la petición Modbus.
16	Escribir en varios registros de retención. La función 16 escribe varios registros de retención en la memoria V del S7-200. En una petición se pueden escribir 120 palabras como máximo.

Operaciones del protocolo para esclavos Modbus

MBUS_INIT

La operación MBUS_INIT sirve para activar e inicializar, o bien para desactivar la comunicación Modbus. MBUS_INIT se deberá ejecutar sin errores antes de poder utilizar la operación MBUS_SLAVE. La operación se finaliza y el bit "Done" se pone a "1" inmediatamente, antes de continuar con la siguiente operación.

La operación se ejecuta en cada ciclo cuando está activada la entrada EN.

Ejecute la operación MBUS_INIT sólo una vez por cada cambio del estado de la comunicación. Por tanto, la entrada EN deberá permanecer activada al detectarse un flanco positivo, o bien ejecutarse sólo en el primer ciclo.

El valor de la entrada "Mode" selecciona el protocolo de comunicación. Si la entrada tiene el valor "1", el puerto 0 se asignará al protocolo Modbus y se habilitará el protocolo. Si la entrada tiene el valor "0", el puerto 0 se asignará a PPI y se inhibirá el protocolo Modbus.

El parámetro "Baud" permite ajustar la velocidad de transferencia a 1200, 2400, 4800, 9600, 19200, 38400, 57600, o bien a 115200 bit/s. Las CPUs S7-200 (versión 1.2 o posterior) soportan velocidades de transferencia comprendidas entre 57,6 y 115,2 kbit/s.

El parámetro "Addr" ajusta la dirección a valores comprendidos entre 1 y 247.

Entradas/salidas	Tipos de datos	Operandos
Mode, Addr, Parity	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, constante, *VD, *AC, *LD
Baud, HoldStart	DWORD	VD, ID, QD, MD, SD, SMD, LD, AC, constante, *VD, *AC, *LD
Delay, MaxIQ, MaxAI, MaxHold	WORD	VW, IW, QW, MW, SW, SMW, LW, AC, constante, *VD, *AC, *LD
Done	BOOL	I, Q, M, S, SM, T, C, V, L
Error	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Tabla 12-3 Parámetros de la operación MBUS_INIT

El parámetro "Parity" se ajusta de manera que concuerde con la paridad del maestro Modbus. Todos los ajustes utilizan un bit de parada. Se aceptan los valores siguientes:

- 0 sin paridad
- 1 paridad impar
- 2 paridad par

El parámetro "Delay" retarda el timeout de fin de mensaje Modbus estándar, sumando el número indicado de milisegundos al timeout de mensajes Modbus estándar. En redes cableadas, el valor típico de este parámetro debería ser "0". Si se utilizan módems sin corrección de errores, ajuste el retardo a un valor comprendido entre 50 y 100 milisegundos. Si se utilizan radios de espectro ensanchado, ajuste el retardo a un valor comprendido entre 10 y 100 milisegundos. El valor de "Delay" (retardo) puede estar comprendido entre 0 y 32767 milisegundos.

El parámetro "MaxIQ" ajusta el número de entradas (I) y salidas (Q) disponibles para las direcciones Modbus 00xxxx y 01xxxx a valores comprendidos entre 0 y 128. Un valor de "0" inhibe todas las lecturas y escrituras de las entradas y salidas. Es recomendable ajustar el valor de "MaxIQ" a 128, con objeto de poder acceder a todas las entradas y salidas del S7-200.

El parámetro "MaxAI" ajusta el número de registros de entradas analógicas (AI) disponibles para la dirección Modbus 03xxx a valores comprendidos entre 0 y 32. Un valor de "0" inhibe la lectura de las entradas analógicas. Para poder acceder a todas las entradas analógicas del S7-200, es recomendable ajustar el valor de "MaxAI" de la manera siguiente:

- 0 para la CPU 221
- 16 para la CPU 222
- □ 32 para las CPUs 224, 224XP y 226

El parámetro "MaxHold" ajusta el número de registros de retención en la memoria V disponibles para la dirección Modbus 04xxx. Por ejemplo, para que el maestro pueda acceder a 2000 bytes de la memoria V, ajuste el valor de "MaxHold" a 1000 palabras (registros de retención).

El parámetro "HoldStart" es la dirección inicial de los registros de retención en la memoria V. Por lo general, este valor se ajusta a VB0, de manera que el parámetro "HoldStart" se ajuste a &VB0 (dirección de VB0). Como dirección inicial de los registros de retención en la memoria V se puede indicar también una dirección diferente, con objeto de poder utilizar VB0 en otra parte del proyecto. El maestro Modbus tiene acceso al número "MaxHold" de palabras de la memoria V, comenzando en "HoldStart".

La salida "Done" se activa una vez finalizada la operación MBUS_INIT. El byte de salida "Error" contiene el resultado de ejecución de la operación. En la tabla 12-5 figuran los errores que pueden ocurrir.

MBUS_SLAVE

La operación MBUS_SLAVE se utiliza para procesar una petición del maestro Modbus, debiéndose ejecutar en cada ciclo para poder comprobar y responder a las peticiones Modbus.

La operación se ejecuta en cada ciclo cuando está activada la entrada EN.

MBUS_SLAVE no tiene parámetros de entrada.

La salida "Done" se activa cuando la operación MBUS_SLAVE responde a una petición Modbus y se desactiva si no se ha procesado ninguna petición.

La salida "Error" contiene el resultado de ejecución de la operación. Esta salida sólo será válida si está activada la salida "Done". Si "Done" está desactivada, no cambiará el parámetro de error. En la tabla 12-5 figuran los errores que pueden ocurrir.

Tabla 12-4	Parámetros de la operación MBUS_S	SLAVE

Parámetro	Tipos de datos	Operandos
Done	BOOL	I, Q, M, S, SM, T, C, V, L
Error	BYTE	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Tabla 12-5 Códigos de error de ejecución del protocolo para esclavos Modbus

Código de error	Descripción
0	No se presentó ningún error.
1	Error de rango de memoria.
2	Velocidad de transferencia o paridad no válida.
3	Dirección de esclavo no válida.
4	Valor no válido para un parámetro Modbus.
5	Los registros de retención solapan los símbolos de los esclavos Modbus.
6	Error de paridad de recepción.
7	Error CRC de recepción.
8	Petición no válida / función no soportada.
9	Dirección no válida en una petición.
10	Función de esclavo no habilitada.

373

Ejemplo de un programa del protocolo para esclav	os Modbus
Network 1	Network 1
SMD.1 MBUS_INIT EN 1 - Mode Done - M0.1 1 - Addr Error - MB1 9600 - Baud 2 - Parity 0 - Delay 128 - MaxIQ 32 - MaxAl 1000 - MaxHold & VB0 - HoldStart	 //Inicializar el protocolo para esclavos //Modbus en el primer ciclo. Ajustar a "1" //la dirección del esclavo, //ajustar el puerto 0 a 9600 bit/s con //paridad par, permitir acceder a todos los // valores I, Q y AI, permitir acceder a //1000 registros de retención //(2000 bytes) a partir de VB0. LD SM0.1 CALL MBUS_INIT,1,1,9600,2,0,128,32,1000, &VB0,M0.1,MB1
Network 2 SM0.0 EN Done - M0.2 Error - MB2	Network 2 //Ejecutar el protocolo para esclavos // Modbus en cada ciclo. LD SM0.0 CALL MBUS_SLAVE,M0.2,MB2

Utilizar recetas

STEP 7-Micro/WIN provee el asistente de recetas para organizar las recetas y sus definiciones. Las recetas se almacenan en el cartucho de memoria, mas no en la CPU.

Índice del capítulo

Resumen breve	376
Definición y terminología de las recetas	377
Utilizar el asistente de recetas	377
Operaciones creadas con el asistente de recetas	381

Resumen breve

El soporte de recetas se ha incorporado en STEP 7-Micro/WIN y en la CPU S7-200. STEP 7-Micro/WIN provee el asistente de recetas para organizar las recetas y sus definiciones.

Todas las recetas se almacenan en el cartucho de memoria. Por tanto, para utilizar la función de recetas es preciso insertar en la CPU un cartucho de memoria opcional de 64 o 256 KB. Para más información sobre los cartuchos de memoria, consulte el anexo A.

Todas las recetas se almacenan en el cartucho de memoria. No obstante, sólo una de ellas se lee en la memoria de la CPU cuando el programa de usuario está procesando la receta en cuestión. Tomemos como ejemplo una empresa de fabricación de galletas que dispone de recetas para fabricar galletas con trocitos de chocolate, galletas de azúcar y galletas de avena. Sólo un tipo de galleta se puede fabricar a la vez. Por tanto, es preciso seleccionar la receta en cuestión y leerla en la memoria de la CPU.

La figura 13-1 muestra el proceso para fabricar diversos tipos de galletas utilizando las recetas. Las recetas de todos los tipos de galletas se almacenan en el cartucho de memoria. Utilizando un visualizador de textos TD 200C, el operador selecciona el tipo de galleta que debe fabricarse y el programa de usuario carga esa receta en la memoria de la CPU.

Figura 13-1 Ejemplo de una aplicación de recetas

Definición y terminología de las recetas

A continuación se explican definiciones y términos que le ayudarán a utilizar el asistente de recetas.

- Una configuración de receta comprende los componentes del proyecto generados por el asistente de recetas. Estos componentes incluyen subrutinas, fichas de bloques de datos y tablas de símbolos.
- Una definición de recetas es una colección de recetas que tienen un mismo juego de parámetros. No obstante, los valores de los parámetros pueden variar en función de la receta.
- Una receta comprende el juego de parámetros y los valores correspondientes que proporcionan la información necesaria para fabricar un producto o controlar un proceso.

Por ejemplo, es posible crear definiciones de recetas diferentes, tales como donuts y galletas. Una definición de recetas de galletas puede contener numerosas recetas, p. ej. para galletas con trocitos de chocolate y galletas de avena. Los campos y los valores de ejemplo figuran en la tabla 13-1.

Nombre del campo	Tipos de datos	Trocitos_chocolate (receta 0)	Azúcar (receta 1)	Comentario
Mantequilla	Real	225	225	Gramos
Azúcar_blanca	Real	170	340	Gramos
Azúcar_morena	Byte	6	0	Gramos
Huevos	Byte	2	1	Unidades
Vainilla	Byte	1	1	Cucharadita
Harina	Real	500	900	Gramos
Bicarbonato_soda	Real	1,0	0,5	Cucharadita
Levadura_polvo	Real	0	1,0	Cucharadita
Sal	Real	1,0	0,5	Cucharadita
Trocitos_chocolate	Real	450	0,0	Gramos
Ralladura_limón	Real	0,0	1,0	Cucharada
Tiempo_horneado	Real	9,0	10,0	Minutos

 Tabla 13-1
 Ejemplo de una definición de recetas de galletas

Utilizar el asistente de recetas

Utilice el asistente de recetas para crear recetas y sus definiciones correspondientes. Las recetas se almacenan en el cartucho de memoria. Las recetas y sus definiciones pueden introducirse directamente en el asistente de recetas. Si desea modificar posteriormente una receta, podrá ejecutar de nuevo el asistente de recetas, o bien utilizar la subrutina RCPx_WRITE en el programa de usuario.

El asistente de recetas crea una configuración que incluye los componentes siguientes:

- Una tabla de símbolos para cada definición de recetas. Cada tabla incluye nombres simbólicos idénticos a los nombres de los campos de la receta. Estos símbolos definen las direcciones de la memoria V necesarias para acceder a los valores de la receta cargados actualmente en la memoria. Cada tabla incluye asimismo una constante simbólica para referenciar a cada una de las recetas.
- Una ficha de bloque de datos para cada definición de recetas. En esta ficha se definen los valores iniciales de todas las direcciones de la memoria V representadas en la tabla de símbolos.
- Una subrutina RCPx_READ. Esta operación se utiliza para leer la receta indicada del cartucho de memoria y transferirla a la memoria V.
- Una subrutina RCPx_WRITE. Esta operación se utiliza para escribir en el cartucho de memoria los valores de receta contenidos en la memoria V.

Definir recetas

Para crear una receta utilizando el asistente de recetas, elija el comando de menú Herramientas > Asistente de recetas. En la primera pantalla se describen las funciones básicas del asistente de recetas. Haga clic en el botón "Siguiente" para comenzar a configurar las recetas.

Para crear una definición de recetas, proceda de la manera siguiente (v. fig. 13-2):

- Introduzca los nombres de los campos para la definición de recetas. Cada nombre se convertirá en un símbolo del proyecto conforme con lo que se haya definido antes.
- 2. Seleccione un tipo de datos en la lista desplegable.
- Introduzca un valor estándar y un comentario para cada nombre. Todas las nuevas recetas creadas con esta definición se inicializarán con estos valores estándar.
- Haga clic en el botón "Siguiente" para crear y editar las recetas de esta definición.

Indiqu indica receta	e los campos de datos (r un tipo de datos para c is.	de esta receta. O sada campo y ur	ada campo obtendra valor estándar que	á un símbolo en el proyecto se utilizará cuando cree nue
	Nombre del cam	Tipo de dato	Valor estándar	Comentario
1	Mantequilla	REAL	0.0	Gramos
2	Azúcar blanca	REAL	0.0	Gramos
3	Azúcar_morena	BYTE	0	Gramos
4	Huevos	BYTE	0	Unidades
5	Vainilla	BYTE	0	Cucharadita
6	Harina	REAL	0.0	Gramos
7	Bicarbonato_soda	REAL	0.0	Cucharadita
8	Levadura_polvo	REAL	0.0	Cucharadita
9	Sal	REAL	0.0	Cucharadita
10	Trocitos_chocolate	REAL	0.0	Gramos
11	Ralladura_limón	REAL	0.0	Cucharada
▲ Haga	clic en 'Siguiente' para i	nodificar las reco	etas de esta configur	ación.

Figura 13-2 Definir recetas

Utilice tantas filas como sea necesario para definir todos los campos de datos de la receta. Pueden existir hasta cuatro definiciones de recetas diferentes. El número de recetas de cada definición está limitado sólo por el espacio disponible en el cartucho de memoria.

Crear y modificar recetas

En la pantalla "Crear y modificar recetas" es posible crear recetas e indicar los valores de las mismas. Cada columna editable representa una receta.

Para crear una receta, haga clic en el botón "Nueva". Las recetas se inicializan con los valores estándar especificados al crear la definición.

Para crear una receta también puede hacer clic con el botón derecho del ratón y, en el menú contextual, elegir los comandos "Copiar" y "Pegar" con objeto de insertar una receta existente. Las nuevas columnas se insertarán a la izquierda de la posición actual del cursor, incluyendo el campo "Comentario".

Cada nueva receta obtendrá un nombre estándar que incluye una referencia a la definición y al número de la receta. El formato de este nombre es "DEFx_RCPy".

Para crear y modificar recetas, proceda de la manera siguiente (v. fig. 13-3):

- Haga clic en el botón "Siguiente" para acceder a la pantalla "Crear y modificar recetas".
- 2. Haga clic en el botón "Nueva" para insertar una nueva receta.
- 3. Cambie el nombre estándar de la receta por un nombre descriptivo.
- Modifique los valores de los conjuntos de datos de la receta según sea necesario.
- 5. Haga clic en "Aceptar".

			to z tocotajoj.			
	Nombre del campo	Tipo de datos	Trocitos_chocolate	Azúcar	Comentario	
1	Mantequilla	REAL	225.0	225.0	Gramos	
2	Azúcar_blanca	REAL	170.0	340.0	Gramos	
3	Azúcar_morena	BYTE	6	0	Gramos	
4	Huevos	BYTE	2	1	Unidades	
5	Vainilla	BYTE	1	1	Cucharadita	
6	Harina	REAL	500.0	900.0	Gramos	
7	Bicarbonato_soda	REAL	1.0	0.5	Cucharadita	
8	Levadura_polvo	REAL	0.0	1.0	Cucharadita	
9	Sal	REAL	1.0	0.5	Cucharadita	
10	Trocitos_chocolate	REAL	450.0	0.0	Gramos	
11	Ralladura_limón	REAL	0.0	1.0	Cucharada	
12	Tiempo_horneado	REAL	9.0	10.0	Minutoe	
				_ (Cortar receta	Ctrl+X
					oniar receta	Ctrl+C

Figura 13-3 Crear y modificar recetas

Asignar la memoria

En la pantalla "Asignar la memoria" se indica la dirección inicial de la memoria V en la que se almacenará la receta cargada del cartucho de memoria. Puede seleccionar una dirección de la memoria V, o bien permitir que el asistente de recetas proponga una dirección que represente un bloque de tamaño suficiente en la memoria V no utilizado todavía.

Para asignar la memoria, proceda de la manera siguiente (v. fig. 13-4):

- Para seleccionar la dirección de la memoria V en la que debe almacenarse la receta, haga clic en el cuadro de entrada e introduzca la dirección.
- Para permitir que el asistente de recetas proponga un bloque de tamaño suficiente en la memoria V no utilizado todavía, haga clic en el botón "Proponer dirección".
- 3. Haga clic en el botón "Siguiente".

Figura 13-4 Asignar la memoria

Componentes del proyecto

En la pantalla "Componentes del proyecto" se visualizan los diversos componentes que se agregarán al proyecto (v. fig. 13-5).

Haga clic en "Finalizar" para salir del asistente de recetas y agregar los componentes indicados.

A cada configuración de receta se le puede adjudicar un nombre unívoco. Este nombre se indicará en el árbol del proyecto con todas las configuraciones del asistente. La definición de recetas (RCPx) se agregará al final de dicho nombre.

Para cada definición de recetas se crea una tabla de símbolos. En cada tabla se definen valores constantes que representan cada una de las recetas. Estos símbolos pueden utilizarse como parámetros para las operaciones RCPx_READ y RCPx_WRITE, con objeto de identificar la receta deseada (v. fig. 13-6).

Figura 13-5 Componentes del proyecto

0	0	Símbolo	Dirección	Comentario
	0	Azúcar	1	
	0	Trocitos_chocolate1		
	0	Tiempo_horneado	VD35	Minutos
	0	Ralladura_limón	VD31	Cucharada
	Q	Trocitos_chocolate	VD27	Gramos
	0	Sal	VD23	Cucharadita
	Q	Levadura_polvo	VD19	Cucharadita
	0	Bicarbonato_soda	VD15	Cucharadita
	0	Harina	VD11	Gramos
	0	Vainilla	VB10	Cucharadita
	0	Huevos	VB9	Unidades
	Q	Azúcar_morena	VB8	Gramos
	0	Azúcar_blanca	VD4	Gramos
	Q	Mantequilla	VD0	Gramos
			Azúcar Trocitor_chocolate1 Trocitor_chocolate1 Trocitor_chocolate1 Trocitor_chocolate1 Trocitor_chocolate Sai Levadura_polvo Bicatonate_soda Hatina Vainila Huevos Azúcar_morena Azúcar_morena Azúcar_morena	Anicar Since Director Director Director Director Control of C

Figura 13-6 Tabla de símbolos

En cada tabla se crean asimismo nombres simbólicos para cada campo de la receta. Estos símbolos pueden utilizarse para acceder a los valores de la receta en la memoria V.

Cargar en la CPU un proyecto que contenga una configuración de receta

Para cargar en la CPU un proyecto que contenga una configuración de receta, proceda de la manera siguiente (v. fig. 13-7):

- Elija el comando de menú Archivo > Cargar en CPU.
- En el cuadro de diálogo que aparece entonces, haga clic en el botón "Opciones" y cerciórese de que estén activadas las casillas de verificación "Bloque de programa", "Bloque de datos" y "Recetas".
- 3. Haga clic en el botón "Cargar en CPU".

since a point operator para solucion na los bioques	que uesea calgaren la crio.
Dirección remota: 2	CPU 224 RE
Haga clic en 'Cargar en CPU' para comenzar.	
Opciones	Cargar en CPU Cancela
Bloque de programa	A: CPU
Bloque de datos	A: CPU
Bloque de sistema	A : CPU
Recetas	A : Cartucho de memoria
Configuraciones de registros de datos	

Figura 13-7 Cargar en la CPU un proyecto que contenga una configuración de receta

Modificar configuraciones de receta existentes

Para modificar una configuración de receta existente, proceda de la manera siguiente (v. fig. 13-8):

- En la lista desplegable "Configuraciones a editar", seleccione una configuración de receta existente.
- Para borrar una configuración de receta existente, haga clic en el botón "Borrar configuración".

Asistente de re	cetas 🛛 🗙
Configuracion En esta págir nueva config	es existentes a puede seleccionar una configuración de receta existente que desee modificar, o bien crear una uración.
Recetas	El proyecto contiene configuraciones de recetas. Puede modificar o borrar una configuración existente, o bien hacer clic en el botón Nueva' para crear una nueva configuración.
	Configuraciones a editar
	Configuración RCP 0 (RCP 0)
	Borrar configuración
	Haga clic en 'Siguiente' para modificar esta
🕜 Haga clic	para obtener ayuda y soporte Cancelar Cancelar

Figura 13-8 Modificar configuraciones de receta existentes

Operaciones creadas con el asistente de recetas

RCPx_READ

La operación RCPx_READ (Leer receta) sirve para leer del cartucho de memoria una receta individual y transferirla al área indicada de la memoria V.

La "x" incluida en el nombre de la operación RCPx_READ corresponde a la definición que contiene la receta a leer.

La operación se ejecutará al estar activada la entrada "EN".

La entrada "Rcp" identifica la receta que se leerá del cartucho de memoria

La salida "Error" devuelve el resultado de la ejecución de esta operación. Los códigos de error se describen en la tabla 13-3.

RCPx_WRITE

La operación RCPx_WRITE (Escribir receta) sirve para reemplazar una receta en el cartucho de memoria por el contenido de la receta depositada en la memoria V.

La "x" incluida en el nombre de la operación RCPx_WRITE corresponde a la definición que contiene la receta a reemplazar.

La operación se ejecutará al estar activada la entrada "EN".

La entrada "Rcp" identifica la receta que se reemplazará en el cartucho de memoria.

La salida "Error" devuelve el resultado de la ejecución de esta operación. Los códigos de error se describen en la tabla 13-3.

Tabla 13-2 Operandos válidos para las subrutinas de recetas

Entradas/salidas	Tipos de datos	Operandos
Rcp	Word	VW, IW, QW, MW, SW, SMW, LW, AC, *VD, *AC, *LD, constante
Error	Byte	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Tabla 13-3 Códigos de error de las operaciones con recetas

Código de error	Descripción
0	Sin error.
132	Imposible acceder al cartucho de memoria.

Consejo

La EEPROM utilizada en el cartucho de memoria sólo soporta un número limitado de operaciones de escritura (típicamente, 1 millón de ciclos de escritura). Una vez alcanzado este límite, la EEPROM dejará de funcionar correctamente.

Vigile que la operación RCPx_WRITE no se ejecute en cada ciclo. De lo contrario, el cartucho de memoria se desgastará al cabo de poco tiempo.

SIMATIC / IEC1131

SI

матіс	
TL	
CALL	RCP0_READ, R c p , Error
CALL	RCP0_WRITE, Rcp, Error
Utilizar registros de datos

STEP 7-Micro/WIN incorpora el asistente de registros de datos para guardar en el cartucho de memoria los datos de medición del proceso. Transfiriendo los datos del proceso al cartucho de memoria se liberan direcciones de la memoria V que, de lo contrario, se necesitarían para almacenar estos datos.

Índice del capítulo

Resumen breve	384
Utilizar el asistente de registros de datos	385
Operación creada con el asistente de registros de datos	391

Resumen breve

STEP 7-Micro/WIN y la CPU S7-200 soportan ahora la posibilidad de guardar registros de datos. Esta función permite almacenar de forma permanente los registros que contengan datos del proceso bajo el control del programa. Estos registros pueden incluir una marca de fecha y hora opcional. Es posible configurar hasta cuatro registros de datos independientes. El formato de los mismos se define utilizando el nuevo asistente de registros de datos.

Todos los registros de datos se almacenan en el cartucho de memoria. Para utilizar la función de guardar registros datos es preciso insertar en la CPU un cartucho de memoria opcional de 64 o 256 KB. Para más información sobre los cartuchos de memoria, consulte el anexo A.

Para cargar en el PC el contenido de los registros de datos es necesario utilizar el Explorador S7-200.

La figura 14-1 muestra un ejemplo de aplicación de los registros de datos.

Figura 14-1 Ejemplo de aplicación de un registro de datos

Definición y terminología de los registros de datos

A continuación se explican definiciones y términos que le ayudarán a utilizar el asistente de registros de datos.

- Un registro de datos es un conjunto de entradas ordenadas por lo general según la fecha y la hora. Cada entrada representa un evento que graba un conjunto de datos del proceso. La organización de estos datos se define en el asistente de registros de datos.
- Una entrada de un registro de datos corresponde a una fila de datos escrita en dicho registro.

Utilizar el asistente de registros de datos

El asistente de registros de datos permite configurar hasta cuatro registros de datos, utilizándose para:

- Definir el formato de las entradas del registro de datos
- Seleccionar las opciones del registro de datos (p. ej. marca de hora, marca de fecha y borrar los datos al cargar en la PG)
- Definir el número máximo de entradas que se pueden guardar en el registro de datos
- Crear el código del proyecto utilizado para guardar entradas en el registro de datos

El asistente de registros de datos crea una configuración que incluye los componentes siguientes:

- Una tabla de símbolos para cada definición de registros de datos. Cada tabla incluye nombres simbólicos idénticos a los nombres de los campos del registro de datos. Cada símbolo define las direcciones de la memoria V necesarias para almacenar el registro de datos actual. Cada tabla incluye asimismo una constante simbólica para referenciar a cada uno de los registros de datos.
- Una ficha del bloque de datos para cada entrada del registro de datos que asigne direcciones de la memoria V a cada campo de dicho registro. El programa utiliza estas direcciones de la memoria V para acumular el conjunto actual de registros de datos.
- Una subrutina DATx_WRITE. Esta operación se utiliza para escribir en el cartucho de memoria la entrada indicada del registro de datos desde la memoria V. Cada vez que se ejecuta DATx_WRITE se agrega una nueva entrada al registro de datos almacenado en el cartucho de memoria.

Opciones de los registros de datos

Es posible configurar las siguientes opciones para el registro de datos (v. fig. 14-2):

Marca de hora

Cada entrada del registro de datos puede incluir una marca de hora. Si selecciona esta opción, la CPU agregará automáticamente una marca de hora a cada entrada cuando el programa de usuario emita un comando de escribir en el registro de datos.

Marca de fecha

Cada entrada del registro de datos puede incluir una marca de fecha. Si selecciona esta opción, la CPU agregará automáticamente una marca de fecha a cada entrada cuando el programa de usuario emita un comando de escribir en el registro de datos.

Figura 14-2 Opciones de los registros de datos

Borrar datos al cargar en PG

Todas las entradas del registro de datos pueden borrarse cuando éste se cargue en la PG/el PC. Si activa esta opción, el registro de datos se borrará cada vez que sea cargado en la PG/el PC.

Las entradas de los registros de datos se guardan en un archivo cíclico (cuando se llene el registro, la entrada más reciente reemplazará a la más antigua). Es preciso definir el número máximo de entradas que se pueden guardar en el registro de datos. Un registro de datos puede contener 65.535 entradas como máximo. El valor estándar del número de registros es 1000.

Definir el registro de datos

Al determinar los campos para el registro de datos, cada uno de ellos se convierte en un símbolo en el proyecto. Es preciso definir un tipo de datos para cada campo. Una entrada del registro de datos puede contener entre 4 y 203 bytes de datos. Para definir los campos del registro de datos, proceda de la manera siguiente (v. fig. 14-3):

- Haga clic en la celda correspondiente al "Nombre del campo" para introducir el nombre. El nombre se convertirá en el símbolo al que hace referencia el programa de usuario.
- Haga clic en la celda correspondiente al "Tipo de datos" y seleccione un tipo de datos en la lista desplegable.
- 3. Si desea introducir un comentario, haga clic en la celda "Comentario".
- Utilice tantas líneas como sea necesario para definir un registro de datos.
- 5. Haga clic en "Aceptar".

Figura 14-3 Definir las entradas del registro de datos

Modificar una configuración de un registro de datos existente

Para modificar una configuración de un registro de datos existente, proceda de la manera siguiente:

- En la lista desplegable "Configuraciones a editar", seleccione una configuración de un registro de datos existente (v. fig. 14-4).
- Para borrar una configuración de un registro de datos existente, haga clic en el botón "Borrar configuración".

Pueden existir hasta cuatro definiciones de registros de datos diferentes.

Figura 14-4 Modificar una configuración de un registro de datos existente

Asignar la memoria

El asistente de registros de datos crea un bloque en la memoria V de la CPU. Este bloque es la dirección de la memoria en la que se creará una entrada del registro de datos antes de ser escrita en el cartucho de memoria. Indique la dirección inicial en la memoria V donde se debe depositar la configuración. Puede seleccionar una dirección de la memoria V, o bien permitir que el asistente de registros de datos proponga una dirección que represente un bloque de tamaño suficiente en la memoria V no utilizado todavía. El tamaño del bloque de memoria depende de lo que haya seleccionado en el asistente (v. fig. 14-5).

Para asignar la memoria, proceda de la manera siguiente:

- Para seleccionar la dirección de la memoria V donde se debe crear la entrada del registro de datos, haga clic en el campo de entrada e introduzca la dirección.
- Para permitir que el asistente de registros de datos proponga un bloque de tamaño suficiente en la memoria V no utilizado todavía, haga clic en el botón "Proponer dirección".
- 3. Haga clic en el botón "Siguiente".

Figura 14-5 Asignar la memoria

Componentes del proyecto

En la pantalla "Componentes del proyecto" se visualizan los diversos componentes que se agregarán al proyecto (v. fig. 14-6).

Haga clic en "Finalizar" para salir del asistente de registros de datos y agregar los componentes indicados.

A cada configuración de registro de datos se le puede adjudicar un nombre unívoco. Este nombre se indicará en el árbol del proyecto con todas las configuraciones del asistente. La definición de registros de datos (DATx) se agregará al final de dicho nombre.

Figura 14-6 Componentes del proyecto

Utilizar la tabla de símbolos

Para cada definición de registros de datos se crea una tabla de símbolos. En cada tabla se definen valores constantes que representan cada uno de los registros de datos. Estos símbolos pueden utilizarse como parámetros para la operación DATx_WRITE.

En cada tabla se crean asimismo nombres simbólicos para cada campo del registro de datos. Estos símbolos pueden utilizarse para acceder a los valores del registro de datos en la memoria V.

	0	0	Símbolo	Dirección	Comentario
1		0	Hora_de_ordeñado	VB3	Registrar hora de ordeñado
2		0	Temperatura_vaca	VB2	Registrar temperatura de la vaca
3		0	Cantidad_de_leche	VB1	Registrar cantidad de leche obtenida
4			ID_vaca	VBO	Registrar ID unívoco
< >	\ U	SUAI	RIO1 🖌 Símbolos UOP	λdato_sym /	•

Figura 14-7 Tabla de símbolos

Cargar en la CPU un proyecto que contenga una configuración de registro de datos

Para poder utilizar un registro de datos es preciso cargar previamente en una CPU S7-200 un proyecto que contenga una configuración de registro de datos. Si un proyecto contiene dicha configuración, la opción "Configuraciones de registros de datos" aparecerá seleccionada por defecto en la ventana "Cargar en CPU".

Consejo

Al cargar en la CPU un proyecto que contenga configuraciones de registros de datos, se perderán todas las entradas de registros de datos almacenadas actualmente en el cartucho de memoria.

Para cargar en la CPU un proyecto que contenga configuraciones de registros de datos, proceda de la manera siguiente (v. fig. 14-8):

- Elija el comando de menú Archivo > Cargar en CPU.
- En el cuadro de diálogo que aparece entonces, haga clic en el botón "Opciones" y cerciórese de que esté activada la casilla de verificación "Configuraciones de registros de datos".
- 3. Haga clic en el botón "Cargar en CPU".

🕑 Haga clic para obtener ayuda y soport	 Cerrar el cuadro de diálogo tras finalizar Indicar cambio de RUN a STOP
Configuraciones de registros de datos	A : Cartucho de memoria
Bloque de sistema Becetas	A : CPU
P Bloque de datos	A : CPU
🔽 Bloque de programa	A : CPU

Figura 14-8 Cargar en la CPU un proyecto que contenga una configuración de registro de datos

Utilizar el Explorador S7-200

El Explorador S7-200 es la aplicación utilizada para leer un registro de datos del cartucho de memoria y guardarlo posteriormente en un archivo de valores separados por comas (CSV).

Cada vez que se lee un registro de datos se crea un nuevo archivo. Este archivo se guarda en el directorio de registros de datos. El nombre del archivo está compuesto por las informaciones siguientes: dirección de la CPU, nombre del registro de datos, fecha y hora.

Puede seleccionar si la aplicación asociada al archivo CSV debe abrirse automáticamente cuando el registro de datos se haya leído correctamente. Para ello, haga clic con el botón derecho del ratón en el archivo del registro de datos y elija el respectivo comando.

El directorio de registros de datos se encuentra debajo del directorio indicado durante la instalación. El directorio de instalación estándar es:

c:\Archivos de programa\Siemens\Microsystems (si STEP 7 no está instalado), o bien c:\Siemens\Microsystems (si STEP 7 está instalado).

Para leer un registro de datos, proceda de la manera siguiente:

- Abra el Explorador de Windows. La carpeta "Mi red S7-200" aparecerá automáticamente.
- 2. Seleccione la carpeta "Mi red S7-200".
- 3. Seleccione la carpeta de la CPU S7-200 correcta.

Ele Edit Yew Favorites Icols Help					18
G Back + O - 3 P Search ⊙ Folders ≥ > × 49	- ¥ 16 16				
Address 🚍 Hy 57-200 Network)(2) CPU 226 X1116 - REL 77.00(256k Memory Ca	rtridge				• 🖸 😡
olders ×	None	See	Type ^	Modified	Created
Image: Constant Constant 2: 0.1146(mpc) Constant 2: 0.1147(mpc) Constant	All Configuration 0 (UAII0) Bostin dock Design do	1 KB 20 KB 1 KB 1 KB 1 KB 4 KB 1 KB	Data Log Microsoft Word Docum FLC Block FLC Block FLC Block RC58 STEP 7-MicroWDI Project Text Document	121112003 3155 PM 121112003 3157 PM 121112003 3157 PM 121112003 3157 PM 121112003 3157 PM 1213112003 3157 PM 1212112003 3157 PM 1225120004 3150 PM 2755/2004 9126 AM	12(11)2003 356 MH 3(11)2004 114 MH 11)20(2005 5:07 MH 11)20(2005 5:07 MH 11)20(2005 5:07 MH 11)20(2005 5:07 MH 11)20(2005 5:07 MH 2)2(5)2004 9:00 AM 2)16(2004 9:00 AM

Figura 14-9 Utilizar el Explorador S7-200

- 4. Seleccione la carpeta del cartucho de memoria.
- 5. Busque el archivo de configuración de registro de datos correcto. El nombre de estos archivos es "Configuración DAT x" (DATx).
- 6. Haga clic con el botón derecho del ratón y elija el comando "Cargar en PG" del menú contextual.

Operación creada con el asistente de registros de datos

El asistente de registros de datos agrega una subrutina al proyecto.

DATx_WRITE

La subrutina DATx_WRITE sirve para escribir en el cartucho de memoria los valores actuales de los campos del registro de datos. DATx_WRITE agrega una entrada a los datos registrados en el cartucho de memoria.

Si esta operación no puede acceder correctamente al cartucho de memoria se devolverá el error 132.

Tabla 14-1	Parámetros de la subrutina DATAx_	WRITE
------------	-----------------------------------	-------

Entradas/salidas	Tipos de datos	Operandos
Error	Byte	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Consejo

La EEPROM utilizada en el cartucho de memoria sólo soporta un número limitado de operaciones de escritura (típicamente, 1 millón de ciclos de escritura). Una vez alcanzado este límite, la EEPROM dejará de funcionar correctamente.

Vigile que la operación DATx_WRITE no se ejecute en cada ciclo. De lo contrario, el cartucho de memoria se desgastará al cabo de poco tiempo.

Autosintonizar el PID y Panel de sintonía PID

La función de autosintonía PID se ha incorporado en las CPUs S7-200. Además, STEP 7-Micro/WIN dispone ahora de un Panel de control de sintonía PID. Ello mejora en gran medida y facilita el uso de la operación PID disponible en la gama de Micro-PLCs S7-200.

La autosintonía se puede iniciar en el programa de usuario bien sea desde un panel de operador, o bien desde el Panel de control de sintonía PID. Es posible autosintonizar los lazos PID individualmente (uno por uno) o simultáneamente (los ocho lazos de una sola vez). La autosintonía PID calcula los valores de sintonía propuestos (casi óptimos) para la ganancia, el tiempo de acción integral y el tiempo de acción derivativa. Asimismo, permite seleccionar la sintonía de la respuesta rápida, media, lenta o muy lenta del lazo.

En el Panel de control de sintonía PID es posible iniciar y detener el proceso de autosintonía, así como vigilar los resultados en un gráfico. Allí se muestran también todas las condiciones de error o de advertencia que pudieran presentarse. Asimismo, el panel de control permite aplicar los valores de ganancia, acción integral y acción derivativa calculados por la autosintonía.

Índice del capítulo

Nociones básicas de la autosintonía PID	394
Tabla del lazo ampliada	394
Requisitos previos	397
Autohistéresis y autodesviación	397
Secuencia de autosintonía	398
Condiciones de advertencia	399
Notas respecto a la variable del proceso fuera de rango (código de resultado 3)	399
Panel de control de sintonía PID	400

Nociones básicas de la autosintonía PID

Introducción

El algoritmo de autosintonía utilizado en el S7-200 se basa en una técnica denominada "realimentación con relé", propuesta por K. J. Åström y T. Hägglund en 1984. En los últimos 20 años, la realimentación con relé se ha utilizado en numerosos sectores de la industria.

La realimentación con relé consiste en provocar una oscilación pequeña pero mantenida en un proceso por lo demás estable. La frecuencia y la ganancia límites del proceso se determinan según el período de las oscilaciones y los cambios de amplitud observados en la variable del proceso. A continuación, utilizando dichos valores límite de la ganancia y de la frecuencia, el autosintonizador PID propone los valores de sintonía de la ganancia, así como los de las acciones integral y derivativa.

Los valores propuestos dependen de la velocidad de respuesta del lazo seleccionada para el proceso. La respuesta puede ser rápida, media, lenta o muy lenta. Dependiendo del proceso, una respuesta rápida podría tener sobreimpulso, lo que correspondería a una condición de sintonía subamortiguada. Una respuesta media podría estar a punto de tener sobreimpulso, lo que correspondería a una condición de sintonía críticamente amortiguada. Una respuesta lenta podría no tener sobreimpulso, lo que correspondería a una condición de sintonía críticamente amortiguada. Una respuesta lenta podría no tener sobreimpulso, lo que correspondería a una condición de sintonía subreamortiguada. Una respuesta muy lenta podría no tener sobreimpulso, lo que correspondería a una condición de sintonía altamente sobreamortiguada.

Además de proponer valores de sintonía, el autosintonizador PID puede determinar automáticamente los valores de histéresis y de desviación de la variable del proceso. Estos parámetros se utilizan para reducir el efecto del ruido del proceso, limitando asimismo la amplitud de las oscilaciones mantenidas que ha ajustado el autosintonizador PID.

El autosintonizador PID puede determinar valores de sintonía propuestos para los lazos P, PI, PD y PID de actuación tanto directa como inversa.

El objetivo del autosintonizador PID consiste en determinar un juego de parámetros de sintonía que ofrezcan una aproximación razonable a los valores óptimos del lazo. A partir de los valores de sintonía propuestos, el usuario podrá efectuar la sintonización fina y optimizar realmente el proceso.

Tabla del lazo ampliada

La operación PID del S7-200 hace referencia a una tabla del lazo que contiene los parámetros del mismo. Originalmente, esta tabla tenía 36 bytes de longitud. Debido a que se ha agregado la autosintonía PID, se ha ampliado la tabla del lazo, teniendo ahora una longitud de 80 bytes. La tabla del lazo ampliada se muestra en las tablas 15-1 y 15-2.

Si utiliza el Panel de control de sintonía PID, éste se hará cargo de todas las interacciones con la tabla del lazo PID. Si es preciso proporcionar autosintonía desde un panel de operador, el programa deberá facilitar la interacción entre el operador y la tabla del lazo PID para iniciar y vigilar el proceso de autosintonía, y aplicar luego los valores de sintonía propuestos.

Offset	Campo	Formato	Tipos de datos	Descripción	
0	Variable del proceso (PV _n)	REAL	In	Contiene la variable del proceso que debe estar escalada entre 0.0 y 1.0.	
4	Consigna (SP _n)	REAL	In	Contiene la consigna que debe estar escalada entre 0.0 y 1.0.	
8	Salida (M _n)	REAL	In/Out	Contiene la salida calculada, escalada entre 0.0 y 1.0.	
12	Ganancia (K _C)	REAL	In	Contiene la ganancia, que es una constante proporcional. Puede ser un número positivo o negativo.	
16	Tiempo de muestreo (T _S)	REAL	In	Contiene el tiempo de muestreo en segundos. Tiene que ser un número positivo.	
20	Tiempo de acción integral (T _I)	REAL	In	Contiene el tiempo de acción integral en minutos.	
24	Tiempo de acción derivativa (T _D)	REAL	In	Contiene el tiempo de acción derivativa en minutos.	
28	Suma integral (MX)	REAL	In/Out	Contiene el valor de la suma integral entre 0.0 y 1.0.	
32	Variable del proceso previa (PV _{n-1})	REAL	In/Out	Contiene el valor de la variable del proceso almacenado al ejecutar por última vez la operación PID.	
36	ID de la tabla del lazo PID ampliada	ASCII	Constante	'PIDA' (tabla PID ampliada, versión A): constante ASCII	
40	Control AT (ACNTL)	BYTE	In	Consulte la tabla 15-2	
41	Estado AT (ASTAT)	BYTE	Out	Consulte la tabla 15-2	
42	Resultado AT (ARES)	BYTE	In/Out	Consulte la tabla 15-2	
43	Configuración AT (ACNFG)	BYTE	In	Consulte la tabla 15-2	
44	Desviación (DEV)	REAL	In	Valor normalizado de la amplitud de oscilación máxima de PV (rango: 0,025 a 0,25).	
48	Histéresis (HYS)	REAL	In	Valor normalizado de la histéresis PV utilizada para determinar los pasos por cero (rango: 0,005 a 0,1). Si la desviación no es cuatro veces superior a la histéresis, se emitirá una advertencia durante la autosintonía.	
52	Paso de salida inicial (STEP)	REAL	In	Tamaño normalizado del cambio de paso en el valor de salida utilizado para provocar oscilaciones en la PV (rango: 0,05 a 0,4)	
56	Tiempo de vigilancia (WDOG)	REAL	In	Tiempo máximo permitido (en segundos) entre pasos por cero (rango: 60 a 7200)	
60	Ganancia propuesta (AT_K _C)	REAL	Out	Ganancia del lazo propuesta que se ha determinado en la autosintonía.	
64	Tiempo de acción integral propuesto (AT_T _I)	REAL	Out	Tiempo de acción integral propuesto que se ha determinado en la autosintonía.	
68	Tiempo de acción derivativa propuesto (AT_T_D)	REAL	Out	Tiempo de acción derivativa propuesto que se ha determinado en la autosintonía.	
72	Tamaño real del paso (ASTEP)	REAL	Out	Valor normalizado del tamaño del paso de salida que se ha determinado en la autosintonía.	
76	Histéresis real (AHYS)	REAL	Out	Valor normalizado de la histéresis de PV que se ha determinado en la autosintonía.	

Tabla 15-1 Tabla del lazo

Campo	Descripción				
Control AT (ACNTL)	MSB LSB				
Entrada - Dyte					
Estado AT (ASTAT)	EN - puesto a "1" para iniciar la autosintonia; puesto a "0" para cancelaria				
Salida - Byte	MSB LSB				
	W0 W1 W2 0 AH 0 0 IP				
	 W0 - Advertencia: La desviación no es cuatro veces superior a la histéresis. W1 - Advertencia: Si se producen desviaciones incoherentes en el proceso, el valor del paso de salida se podría ajustar incorrectamente. W2 - Advertencia: La desviación promedio no es cuatro veces superior a la histéresis. AH - Cálculo automático de la histéresis: 0 - no se está realizando 				
	1 - se está realizando				
	0 - no se está realizando 1 - se está realizando				
	Cada vez que se inicia la autosintonía, la CPU borra los bits de aviso y activa el bit de progreso. Tras finalizar la autosintonía, la CPU borra el bit de progreso.				
Resultado AT (ARES)	MSB LSB				
Entrada/salida - Byte	D Código de resultado				
	 D - Bit "Done" (listo) 0 - no ha finalizado la autosintonía 1 - autosintonía finalizada Debe ponerse a "0" antes de poder iniciar la autosintonía. Código de resultado: 00 - finalizada normalmente (valores de sintonía disponibles) 01 - cancelada por el usuario 02 - cancelada debido a un timeout de paso por cero del temporizador de vigilancia 03 - cancelada debido a que la variable del proceso (PV) está fuera de rango 04 - cancelada debido a que se excedió el valor máximo de histéresis 05 - cancelada debido a que se detectó un valor de configuración no válido 06 - cancelada debido a que la operación PID se ejecutó sin circulación de corriente (lazo en modo manual) 08 - cancelada debido a que la autosintonía sólo se permite para lazos P, PI, PD o PID 				
Configuración AT (ACNFG) Entrada - Byte	MSB LSB 7 0 0 0 0 R1 R0 DS HS				
	 R1 R0 Respuesta dinámica 0 Respuesta rápida 0 1 Respuesta media 1 0 Respuesta lenta 1 1 Respuesta muy lenta DS - Desviación: 0 - utilizar el valor de desviación de la tabla del lazo 1 - determinar automáticamente el valor de desviación HS - Histéresis: 0 - utilizar el valor de histéresis de la tabla del lazo 1 - determinar automáticamente el valor de histéresis 				

Tabla 15-2 Descripción ampliada de los campos de control y estado

Requisitos previos

El lazo que se desea autosintonizar debe estar en modo automático. La ejecución de la operación PID debe controlar la salida del lazo. La autosintonía fallará si el lazo está en modo manual.

Antes de iniciar la autosintonía, el proceso deberá encontrarse en un estado estable. Ello significa que la variable del proceso (PV) deberá haber alcanzado el valor de consigna (o bien, tratándose de un lazo P, una diferencia constante entre la PV y la consigna) y la salida no deberá cambiar de forma errática.

Lo ideal es que el valor de la salida del lazo esté próximo al centro del rango de control cuando se inicie la autosintonía. La autosintonía crea una oscilación en el proceso, efectuando pequeños cambios escalonados en la salida del lazo. Si la salida del lazo está próxima a alguno de los extremos de su rango de control, los cambios escalonados introducidos en la autosintonía pueden provocar que el valor de salida intente exceder el límite mínimo o máximo.

Si ello sucede, es posible que se genere una condición de error en la autosintonía y, de todas formas, los valores propuestos no serán los óptimos.

Autohistéresis y autodesviación

El parámetro de histéresis indica la excursión (positiva o negativa) de la consigna que puede tener la PV (variable del proceso) sin que el controlador del relé modifique la salida. Este valor se utiliza para minimizar el efecto del ruido en la señal de la PV, con objeto de poder determinar más exactamente la frecuencia natural de oscilación del proceso.

Si selecciona que el valor de histéresis se determine automáticamente, el autosintonizador PID iniciará una secuencia de determinación de la histéresis. Esta secuencia incluye el muestreo de la variable del proceso durante un período de tiempo determinado y, a continuación, el cálculo de la desviación estándar de los resultados del muestreo.

Para obtener un valor de muestreo significativo desde el punto de vista estadístico, es preciso realizar 100 muestreos como mínimo. En un lazo con un tiempo de muestreo de 200 ms, la obtención de 100 muestreos dura 20 segundos. En lazos con un tiempo de muestreo más prolongado, dicho proceso tomará más tiempo. Aunque es posible realizar 100 muestreos en menos de 20 segundos para lazos cuyo tiempo de muestreo sea inferior a 200 ms, la secuencia de determinación de la histéresis obtiene siempre muestreos durante 20 segundos como mínimo.

Una vez realizados todos muestreos se calcula la desviación estándar de los mismos. El valor de histéresis debe ser el doble de la desviación estándar. El valor de histéresis calculado se escribe en el campo de histéresis real (AHYS) de la tabla del lazo.

Consejo

El cálculo PID normal no se ejecuta durante la secuencia de autohistéresis. Por tanto, es absolutamente indispensable que el proceso se encuentre en un estado estable antes de iniciar una secuencia de autosintonía. Así se obtendrá un mejor resultado del valor de histéresis, garantizando que el proceso no se encuentre fuera de control durante la secuencia de determinación de la autohistéresis.

El parámetro de desviación especifica la oscilación pico a pico deseada de la variable del proceso (PV) alrededor de la consigna. Si selecciona que este valor se determine automáticamente, la desviación deseada de la PV se calculará multiplicando el valor de histéresis por 4,5. La salida se conducirá proporcionalmente para provocar esta magnitud de oscilación en el proceso durante la autosintonía.

Secuencia de autosintonía

La secuencia de autosintonía se inicia tras haberse determinado los valores de histéresis y desviación. El proceso de sintonía comienza cuando el paso de salida inicial se aplica a la salida del lazo.

Este cambio del valor de salida debería causar un cambio correspondiente del valor de la variable del proceso (PV). Cuando el cambio de la salida aleje la PV de la consigna lo suficiente, de manera que se exceda el límite de la histéresis, el autosintonizador detectará un evento de paso por cero. En cada evento de paso por cero, el autosintonizador conducirá la salida en el sentido opuesto.

El sintonizador continuará muestreando la PV y esperará a que se produzca el siguiente evento de paso por cero. Para completar la secuencia se requieren doce pasos por cero en total. La magnitud de los valores pico a pico de la PV (error de pico) y la frecuencia a la que pueden ocurrir los pasos por cero dependen directamente de la dinámica del proceso.

Al comienzo del proceso de autosintonía, el valor del paso de salida se ajusta proporcionalmente una vez para provocar posteriores oscilaciones pico a pico de la PV, de manera que concuerde mejor con la desviación deseada. Tras efectuar el ajuste, el nuevo valor del paso de salida se escribe en el campo "Tamaño real del paso" (ASTEP) de la tabla del lazo.

La secuencia de autosintonía terminará con un error si el tiempo entre los pasos por cero excede el intervalo de vigilancia de paso por cero. El valor estándar de este intervalo es dos horas.

La figura 15-1 muestra el comportamiento de la salida y de la variable del proceso durante una secuencia de autosintonía en un lazo de actuación directa. El panel de control de sintonía PID se ha utilizado para iniciar y vigilar la secuencia de sintonía.

Observe cómo el autosintonizador conmuta la salida para que ocurran pequeñas oscilaciones en el proceso (según lo demuestra el valor de la PV). La frecuencia y la amplitud de las oscilaciones de la PV indican la ganancia y la frecuencia natural del proceso.

Figura 15-1 Secuencia de autosintonía en un lazo de actuación directa

Los valores límite de ganancia y de frecuencia se calculan conforme con la información obtenida acerca de la frecuencia y la ganancia del proceso durante el proceso de autosintonía. A partir de estos valores se calculan los valores propuestos para la ganancia proporcional, así como para los tiempos de acción integral y derivativa.

Consejo

El tipo de lazo determina los valores de sintonía que calcula el autosintonizador. Por ejemplo, tratándose de un lazo PI, el autosintonizador calculará la ganancia proporcional y el tiempo de acción integral, pero el tiempo propuesto para la acción derivativa será 0,0 (es decir, sin acción derivativa).

Una vez finalizada la secuencia de autosintonía, la salida del lazo se reseteará a su valor inicial. El cálculo PID se realizará la próxima vez que se ejecute el lazo.

Condiciones de advertencia

Durante la autosintonía pueden producirse condiciones de advertencia. Estas advertencias se depositan en tres bits del campo ASTAT de la tabla del lazo y, una vez activados, permanecen en ese estado hasta que se inicie la próxima secuencia de autosintonía.

- La advertencia 0 se genera si el valor de desviación no es por lo menos cuatro veces superior al de la histéresis. Esta comprobación se efectúa al conocerse realmente el valor de histéresis, lo que depende del ajuste de autohistéresis.
- □ La advertencia 1 se genera si la diferencia entre los dos valores de error de pico obtenidos durante los primeros 2,5 ciclos de la autosintonía es 8 veces superior.
- La advertencia 2 se genera si el error de pico promedio medido no es por lo menos 4 veces superior al valor de histéresis.

Además de estas advertencias, pueden producirse varias condiciones de error. En la tabla 15-3 figuran las condiciones de error posibles y sus respectivas descripciones.

Tabla 15-3 Condiciones de error durante la sintonía

Código de resultado (en ARES)	Condición
01 Cancelada por el usuario	El bit EN se ha borrado durante el proceso de sintonía.
02 Cancelada debido a un timeout de paso por cero del temporizador de vigilancia	El tiempo de medio ciclo transcurrido excede el intervalo de vigilancia de paso por cero.
03 Cancelada debido a que el proceso excedió el rango permitido	 La PV sale fuera de rango: durante la secuencia de autohistéresis, o bien dos veces antes del cuarto por cero, o bien tras el cuarto paso por cero.
04 Cancelada debido a que se excedió el valor máximo de histéresis	Valor de histéresis indicado por el usuario, o bien valor de histéresis determinado automáticamente > máximo
05 Cancelada debido a que se detectó un valor de configuración no válido	 Errores de comprobación de rango: El valor de la salida del lazo inicial es < 0,0 ó > 1,0 El valor de histéresis indicado por el usuario es <= valor de histéresis, o bien > máximo El paso de salida inicial es <= 0,0, o bien > máximo El intervalo de vigilancia de paso por cero es < mínimo El valor del tiempo de muestreo en la tabla del lazo es negativo.
06 Cancelada debido a un error numérico	El número en coma flotante no es válido o se ha detectado una división por cero.
07 La operación PID se ha ejecutado sin circulación de corriente (modo manual)	La operación PID se ha ejecutado sin circulación de corriente mientras se estaba ejecutando o solicitando la autosintonía.
08 Cancelada debido a que la autosintonía sólo se permite para lazos P. PI, PD o PID	El tipo de lazo no es P, PI, PD o PID.

Notas respecto a la variable del proceso fuera de rango (código de resultado 3)

El autosintonizador considera que la variable del proceso (PV) se encuentra dentro del rango permitido si su valor es mayor que 0,0 y menor que 1,0.

Si durante la secuencia de autohistéresis se detecta que la PV está fuera de rango, la autosintonía se cancelará inmediatamente con un error de fuera de rango.

Si se detecta que la PV está fuera de rango entre el comienzo de la secuencia de sintonía y el cuarto paso por cero, el valor del paso de salida se cortará a la mitad y la secuencia de sintonía se reiniciará desde el principio. Si se detecta un segundo evento de PV fuera de rango tras el primer paso por cero siguiente al reinicio, la autosintonía se cancelará con un error de fuera de rango.

Cualquier evento de PV fuera de rango que ocurra después del cuarto paso por cero cancelará inmediatamente la autosintonía y producirá un error de fuera de rango.

Panel de control de sintonía PID

STEP 7-Micro/WIN incorpora un panel de control de sintonía PID que permite vigilar gráficamente el comportamiento de los lazos PID. Además, este panel sirve para iniciar y detener la secuencia de autosintonía, así como para aplicar los valores de sintonía propuestos, o bien sus propios valores de sintonía.

Para poder utilizar el panel de control, se deberá haber establecido un enlace con una CPU S7-200 y en ésta deberá existir una configuración de un lazo PID generada con el asistente PID. La CPU deberá estar en modo RUN para que el funcionamiento PID pueda visualizarse en el panel de control. La figura 15-2 muestra la pantalla estándar del panel de control.

) Tuning Control P	anel				
ND Tuning Contro Select a PID Loop (I Panel or Configuration to tun	e from the Current P	Drop Down list. Click the Start Auto Tune button to	begin the tuning algorithm. Click the Clo	se button to exit.
Remote Address:	2				CPU 22404P REL 02
0 Value: 11957.0 Scaled: 11957.0	- Current Values - Selpoint: Sanole Time: Gain: Integrat Derivative: 0.00 Universitive: Ou Value:	12000.0 0.1 0.383691 Minutes 0.03 0.0 32000.00 4put 12039.00	32000 01 2560 00 11200 00 11200 00 11200 00 11200 00 11200 00 11200 00 11200 00 11200 00 11200 00 1100 1100 1000	0. 60. 50. 40. 30. 20.	10s 0s 32000.00 - 25600.00 - 18200.00 - 18200.00 - 66400.00
			SP	09:26:49	0ut 0.00
Funing Parameters (k Bain 0.383691 © Dument © Suggested © Manual	finutes) Integral Time I Update PLC	Derivative Time 0.0 Start Auto Tune Advanced	Current PID PID Configuration for 0 (PID 0) PID Configuration for 0 (PID 0) The tuning algorithm completed normally. S	Sampling Rate (Seconds/Sample)	ume Legend PV: SP: Qui:
Click for Help a	ind Support				Close

Figura 15-2 Panel de control de sintonía PID

La dirección de estación ("Dirección remota") de la CPU de destino se visualiza en el lado izquierdo superior del panel de control. En el lado superior derecho se indican el tipo de CPU y el número de versión. Debajo del campo "Dirección remota", el valor de la variable del proceso se representa en una barra vertical junto con sus valores escalados y no escalados. El área "Valores actuales" se encuentra inmediatamente a la derecha de la barra que representa la variable del proceso.

En el área "Valores actuales" se muestran el valor de la consigna, el tiempo de muestreo, la ganancia, el tiempo de acción integral y el tiempo de acción derivativa. El valor de la salida se visualiza en una barra horizontal junto con su valor numérico. A la derecha del área "Valores actuales" se encuentra un gráfico.

El gráfico muestra plots en color de la variable del proceso (PV), la consigna (SP) y la salida como función del tiempo. La PV y la SP comparten una misma escala vertical ubicada en el lado izquierdo del gráfico, en tanto que la escala vertical de la salida se encuentra en el lado derecho.

El área "Parámetros de sintonía (minutos)" está en el lado izquierdo inferior de la pantalla. Allí se visualizan los valores de la ganancia, así como del tiempo de acción integral y derivativa. Los botones de opción indican si se está visualizando el valor "Actual", "Propuesto" o "Manual" de la ganancia, así como del tiempo de acción integral y derivativa. Si desea visualizar un origen diferente de estos valores, haga clic en el botón de opción deseado. Para modificar los parámetros de sintonía, haga clic en el botón de opción "Manual".

Para transferir los valores visualizados de la ganancia, así como del tiempo de acción integral y derivativa a la CPU cuyo lazo PID se está vigilando, haga clic en el botón de comando "Actualizar CPU". El botón de comando "Iniciar autosintonía" sirve para comenzar una secuencia de autosintonía. Una vez iniciada una secuencia, el botón "Iniciar autosintonía" se convertirá en el botón "Detener autosintonía".

Inmediatamente debajo del gráfico se encuentra la lista desplegable "PID actual" en la que es posible seleccionar el lazo PID que se desea vigilar con el panel de control..

En el área "Frecuencia de muestreo" puede seleccionar la frecuencia de muestreo a visualizar en el gráfico. Ésta puede estar comprendida entre 1 y 480 segundos por muestreo. La frecuencia de muestreo se puede modificar. Pulse luego el botón "Ajustar tiempo" para aplicar el cambio. La escala de tiempo del gráfico se ajusta automáticamente para visualizar los datos de la mejor forma posible a la nueva frecuencia.

Si desea congelar el gráfico, haga clic en el botón "Pausar". Para reiniciar el muestreo a la frecuencia deseada, pulse el botón "Reanudar". Para borrar el gráfico, haga clic con el botón derecho del ratón en el mismo y elija el comando del menú contextual "Borrar".

A la derecha del área "Tiempo" se visualiza una leyenda que identifica los colores utilizados para plotear los valores de la variable del proceso, de la consigna y de la salida.

Directamente debajo del área "PID actual" se muestran informaciones acerca de la operación que se está ejecutando actualmente.

El botón "Avanzado..." en el área de los parámetros de sintonía sirve para configurar parámetros adicionales para el proceso de autosintonía. El cuadro de diálogo "Parámetros avanzados de sintonía PID" se muestra en la figura 15-3.

En ese cuadro de diálogo puede activar una casilla de verificación para que el autosintonizador determine automáticamente los valores de histéresis y de desviación (ajuste estándar), o bien introducir dichos valores directamente en los respectivos campos para minimizar la perturbación del proceso durante la autosintonía.

En el área "Opciones adicionales" puede indicar el tamaño del paso de salida inicial y el timeout de vigilancia de paso por cero.

ivanced PID Auto Tuning	Parameters
Select the option to have the Hysteresis and Deviation volues to specify your own values.	ne PLC automatically determine the alues. Turn the option off if you wish
Automatically determine	values
Hysteresis:	0.040
Deviation:	0.200
Other Options	
Initial Output Step:	0.100
Watchdog Time (secs.):	120
Dynamic Response Options	
Fast C Medium	C Slow C Very Slow
	OK Cancel

Figura 15-3 Parámetros avanzados

En el área "Opciones de respuesta dinámica", haga clic en el botón de opción correspondiente al tipo de respuesta del lazo deseado para el proceso. Dependiendo del proceso, una respuesta rápida podría tener sobreimpulso, lo que correspondería a una condición de sintonía subamortiguada. Una respuesta media podría estar a punto de tener sobreimpulso, lo que correspondería a una condición de sintonía críticamente amortiguada. Una respuesta lenta podría no tener sobreimpulso, lo que correspondería a una condición de sintonía subreamortiguada. Una respuesta media podría estar a punto de tener sobreimpulso, lo que correspondería a una condición de sintonía no tener sobreimpulso, lo que correspondería a una condición de sintonía sobreamortiguada. Una respuesta muy lenta podría no tener sobreimpulso, lo que correspondería a una condición de sintonía altamente sobreamortiguada.

Una vez efectuadas las selecciones deseadas, haga clic en "Aceptar" para regresar a la pantalla principal del panel de control de sintonía PID.

Tras completar la secuencia de autosintonía y transferir los parámetros de sintonía propuestos a la CPU, podrá utilizar el panel de control para vigilar la respuesta del lazo a un cambio de la consigna. La figura 15-4 muestra la respuesta del lazo a un cambio de la consigna (12000 a 14000) con los parámetros de sintonía originales (es decir, antes de ejecutar la autosintonía).

Observe el sobreimpulso y el comportamiento del proceso con oscilaciones amortiguadas al utilizar los parámetros de sintonía originales.

PID Tuning Control Pan	el			×
PID Tuning Control P Select a PID Loop or D	'anel Configuration to tu	ne from the Current Pl	PID Drop Down fat. Click the Start Auto Tune button to begin the tuning algorithm. Click the Close button to exit	
Remote Address:	2		CPU 224/P	REL 02.00
Process Variable 32000 0 Value: 14017.0 Scaled: 14017.0	Currenk Values Setpoint: Sample Time: Gain: Integrat Derivative: 0.00 Value:	14000.0 0.1 0.45 Minutes 0.0 32000.00 32000.00 13993.00		1000.00 1600.00 1200.00 2800.00
Tuning Parameters (Min Gain Inte 0.45 C Durrent U C Suggested C Manual	utes) egral Time 0.03 Ipdate PLC	Derivative Time 0.0 Start Auto Tune Advanced	Current PD DD Configuration for 0 PDD 0 Castiguration for 0 PDD 0 Castig	egend ² V: 3P: Dut:
Click for Help and	Support		C	se

Figura 15-4 Respuesta a un cambio de consigna

La figura 15-5 muestra la respuesta del lazo al mismo cambio de la consigna (12000 a 14000) tras aplicar los valores determinados por el proceso de autosintonía utilizando una respuesta rápida. Tenga en cuenta que en este proceso no hay sobreimpulso, sino sólo oscilaciones amortiguadas muy leves. Si desea eliminar estas oscilaciones a costa de la velocidad de respuesta, deberá seleccionar una respuesta media o lenta y ejecutar de nuevo el proceso de autosintonía.

emote Address:	2		CPU 2244P REL
Tocess Variable	Current Values Setpoint: Sample Time:	12000.0	32000 00 110+ 100+ 90+ 80+ 70+ 60+ 50+ 40+ 30+ 20+ 10+ 0+ 32000 00 10+ 10+ 10+ 90+ 80+ 70+ 60+ 50+ 40+ 30+ 20+ 10+ 0+ 32000
	Gain	0.383691 Misutes	25600.00
	Integrat Derivative:	0.03	19200.00
0 Value: 11957.0	0.00	32000.00	12800.00
Scaled: 11957.0	Value	12039.00	0.00 SP 09:24:31 0.00
uning Parameters (M	dinutes)		Current PID Sampling Rate (Seconde/Sample)
0.5754374	0.1604668	Derivative Time 0.0	PID Configuration for 0 (PID 0)
Current Suggested	Update PLC	Start Auto Tune	The tuning algorithm completed normally. Suggested tuning values are available.

Figura 15-5 Respuesta tras el proceso de autosintonía

Cuando tenga un buen punto de partida para los parámetros de sintonía del lazo, podrá utilizar el panel de control para modificarlos ligeramente. A continuación, podrá vigilar la respuesta del lazo a un cambio de la consigna. De esta manera podrá sintonizar finamente el proceso y obtener así una respuesta óptima en la aplicación.

Datos técnicos

Índice del capítulo

Datos técnicos generales	404				
Datos técnicos de las CPUs	407				
Datos técnicos de los módulos de ampliación digitales	416				
Datos técnicos de los módulos de ampliación analógicos	423				
Datos técnicos de los módulos de ampliación Termopar y RTD	434				
Datos técnicos del módulo de ampliación EM 277 PROFIBUS-DP	446				
Datos técnicos del módulo Módem EM 241	458				
Datos técnicos del módulo de posicionamiento EM 253	460				
Datos técnicos del módulo Ethernet (CP 243-1)					
Datos técnicos del módulo Internet (CP 243-1 IT)	468				
Datos técnicos del módulo AS-Interface (CP 243-2)	471				
Cartuchos opcionales	473				
Cable de módulo de ampliación	474				
Cable multimaestro RS-232/PPI y cable multimaestro USB/PPI	475				
Simuladores de entradas	479				

Datos técnicos generales

Cumplimiento de normas

Las características técnicas y las pruebas realizadas con los productos de la gama S7-200 se basan en las homologaciones nacionales e internacionales que se indican a continuación. En la tabla A-1 figura la conformidad específica con esas homologaciones.

- Directiva de Baja Tensión de la Comunidad Europea 73/23/CEE (EN 61131-2): Autómatas programables - requisitos del equipo
- Directiva EMC de la Comunidad Europea (CE) 89/336/CEE

Norma de emisiones electromagnéticas EN 61000-6-3: residencial, comercial e industria de iluminación EN61000-6-4: entornos industriales

Norma de inmunidad electromagnética EN 61000-6-2: entornos industriales

- □ Underwriters Laboratories, Inc.: UL 508 Listed (Industrial Control Equipment) Nº de registro: E75310
- Canadian Standards Association: CSAC22.2 nº142 (Process Control Equipment)
- Factory Mutual Research: nº de clase 3600, nº de clase 3611, clase FM I, categoría 2, grupos A, B, C y D "Hazardous Locations", T4A y clase I, zona 2, IIC, T4
- Directiva sobre equipos y sistemas de protección para uso en atmósferas potencialmente explosivas (ATEX) de la Comunidad Europea 94/9/EC EN 60079-0 Requisitos generales EN 50020 Seguridad intrínseca 'i' EN 60079-15 Tipo de protección 'n'

El certificado de la directiva 94/9/EC ATEX estaba incompleto en el momento de esta publicación. Para obtener las informaciones más recientes, diríjase a su representante de Siemens.

Consejo

La gama SIMATIC S7-200 cumple la norma CSA.

El logotipo cULus indica que Underwriters Laboratories (UL) ha examinado y certificado el S7-200 conforme a las normas UL 508 y CSA 22.2 No. 142.

Seguridad marítima

Los productos S7-200 se comprueban con regularidad en agencias especiales en relación con aplicaciones y mercados específicos. En la tabla se indican las agencias que han aprobado los productos S7-200 y los números de los certificados correspondientes. La mayoría de los productos S7-200 mencionados en este manual han sido aprobados por las agencias mencionadas. Para más información sobre el cumplimiento de las normas y una lista actual de los productos aprobados, diríjase al representante de Siemens más próximo.

Agencia	Nº de certificado
Lloyds Register of Shipping (LRS)	99 / 20018(E1)
American Bureau of Shipping (ABS)	01-HG20020-PDA
Germanischer Lloyd (GL)	12 045 - 98 HH
Det Norske Veritas (DNV)	A-8862
Bureau Veritas (BV)	09051 / B0BV
Nippon Kaiji Kyokai (NK)	A-534
Polski Rejestr	TE/1246/883241/99

Vida útil de los relés

La figura A-1 muestra los datos típicos de rendimiento de los relés suministrados por el comercio especializado. El rendimiento real puede variar dependiendo de la aplicación. Un circuito de protección externo conectado a la carga permite prolongar la vida útil de los contactos.

Figura A-1 Vida útil de los relés

Datos técnicos

En la tabla A-1 figuran los datos técnicos generales de las CPUs S7-200 y de los módulos de ampliación.

Nota

Cuando un contacto mecánico aplica tensión a una CPU S7-200, o bien a un módulo de ampliación digital, envía una señal "1" a las salidas digitales durante aproximadamente 50 microsegundos. Considere ésto especialmente si desea utilizar aparatos que reaccionen a impulsos de breve duración.

Tabla A-1 Datos técnicos

Condiciones ambientales — Transporte y almacenamiento					
EN 60068-2-2, ensayo Bb, calor seco y EN 60068-2-1, ensayo Ab, frío	-40° C a +70° C				
EN 60068-2-30, ensayo Dd, calor húmedo	25° C a 55° C, 95% humedad				
EN 60068-2-14, ensayo Na, choque de temperatura	-40° C a +70° C tiempo de secado 3 horas, 2 ciclos				
EN 60068-2-31, vuelco	100 mm, 4 gotas, desembalado				
EN 60068-2-32, caída libre	1 m, 5 veces, embalado para embarque				
Con	diciones ambientales — Funcionamiento				
Condiciones ambientales (aire de entrada 25 mm debajo de la unidad)	0° C a 55° C en montaje horizontal, 0° C a 45° C en montaje vertical 95% humedad no condensante				
Presión atmosférica	1080 a 795 hPa (altitud: -1000 a 2000 m)				
Concentración de contaminantes	S0 ₂ : < 0,5 ppm; H ₂ S: < 0,1 ppm; RH < 60% no condensante				
EN 60068-2-14, ensayo Nb, cambio de temperatura	5° C a 55° C, 3° C/minuto				
EN 60068-2-27, choque mecánico	15 G, 11 ms impulso, 6 choques en c/u de 3 ejes				
EN 60068-2-6, vibración sinusoidal	Montaje en un armario eléctrico:0,30 mm de 10 a 57 Hz; 2 G de 57 a 150 HzMontaje en perfil soporte:0,15 mm de 10 a 57 Hz; 1 G de 57 a 150 Hz10 barridos por eje, 1 octava/minuto				
EN 60529, IP22 Protección mecánica	Protege los dedos contra el contacto con alto voltaje, según pruebas realizadas co sondas estándar. Se requiere protección externa contra polvo, impurezas, agua y objetos extraños de menos de 12,5 mm de diámetro.				

Tabla A-1 Datos técnicos, continuación

Compatibilidad electromagnética — Inmunidad según EN 61000-6-21					
EN 61000-4-2 Descargas electrostáticas	Descarga del aire de 8 kV en todas las superficies y al puerto de comunicación, descarga de contactos de 4kV en las superficies conductivas desnudas				
EN 61000-4-3 Campos electromagnéticos radiados	10 V/m, 80-1000 MHz y 1,4 a 2.0 GHz, 80% AM a 1 kHz				
EN 61000-4-4 Transitorios eléctricos rápidos	2 kV, 5 kHz con red de unión a la alimentación c.a. y c.c. 2 kV, 5 kHz con abrazadera de unión a las E/S digitales 1 kV, 5 kHz con abrazadera de unión a la comunicación				
EN 61000-4-5 Inmunidad a ondas de choque	Alimentación 2 kV asimétrico, 1 kV simétrico 1 kV simétrico para ES (para los circuitos de 24 V c.c. se necesita una protección externa contra sobrecorriente)				
EN 61000-4-6 Perturbaciones conducidas	0,15 MHz a 80 GHz 10 V/m, 80% AM a 1 kHz				
EN 61000-4-11 Caídas de tensión, interrupciones breves y variaciones de tensión	>95% de reducción durante 8,3 ms, 83 ms, 833 ms y 4167 ms				
VDE 0160 Sobrevoltaje no periódico	A 85 V c.a. línea, 90° decalaje de fase, aplicar cresta de 390 V, impulso de 1,3 ms A 180 V c.a. línea, 90° decalaje de fase, aplicar cresta de 750 V, impulso de 1,3 ms				
Compatibilidad electromagnética –	– Emisiones conducidas y radiadas según EN 61000-6-3 ² y EN 61000-6-4				
EN 55011, clase A, grupo 1, conducida ¹ 0,15 MHz a 0,5 MHz 0,5 MHz a 5 MHz 5 MHz a 30 MHz	< 79 dB (μ V) casi cresta; < 66 dB (μ V) promedio < 73 dB (μ V) casi cresta; < 60 dB (μ V) promedio < 73 dB (μ V) casi cresta; < 60 dB (μ V) promedio				
EN 55011, clase A, grupo 1, radiada ¹ 30 MHz a 230 MHz 230 MHz a 1 GHz	40 dB (μ V/m) casi cresta; medida a 10 m 47 dB (μ V/m) casi cresta; medida a 10 m				
EN 55011, clase B, grupo 1, conducida ² 0,15 a 0,5 MHz 0,5 MHz a 5 MHz 5 MHz a 30 MHz	< 66 dB (μ V) decremento casi cresta con frecuencia logarítmica a 56 dB (μ V); < 56 dB (μ V) decremento promedio con frecuencia logarítmica a 46 dB (μ V) < 56 dB (μ V) casi cresta; < 46 dB (μ V) promedio < 60 dB (μ V) casi cresta; < 50 dB (μ V) promedio				
EN 55011, clase B, grupo 1, radiada ² 30 MHz a 230 MHz 230 MHz a 1 GHz	30 dB (μ V/m) casi cresta; medido a 10 m 37 dB (μ V/m) casi cresta; medido a 10 m				
	Prueba de aislamiento a hipervoltajes				
Circuitos nominales de 24 V/5 V Circuitos a tierra de 115/230 V Circuitos de 115/230 V a circuitos de 115/230 V Circuitos de 230 V a circuitos de 24 V/5 V Circuitos de 115 V a circuitos de 24 V/5 V	500 V c.a. (límites de aislamiento óptico) 1.500 V c.a. 1.500 V c.a. 1.500 V c.a. 1.500 V c.a.				

1

La unidad deberá montarse en un soporte metálico puesto a tierra. El S7-200 deberá ponerse a tierra directamente a través del soporte metálico. Los cables se deberán conducir a lo largo de los soportes metálicos. La unidad deberá montarse en una caja metálica puesta a tierra. La línea de alimentación de corriente alterna se deberá equipar con un filtro EPCOS B84115-E-A30 o similar, teniendo el cable una longitud máxima de 25 cm entre los filtros y el S7-200. El cableado de la alimentación 24 V c.c. y de la alimentación de sensores se deberá apantallar. 2

Datos técnicos de las CPUs

Tabla A-2 Números de referencia de las CPU:	bla A-2	2 Números de referencia de	las CPUs	
---	---------	----------------------------	----------	--

№ de referencia	Modelo de CPU	Alimentación (nominal)	Entradas digitales	Salidas digitales	Puertos COM	Entradas analógicas	Salidas analógicas	Bloque de terminales extraíble
6ES7 211-0AA23-0XB0	CPU 221	24 V c.c.	6 x 24 V c.c.	4 x 24 V c.c.	1	No	No	No
6ES7 211-0BA23-0XB0	CPU 221	120 a 240 V c.a.	6 x 24 V c.c.	4 salidas de relé	1	No	No	No
6ES7 212-1AB23-0XB0	CPU 222	24 V c.c.	8 x 24 V c.c.	6 x 24 V c.c.	1	No	No	No
6ES7 212-1BB23-0XB0	CPU 222	120 a 240 V c.a.	8 x 24 V c.c.	6 salidas de relé	1	No	No	No
6ES7 214-1AD23-0XB0	CPU 224	24 V c.c.	14 x 24 V c.c.	10 x 24 V c.c.	1	No	No	Sí
6ES7 214-1BD23-0XB0	CPU 224	120 a 240 V c.a.	14 x 24 V c.c.	10 salidas de relé	1	No	No	Sí
6ES7 214-2AD23-0XB0	CPU 224XP	24 V c.c.	14 x 24 V c.c.	10 x 24 V c.c.	2	2	1	Sí
6ES7 214-2BD23-0XB0	CPU 224XP	120 a 240 V c.a.	14 x 24 V c.c.	10 salidas de relé	2	2	1	Sí
6ES7 216-2AD23-0XB0	CPU 226	24 V c.c.	24 x 24 V c.c.	16 x 24 V c.c.	2	No	No	Sí
6ES7 216-2BD23-0XB0	CPU 226	120 a 240 V c.a.	24 x 24 V c.c.	16 salidas de relé	2	No	No	Sí

Tabla A-3 Datos técnicos generales de las CPUs

№ de referencia	Nombre y descripción de la CPU	Dimensiones en mm (I x a x p)	Peso	Disipación	Tensi dispo +5 V c.c.	ón c.c. onible +24 V c.c. ¹
6ES7 211-0AA23-0XB0	CPU 221 DC/DC/DC 6 entradas/4 salidas	90 x 80 x 62	270 g	3 W	0 mA	180 mA
6ES7 211-0BA23-0XB0	CPU 221 AC/DC/relé 6 entradas/4 salidas de relé	90 x 80 x 62	310 g	6 W	0 mA	180 mA
6ES7 212-1AB23-0XB0	CPU 222 DC/DC/DC 8 entradas/6 salidas	90 x 80 x 62	270 g	5 W	340 mA	180 mA
6ES7 212-1BB23-0XB0	CPU 222 AC/DC/relé 8 entradas/6 salidas de relé	90 x 80 x 62	310 g	7 W	340 mA	180 mA
6ES7 214-1AD23-0XB0	CPU 224 DC/DC/DC 14 entradas/10 salidas	120,5 x 80 x 62	360 g	7 W	660 mA	280 mA
6ES7 214-1BD23-0XB0	CPU 224 AC/DC/relé 14 entradas/10 salidas de relé	120,5 x 80 x 62	410 g	10 W	660 mA	280 mA
6ES7 214-2AD23-0XB0	CPU 224XP DC/DC/DC 14 entradas/10 salidas	140 x 80 x 62	390 g	8 W	660 mA	280 mA
6ES7 214-2BD23-0XB0	CPU 224XP AC/DC/relé 14 entradas/10 salidas de relé	140 x 80 x 62	440 g	11 W	660 mA	280 mA
6ES7 216-2AD23-0XB0	CPU 226 DC/DC/DC 24 entradas/16 salidas	196 x 80 x 62	550 g	11 W	1000 mA	400 mA
6ES7 216-2BD23-0XB0	CPU 226 AC/DC/relé 24 entradas/16 salidas de relé	196 x 80 x 62	660 g	17 W	1000 mA	400 mA

¹ Esta es la alimentación de sensores de 24 V c.c. disponible tras tenerse en cuenta la alimentación interna de bobinas de relé y los requisitos de corriente de 24 V c.c. del puerto de comunicación.

Tabla A-4 Datos técnicos de las CPUs

	CPU 221 CPU 222 CPU 224 CPU 224XP CPU 226							
Memoria								
Tamaño del programa de usuario (EEPROM) con edición en modo RUN sin edición en modo RUN	4096 bytes 4096 bytes		8192 bytes 12288 bytes	12288 bytes 16384 bytes	16384 bytes 24576 bytes			
Datos de usuario (EEPROM)	2048 bytes (reman	entes)	8192 bytes (remanentes)	10240 bytes (remanentes)	10240 bytes (remanentes)			
Respaldo (condensador de alto rendimiento)	Típ. 50 h (mín. 8 h	Típ. 50 h (mín. 8 h a 40°C) Típ. 100 h (mín. 70 h a 40°C) Típ. 100 horas (mín. 70 ho						
(pila opcional)	Típ. 200 días	Típ. 200 días Típ. 200 días Típ. 200 días						
Entradas y salidas (E/S)								
E/S de ampliación	6 E/4 S 8 E/6 S 14 E/10 S			14 E/10 S	24 E/16 S			
E/S analógicas	Ninguna			2 E/1 S	Ninguna			
Tamaño de la imagen de E/S digitales	256 (128 E/128 S)			1	1			
Tamaño de la imagen de E/S analógicas	Ninguno	32 (16 E/16 S)	64 (32 E/32 S)					
Nº máx. de módulos de ampliación	Ninguno	2 módulos ¹	7 módulos ¹					
Nº máx. de módulos inteligentes	Ninguno	2 módulos ¹	7 módulos ¹					
Entradas de captura de impulsos	6	8	14		24			
Contadores rápidos Fase simple	4 contadores (total 4 a 30 kHz)	6 contadores (total) 6 a 30 kHz	6 contadores (total) 4 a 30 kHz	6 contadores (total) 6 a 30 kHz			
Dos fases	2 a 20 kHz	2 a 20 kHz 4 a 20 kHz 3 a 20 kHz 1 a 100 kHz						
Salidas de impulsos	2 a 20 kHz (sólo en salidas c.c.) (sólo en salidas c.c.) 2 a 100 kHz (sólo en salidas c.c.) 2 a 20 kHz (sólo en salidas c.c.)							
Datos generales								
Temporizadores	256 temporizadores	256 temporizadores en total: 4 temporizadores de 1 ms, 16 temporizadores de 10 ms y 236 temporizadores de 100 ms						
Contadores	256 (respaldo por o	256 (respaldo por condensador de alto rendimiento o pila)						
Marcas internas almacenadas al desconectar la CPU	256 (respaldo por o 112 (almacenamie	condensador de alto re nto en EEPROM)	ndimiento o pila)					
Interrupciones temporizadas	2 con resolución de	e 1 ms						
Interrupciones de flanco	4 flancos positivos	y/o 4 flancos negativos	s					
Potenciómetros analógicos	1 con resolución de	e 8 bits	2 con resolución de 8 bits	S				
Velocidad de ejecución booleana	0,22 μs por operac	ión						
Reloj de tiempo real	Cartucho opcional		Incorporado					
Cartuchos opcionales	Memoria, pila y rel	Memoria, pila y reloj de tiempo real Memoria y pila						
Comunicación integrada								
Puertos (potencia limitada)	1 puerto RS-485			2 puertos RS-485				
Velocidades de transferencia PPI, DP/T	9,6, 19,2 y 187,5 k	bit/s						
Velocidades de transferencia Freeport	1.2 kbit/s a 115.2 k	bit/s						
Longitud máx. del cable por segmento	Con repetidor aislado: 1000 m hasta 187,5 kbit/s, 1200 m hasta 38,4 kbit/s Sin repetidor aislado: 50 m							
Nº máximo de estaciones	32 por segmento, 7	126 por red						
Nº máximo de maestros	32							
Punto a punto (modo maestro PPI)	Sí (NETR/NETW)	Sí (NETR/NETW)						
Enlaces MPI	4 en total, 2 reservados (1 para una PG y 1 para un OP)							

Es preciso calcular la corriente necesaria para determinar cuánta energía puede suministrar la CPU S7-200 a la configuración deseada. Si se excede la corriente necesaria para la CPU, es posible que no se pueda conectar el número máximo de módulos. Consulte el anexo A para obtener información acerca de los requisitos de alimentación de la CPU y de los módulos de ampliación, así como el anexo B para calcular la corriente necesaria.

	Corrient	Corriente alterna			
Potencia de entrada					
Tensión de entrada	20,4 a 28,8 V c.c.	20,4 a 28,8 V c.c. 8		<u>.</u>	
Intensidad de entrada CPU 221 CPU 222 CPU 224 CPU 224XP CPU 224XP CPU 226	CPU sólo a 24 V c.c. 80 mA 85 mA 110 mA 120 mA 150 mA	Carga máx. a 24 V c.c. 450 mA 500 mA 700 mA 900 mA 1050 mA	sólo CPU 30/15 mA a 120/240 V c.a. 40/20 mA a 120/240 V c.a. 60/30 mA a 120/240 V c.a. 70/35 mA a 120/240 V c.a. 80/40 mA a 120/240 V c.a.	Carga máx. 120/60 mA a 120/240 V c.a. 140/70 mA a 120/240 V c.a. 200/100 mA a 120/240 V c.a. 220/100 mA a 120/240 V c.a. 320/160 mA a 120/240 V c.a.	
Corriente de irrupción	12 A a 28,8 V c.c.		20 A a 264 V c.a.		
Aislamiento (campo a circuito lógico)	Sin aislamiento		1500 V c.a.		
Tiempo de retardo (desde la pérdida de corriente)	10 ms a 24 V c.c.		20/80 ms a 120/240 V c.a.		
Fusible (no reemplazable)	3 A, 250 V, de acción le	enta	2 A, 250 V, de acción lenta		
Alimentación de sensores 24 V c.c.					
Tensión de sensores (potencia limitada)			20,4 a 28,8 V c.c.		
Intensidad límite	1,5 A pico, límite térmic	o no destructivo (v. tabla A	-3, carga nominal)		
Rizado/corriente parásita Derivado de potencia de entrada		e entrada	Menos de 1 V pico a pico		
Aislamiento (sensor a circuito lógico) Sin aislamiento					

Tabla A-5 Datos de alimentación de las CPUs

Tabla A-6 Datos de las entradas digitales de las CPUs

Datos generales	Entrada de 24 V c.c. (CF CPU 222, CPU 224, CP	PU 221, U 226)	Entrada de 24 V c.c. (CPU 224XP)	
Tipo de datos	Sumidero de corriente/fuen IEC con sumidero de corrie	te (tipo 1 nte)	Sumidero de corriente/fuente (tipo 1 IEC, excepto I0.3 a I0.5)	
Tensión nominal	Típ. 24 V c.c. a 4 mA		Típ. 24 V c.c. a 4 mA	
Tensión continua máx. admisible	30 V c.c.		I	
Sobretensión	35 V c.c., 0,5 s			
Señal 1 lógica (mín.)	15 V c.c. a 2,5 mA		15 V c.c. a 2,5 mA (I0.0 a I0.2 e I0.6 a I1.5) 4 V c.c. a 8 mA (I0.3 a I0.5)	
Señal 0 lógica (máx.)	5 V c.c. a 1 mA		5 V c.c. a 1 mA (10.0 a 10.2 e 10.6 a 11.5) 1 V c.c. a 1 mA (10.3 a 10.5)	
Retardo de entrada	Seleccionable (0,2 a 12,8 n	ns)	I	
Conexión de sensor de proximidad de 2 hilos (Bero)				
Corriente de fuga admisible (máx.)	1 mA			
Aislamiento (campo a circuito lógico)	Sí			
Separación galvánica	500 V c.a., 1 minuto			
Grupos de aislamiento	Consulte el diagrama de ca	bleado		
Frecuencia de entrada de los contadores rápidos (HSC)				
Entradas HSC	Señal 1 lógica	ase simple	e Dos fases	
Todos los HSC	15 a 30 V c.c.	20 kHz	10 kHz	
Todos los HSC	15 a 26 V c.c.	30 kHz	20 kHz	
HC4, HC5 (sólo CPU 224XP)	> 4 V c.c.	200 kHz	100 kHz	
Entradas ON simultáneamente	Todas		Todas Sólo CPU 224XP AC/DC/relé: Todas a 55° C con entradas c.c a 26 V c.c. máx. Todas a 50° C con entradas c.c a 30 V c.c. máx.	
Longitud del cable (máx.)				
Apantallado	500 m para las entradas no	rmales, 50	m para las entradas HSC ¹	
No apantallado	300 m para las entradas normales			

¹ Para las entradas HSC se recomienda utilizar cables apantallados de par trenzado.

Datos generales	Salida de 24 V c.c. (CPU 221, CPU 222, CPU 224, CPU 226)	Salida de 24 V c.c. (CPU 224XP)	Salidas de relé	
Tipo de datos	Estado sólido-MOSFET ¹ (fuente)		Contacto de baja potencia	
Tensión nominal	24 V c.c.	24 V c.c.	24 V c.c. ó 250 V c.a.	
Rango de tensión	20,4 a 28,8 V c.c.	5 a 28,8 V c.c. (Q0.0 a Q0.4) 20,4 a 28,8 V c.c. (Q0.5 a Q1.1)	5 a 30 V c.c. ó 5 a 250 V c.a.	
Sobreintensidad (máx.)	8 A, 100 ms	·	5 A durante 4 s c/u 10% de ciclo de trabajo	
Señal 1 lógica (mín.)	20 V c.c. a intensidad máx.	L+ menos 0,4 V a intensidad máx.	-	
Señal 0 lógica (máx.)	0,1 V c.c. con 10 K Ω de carga		-	
Intensidad nominal por salida (máx.)	0,75 A		2,0 A	
Intensidad nominal por neutro (máx.)	6 A	3,75 A	10 A	
Corriente de fuga (máx.)	10 μ Α	1	-	
Carga de lámparas (máx.)	5 W		30 W c.c.; 200 W c.a. ^{3, 4}	
Tensión de bloqueo inductiva	L+ menos 48 V c.c., disipación de 1	L+ menos 48 V c.c., disipación de 1 W		
Resistencia en estado ON (contactos)	Típ. 0,3 Ω (0.6 Ω máx.)	0,2 Ω (máx. si son nuevas)		
Separación galvánica Separación galvánica (campo a circuito lógico) Circuito lógico a contacto Resistencia (circuito lógico a contacto) Grupos de aislamiento	500 V c.a., 1 minuto - - Consulte el diagrama de cableado		- 1500 V c.a., 1 minuto 100 MΩ Consulte el diagrama de cableado	
Retardo (máx.) OFF a ON (μs) ON a OFF (μs) Conmutación	2μs (Q0.0, Q0.1), 15μs (todas las demás) 10μs (Q0.0, Q0.1), 130μs (todas las demás) -	0,5µs (Q0.0, Q0.1), 15µs (todas las demás) 1,5µs (Q0.0, Q0.1), 130µs (todas las demás) -	- 10 ms	
Frecuencia de impulsos (máx.)	20 kHz ² (Q0.0 y Q0.1) 100 kHz ² (Q0.0 y Q0.1)		1 Hz	
Vida útil mecánica	-	-	10.000.000 (sin carga)	
Vida útil de los contactos	-	-	100.000 (carga nominal)	
Salidas ON simultáneamente	Todas a 55° C (horizontal), todas a 45			
Conexión de dos salidas en paralelo	Si, sólo salidas de un mismo grupo	No		
Longitud del cable (máx.) Apantallado No apantallado	500 m 150 m			

Tabla A-7 Datos de las salidas digitales de las CPUs

Cuando un contacto mecánico aplica tensión a una CPU S7-200, o bien a un módulo de ampliación digital, envía una señal "1" a las salidas digitales durante 1 Cuando un contacto mecanico aplica tension a una CPU \$7/200, o bien a un módulo de ampliacion digital, envía una senal "1" a las salidas digitales durante aproximadamente 50 microsegundos. Considere ésto especialmente si desea utilizar aparatos que reaccionen a impulsos de breve duración. En función del receptor de impulsos y del cable, un resistor de carga externo (al menos 10% de la intensidad nominal) puede mejorar la calidad de señal de los impulsos y la inmunidad a interferencias. La vida útil de los relés con carga de lámparas se reducirá en 75%, a menos que la sobrecorriente al conectar se reduzca por debajo de la sobrecorriente límite de la salida. El vatiaje límite de la carga de lámparas es aplicable a la tensión nominal. Reduzca el vatiaje límite proporcionalmente a la tensión conmutada (p. ej. 120 V c.a. - 100 W). 2

3

4

Datos generales	Entrada analógica (CPU 224XP)
Nº de entradas	2
Tipo de entrada analógica	Asimétrica
Rango de tensión	±10 V
Formato de palabra de datos, rango máx.	-32,000 a +32,000
Impedancia de entrada DC	>100 KΩ
Tensión de entrada máxima	30 V c.c.
Resolución	11 bits más 1 bit de signo
Valor LSB	4,88 mV
Separación galvánica	Ninguno
Precisión	
Caso más desfavorable 0° a 55° C	±2,5% de rango máx.
Típico, 25°C	±1,0% de rango máx.
Repetibilidad	±0,05% de rango máx.
Tiempo de conversión analógica/digital	125 ms
Tipo de conversión	Sigma-delta
Respuesta en escalón	Máx. 250 ms.
Rechazo de interferencias	Típ20 dB c/u 50 Hz

Tabla A-9	Datos de las salidas analógicas de la CPU 224XP
	-

Datos generales	Salida analógica (CPU 224XP)
Nº de salidas	1
Rango de señales	
Tensión	0 a 10 V (potencia limitada)
Intensidad	0 a 20 V (potencia limitada)
Formato de palabra de datos, rango máx.	0 a +32767
Formato de palabra de datos, rango máx.	0 a +32000
Resolución, rango máx.	12 bits
Valor LSB	
Tensión	2,44 mV
Intensidad	4,88 μΑ
Separación galvánica	Ninguna
Precisión	
Caso más desfavorable, 0° a 55° C	
Salida de tensión	± 2% de rango máx.
Salida de intensidad	± 3% de rango máx.
Típ. 25° C	
Salida de tensión	± 1% de rango máx.
Salida de intensidad	± 1% de rango máx.
Tiempo de estabilización	
Salida de tensión	< 50 μS
Salida de intensidad	< 100 µS
Accionamiento máx. de salidas	
Salida de tensión	≥ Mín. 5000 Ω
Salida de intensidad	≤ Máx. 500 Ω

Diagramas de cableado

Figura A-2 Entradas y salidas de las CPUs

Figura A-3 Diagramas de cableado de las CPUs 221

Figura A-4 Diagramas de cableado de las CPUs 222 y 224

Figura A-5 Diagramas de cableado de las CPUs 224XP

Figura A-6 Diagramas de cableado de las CPUs 226

Enchufe № de pin Señal PROFIBUS Puerto 0/Puerto 1		Puerto 0/Puerto 1	
	1	Blindaje	Tierra
	2	Hilo de retorno 24 V	Hilo lógico
Pin 1	3	Señal B RS-485	Señal B RS-485
• • Pin 6	4	Petición de transmitir	RTS (TTL)
	5	Hilo de retorno 5 V	Hilo lógico
Pin 5	6	+5 V	+5 V, 100 Ω resistor en serie
	7	+24 V	+24 V
	8	Señal A RS-485	Señal A RS-485
	9	No aplicable	Selección protocolo de 10 bits (entrada)
	Carcasa del enchufe	Blindaje	Tierra

Tabla A-10 Asignación de pines del puerto de comunicación del S7-200 (potencia limitada)

Datos técnicos de los módulos de ampliación digitales

№ de referencia	Módulo de ampliación	Entradas digitales	Salidas digitales	Bloque de terminales extraíble
6ES7221-1BF22-0XA0	EM 221 8 entradas digitales x 24 V c.c.	8 x 24 V c.c.	-	Sí
6ES7 221-1EF22-0XA0	EM 221 8 entradas digitales x 120/230 V c.a.	8 x 120/230 V c.a.	-	Sí
6ES7221-1BH22-0XA0	EM 221 16 entradas digitales x 24 V c.c.	16 x 24 V c.c.	-	Sí
6ES7 222-1BD22-0XA0	EM 222 4 salidas digitales x 24 V c.c5A	-	4 x 24 V c.c5A	Sí
6ES7 222-1HD22-0XA0	EM 222 4 salidas digitales x relé-10A	-	4 x relé-10A	Sí
6ES7 222-1BF22-0XA0	EM 222 8 salidas digitales x 24 V c.c.	-	8 x 24 V c.c0,75A	Sí
6ES7 222-1HF22-0XA0	EM 222 8 salidas digitales x relé	-	8 x relé-10A	Sí
6ES7 222-1EF22-0XA0	EM 222 8 salidas digitales x 120/230 V c.a.	-	8 x 120/230 V c.a.	Sí
6ES7223-1BF22-0XA0	EM 223 4 entradas digitales/4 salidas digitales x 24 V c.c.	4 x 24 V c.c.	4 x 24 V c.c0,75A	Sí
6ES7 223-1HF22-0XA0	EM 223 4 entradas digitales/4 salidas de relé x 24 V c.c.	4 x 24 V c.c.	4 x relé-2A	Sí
6ES7 223-1BH22-0XA0	EM 223 8 entradas digitales/8 salidas digitales x 24 V c.c.	8 x 24 V c.c.	8 x 24 V c.c0,75A	Sí
6ES7 223-1PH22-0XA0	EM 223 8 entradas digitales/8 salidas de relé x 24 V c.c.	8 x 24 V c.c.	8 x relé-2A	Sí
6ES7 223-1BL22-0XA0	EM 223 16 entradas digitales/16 salidas digitales x 24 V c.c.	16 x 24 V c.c.	16 x 24 V c.c0,75A	Sí
6ES7 223-1PL22-0XA0	EM 223 16 entradas digitales/16 salidas de relé x 24 V c.c.	16 x 24 V c.c.	16 x relé-2A	Sí

Tabla A-11 Números de referencia de los módulos de ampliación digitales

Tabla A-12 Datos técnicos generales de los módulos de ampliación digitales

Nº de referencia	Nombre y descripción de la CPU	Dimensiones en mm (I x a x p)	Peso	Disipación	Tens +5 V c.c.	ón c.c. disponible +24 V c.c.
6ES7221-1BF22-0XA0	EM 221 8 entradas digitales x 24 V c.c.	46 x 80 x 62	150 g	2 W	30 mA	ON: 4 mA/entrada
6ES7 221-1EF22-0XA0	EM 221 8 entradas digitales x 120/230 V c.a.	71,2 x 80 x 62	160 g	3 W	30 mA	-
6ES7221-1BH22-0XA0	EM 221 16 entradas digitales x 24 V c.c.	71,2 x 80 x 62	160 g	3 W	70 mA	ON: 4 mA/entrada
6ES7 222-1BD22-0XA0	EM 222 4 DO x 24 V c.c5A	46 x 80 x 62	120 g	3 W	40 mA	-
6ES7 222-1HD22-0XA0	EM 222 4 DO x relé-10A	46 x 80 x 62	150 g	4 W	30 mA	ON: 20 mA/salida
6ES7 222-1BF22-0XA0	EM 222 8 salidas digitales x 24 V c.c.	46 x 80 x 62	150 g	2 W	50 mA	-
6ES7 222-1HF22-0XA0	EM 222 8 salidas digitales x relé	46 x 80 x 62	170 g	2 W	40 mA	ON: 9 mA/salida
6ES7 222-1EF22-0XA0	EM 222 8 salidas digitales x 120/230 V c.a.	71,2 x 80 x 62	165 g	4 W	110 mA	-
6ES7223-1BF22-0XA0	EM 223 4 entradas/4 salidas x 24 V c.c.	46 x 80 x 62	160 g	2 W	40 mA	ON: 4 mA/entrada
6ES7 223-1HF22-0XA0	EM 223 4 entradas x 24 V c.c./4 salidas de relé	46 x 80 x 62	170 g	2 W	40 mA	ON: 9 mA/salida, 4 mA/entrada
6ES7 223-1BH22-0XA0	EM 223 8 entradas digitales/8 salidas digitales x 24 V c.c.	71,2 x 80 x 62	200 g	3 W	80 mA	-
6ES7 223-1PH22-0XA0	EM 223 4 entradas x 24 V c.c./4 salidas de relé	71,2 x 80 x 62	300 g	3 W	80 mA	ON: 9 mA/salida, 4 mA/entrada
6ES7 223-1BL22-0XA0	EM 223 16 entradas digitales/16 salidas digitales x 24 V c.c.	137,3 x 80 x 62	360 g	6 W	160 mA	-
6ES7 223-1PL22-0XA0	EM 223 16 entradas x 24 V c.c./16 salidas de relé	137,3 x 80 x 62	400 g	6 W	150 mA	ON: 9 mA/salida, 4 mA/entrada

Datos generales	Entrada 24 V c.c.	Entrada 120/230 V c.a. (47 a 63 HZ)	
Tipo de datos	Sumidero de corriente/fuente (tipo 1 IEC con sumidero de corriente)	Tipo I IEC	
Tensión nominal	24 V c.c. a 4 mA	120 V c.a. a 6 mA ó 230 V c.a. a 9 mA, nominal	
Tensión continua máx. admisible	30 V c.c.	264 V c.a.	
Sobretensión (máx.)	35 V c.c., 0,5 s	-	
Señal 1 lógica (mín.)	15 V c.c. a 2,5 mA	79 V c.c. a 2,5 mA	
Señal 0 lógica (máx.)	5 V c.c. a 1 mA	20 V c.a. ó 1 mA c.a.	
Retardo de las entradas (máx.)	4,5 ms	15 ms	
Conexión de sensor de proximidad de 2 hilos (Bero) Corriente de fuga admisible (máx.)	1 mA	1 mA c.a.	
Aislamiento Separación galvánica (campo a circuito lógico) Grupos de aislamiento	500 V c.a. durante 1 minuto Consulte el diagrama de cableado	1500 V c.a., 1 minuto 1 entrada	
Entradas ON simultáneamente	Todas a 55° C (horizontal), todas ON a 45° C (vertical)		
Longitud del cable (máx.) Apantallado No apantallado	500 m 300 m	500 m 300 m	

 Tabla A-13
 Datos de las entradas de los módulos de ampliación digitales

Figura A-7 Entradas de los módulos de ampliación digitales S7-200

	Salidas 24 V c.c.		Salidas de relé			
Datos generales	0,75 A	5 A	2 A	10 A	Salida 120/230 V c.a.	
Tipo de datos	Estado sólido-MO	SFET ¹ (fuente)	Contacto de baja potencia		Triac, activación con paso por cero ²	
Tensión nominal	24 V c.c. 24 V		24 V c.c. ó 250 V c.a.		120/230 V c.a.	
Rango de tensión	20,4 a 28,8 V c.c.		5 a 30 V c.c. ó 5 a 250 V c.a.	12 a 30 V c.c. ó 12 a 250 V c.a.	40 V a 264 V c.a., 47 a 63 Hz	
24 V c.c. rango tensión aliment. bobina	-		20,4 a 28,8 V c.c.		-	
Sobreintensidad (máx.)	8 A, 100 ms	30 A	5 A durante 4 s c/u 10% de ciclo de trabajo	15 A durante 4 s c/u 10% de ciclo de trabajo	5 A rms durante 2 ciclos c.a.	
Señal 1 lógica (mín.)	20 V c.c.		-		L1 (-0,9 V rms)	
Señal 0 lógica (máx.)	0,1 V c.c. con 10 K Ω de carga	0,2 V c.c. con 5 K Ω de carga	-		-	
Intensidad nominal por salida (máx.)	0,75 A	5 A	2,00 A	10 A resistiva; 2 A c.c. inductiva; 3 A c.a. inductiva	0,5 A c.a. ³	
Intensidad nominal por neutro (máx.)	6 A	5 A	8 A	10 A	0,5 A c.a.	
Corriente de fuga (máx.)	10 μ Α	30 µA	-		1,1 mA rms a 132 V c.a. y 1,8 mA rrms a 264 V c.a.	
Carga de lámparas (máx.)	5 W	50 W	30 W c.c./ 200 W c.a. ^{6, 7}	100 W c.c./ 1000 W c.a.	60 W	
Tensión de bloqueo inductiva	L+ menos 48 V	L+ menos 47 V ⁴	-		-	
Resistencia en estado ON (contactos)	Típ. 0,3 Ω (0,6 Ω máx.)	Máx. 0,05 Ω	Máx. 0,2 Ω (si son nuevas)	Máx. 0,1 Ω (si son nuevas)	Máx. 410 Ω si la intensidad de carga es inferior a 0,05 A	
Separación galvánica Separación galvánica (campo a circuito lógico) Bobina a circuito lógico Bobina a contacto Resistencia (bobina a contacto) Grupos de aislamiento	500 V c.a., 1 minuto - - -		- Ninguno 1500 V c.a., 1 minuto 100 M Ω, mín. si son nuevas Consulte el diagrama de cableado		1500 V c.a., 1 minuto - - - 1	
Retardo OFF a ON/ON a OFF (máx.)	50 μs / 200 μs	500 μs			0,2 ms + 1/2 ciclo c.a.	
Conmutación (máx.)	-	-	10 ms	15 ms	-	
Frecuencia de conmutación (máx.)	-		1 Hz		10 Hz	
Vida útil mecánica	-		10.000.000 (sin carga)	30.000.000 (sin carga)	-	
Vida útil de los contactos	-		100.000 (carga nominal)	30.000 (carga nominal)	-	
Salidas ON simultáneamente	Todas a 55° C (horizontal), todas a 45° C (vertical) Todas a 55 °C (horizontal) con 20 A máx. intensidad del módulo Todas a 45° C (vertical) Todas a 55° C (horizontal) con 20 A máx. Todas a 45° C (vertical) con 20 máx. Todas a 45° C (vertical) con 20 máx. Todas a 45° C (vertical) con 20 máx. Todas a 40° C (horizontal) con 20 máx. Todas a 40° C (horizontal) con 20 máx. Todas a 40° C (horizontal) con 20 máx. Todas a 40° C (horizontal) con 20 máx.		Todas a 55 °C (horizontal) con 20 A máx. intensidad del módulo Todas a 45°C (vertical) con 20 A máx. intensidad del módulo ⁵ Todas a 40 °C (horizontal) con 10 A por entrada	Todas a 55° C (horizontal), todas a 45°C (vertical)		
Conexión de dos salidas en paralelo	Si, sólo salidas de	e un mismo grupo	No		No	

Tabla A-14 Datos de las salidas de los módulos de ampliación digitales
Tabla A-14 Datos de las salidas de los módulos de ampliación digitales, continuación

Datos generales	0,75 A	5 A	2 A	10 A	Salida 120/230 V c.a.
Longitud del cable (máx.) Apantallado	500 m		500 m		500 m
No apantallado	150 m		150 m		150 m

1 Cuando un contacto mecánico aplica tensión a una CPU S7-200, o bien a un módulo de ampliación digital, envía una señal "1" a las salidas digitales durante aproximadamente 50 microsegundos. Considere ésto especialmente si desea utilizar aparatos que reaccionen a impulsos de breve duración.

2 Cuando un contacto mecánico aplica tensión de salida a un módulo de ampliación c.a., envía una señal "1" a las salidas c.a. durante aproximadamente 1/2 ciclo c.a.. Considere ésto en su planificación.

4 Si la salida se recalienta debido a una conmutación inductiva excesiva, o bien a circunstancias anormales, podría desconectarse o averiarse. La salida se podría recalentar o averiar si se expone a más de 0,7 J de energía al desconectar una carga inductiva. Para evitar este problema es posible conectar en paralelo a la carga un circuito de supresión conforme a lo descrito en el capítulo 3 del presente manual. Estos componentes se deben dimensionar adecuadamente para la aplicación en cuestión.

5 La clasificación FM del módulo de ampliación EM 222 4 salidas digitales x relé es diferente al resto de la gama S7-200. La clasificación de este módulo es T4 (en vez de T4A para FM 1ª clase, categoría 2, grupos A, B, C y D "Hazardous Locations").

6 La vida útil de los relés con carga de lámparas se reducirá en 75%, a menos que la sobrecorriente al conectar se reduzca por debajo de la sobrecorriente límite de la salida.

7 El vatiaje límite de la carga de lámparas es aplicable a la tensión nominal. Reduzca el vatiaje límite proporcionalmente a la tensión conmutada (p. ej. 120 V c.a. - 100 W).

Figura A-8 Salidas de los módulos de ampliación digitales S7-200

³ Debido al circuito de paso por cero, la intensidad de carga debe ser de onda completa c.a. y no de semionda. La intensidad de carga mínima es de 0,05 A c.a. Si la intensidad de carga es de 5 mA a 50 mA c.a., es posible controlar la intensidad. No obstante, se produce una caída de tensión adicional debido a la resistencia serie de 410 ohmios.

Diagramas de cableado

Figura A-9 Diagramas de cableado de los módulos de ampliación EM 222 y EM 223

Anexo A

Figura A-10 Diagramas de cableado de los módulos de ampliación EM 221 y EM 222

Figura A-11 Diagramas de cableado de los módulos de ampliación EM 223

Datos técnicos de los módulos de ampliación analógicos

Tabla A-15	Números de	referencia de	los módulos	de ampl	iación analógio	cos

Nº de referencia	Módulo de ampliación	Entradas del módulo	Salidas del módulo	Bloque de terminales extraíble
6ES7 231-0HC22-0XA0	EM 231, 4 entradas analógicas	4	-	No
6ES7 232-0HB22-0XA0	EM 232, 2 salidas analógicas	-	2	No
6ES7 235-0KD22-0XA0	EM 235 4 entradas analógicas/1 salida analógica	4	1 ¹	No

1 La CPU reserva 2 salidas analógicas para este módulo.

Tabla A-16 Datos técnicos generales de los módulos de ampliación analógicos

№ de referencia	Nombre y descripción de la CPU	Dimensiones en mm (I x a x p)	Peso	Disipación	Tensić +5 V c.c.	ón c.c. disponible +24 V c.c.
6ES7 231-0HC22-0XA0	EM 231, 4 entradas analógicas	71,2 x 80 x 62	183 g	2 W	20 mA	60 mA
6ES7 232-0HB22-0XA0	EM 232, 2 salidas analógicas	46 x 80 x 62	148 g	2 W	20 mA	70 mA (ambas salidas a 20 mA)
6ES7 235-0KD22-0XA0	EM 235, 4 entradas analógicas/ 1 salida analógica	71,2 x 80 x 62	186 g	2 W	30 mA	60 mA (salida a 20 mA)

Tabla A-17 Datos de las entradas de los módulos de ampliación analógicos

Datos generales	6ES7 231-0HC22-0XA0	6ES7 235-0KD22-0XA0
Formato palabra de datos	(v. fig. A-14)	(v. fig. A-14)
Bipolar, rango máx.	-32000 a +32000	-32000 a +32000
Unipolar, rango máx.	0 a 32000	0 a 32000
Impedancia de entrada DC	≥10 MΩ entrada de tensión, 250 Ω entrada de intensidad	≥ 10 MΩ entrada de tensión, 250 Ω entrada de intensidad
Atenuación del filtro de entrada	-3 db a 3,1 kHz	-3 db a 3,1 kHz
Tensión de entrada máxima	30 V c.c.	30 V c.c.
Intensidad de entrada máx.	32 mA	32 mA
Resolución Bipolar Unipolar	11 bits más 1 bit de signo 12 bits	
Aislamiento (campo a circuito lógico)	Ninguno	Ninguno
Tipo de entrada	Diferencial	Diferencial
Rangos de entradas		
Tensión	Seleccionable (rangos disponibles, v. tabla A-20)	Seleccionable (rangos disponibles, v. tabla A-21)
Intensidad	0 a 20 mA	0 a 20 mA
Resolución de las entradas	V. tabla A-20	V. tabla A-21
Tiempo de conversión analógica/digital	< 250 µs	< 250 µS
Respuesta de salto de la entrada analógica	1,5 ms a 95%	1,5 ms a 95%
Rechazo en modo común	40 dB, c.c. a 60 Hz	40 dB, c.c. a 60 Hz
Tensión en modo común	Tensión de señal más tensión en modo común (debe ser ≤ ±12 V)	Tensión de señal más tensión en modo común (debe ser ≤ ±12 V)
Rango de tensión de alimentación 24 V c.c.	20,4 a 28,8 V c.c. (clase 2, potencia limitada o ali	mentación de sensores de la CPU)

Datos generales	6ES7 232-0HB22-0XA0	6ES7 235-0KD22-0XA0
Aislamiento (campo a circuito lógico)	Ninguno	Ninguno
Rango de señales		
Salida de tensión	± 10 V	± 10 V
Salida de intensidad	0 a 20 mA	0 a 20 mA
Resolución, rango máx.		
Tensión	12 bits más bit de signo	11 bits más bit de signo
Intensidad	11 bits	11 bits
Formato palabra de datos		
Tensión	-32000 a +32000	-32000 a +32000
Intensidad	0 a +32000	0 a +32000
Precisión		
Caso más desfavorable, 0° a 55° C		
Salida de tensión	± 2% de rango máx.	± 2% de rango máx.
Salida de intensidad	± 2% de rango máx.	± 2% de rango máx.
Típico, 25° C		
Salida de tensión	± 0,5% de rango máx.	± 0,5% de rango máx.
Salida de intensidad	± 0,5% de rango máx.	± 0,5% de rango máx.
Tiempo de ajuste		
Salida de tensión	100 μS	100 μS
Salida de intensidad	2 mS	2 mS
Accionamiento máx.		
Salida de tensión	Mín. 5000 Ω	Mín. 5000 Ω
Salida de intensidad	Máx. 500 Ω	Máx. 500 Ω
Rango de tensión de alimentación 24 V c.c.	20,4 a 28,8 V c.c. (clase 2, potencia limitad	a o alimentación de sensores de la CPU)

Tabla A-18 Datos de las salidas de los módulos de ampliación analógicos

Figura A-12 Diagramas de cableado de los módulos de ampliación analógicos

LEDs analógicos

Los LEDs de los módulos analógicos figuran en la tabla A-19.

Tabla A-19	LEDs analógicos
------------	-----------------

Indicador LED	ON	OFF
Alimentación 24 V c.c.	Sin fallos	Sin corriente 24 V c.c.

Consejo

El estado de la alimentación externa se indica también en marcas especiales (SM). Para más información al respecto, consulte el anexo D (SMB8 a SMB21: Identificadores y registros de errores de los módulos de ampliación).

Calibración de las entradas

Los ajustes de calibración afectan a la fase de amplificación de la instrumentación que sigue al multiplexor analógico (consulte el esquema funcional de las entradas de los módulos EM 231 y EM 235 en las figuras A-15 y A-16, respectivamente). Por consiguiente, el calibrado afecta a todos los canales de entrada del usuario. Cualquier variación de los valores de los circuitos de entrada que preceden al multiplexor analógico provocará diferencias mínimas entre los valores de los distintos canales que estén conectados a la misma señal, incluso después de la calibración.

Con objeto de cumplir las especificaciones es preciso utilizar filtros de entrada para todas las entradas analógicas del módulo. Elija 64 o más muestreos para calcular el valor promedio.

Para calibrar una entrada, proceda de la manera siguiente:

- 1. Desconecte la alimentación del módulo. Seleccione el rango de entrada deseado.
- 2. Conecte la alimentación de la CPU y del módulo. Espere unos 15 minutos para que el módulo pueda estabilizarse.
- 3. Mediante una fuente de tensión o de intensidad, aplique a una de las entradas una señal de valor cero.
- 4. Lea el valor que la CPU ha recibido del correspondiente canal de entrada.
- 5. Con el potenciómetro OFFSET, seleccione el valor cero u otro valor digital.
- 6. Aplique una señal de rango máximo a una entrada. Lea el valor que ha recibido la CPU.
- 7. Con el potenciómetro GAIN, seleccione el valor 32000 u otro valor digital.
- 8. En caso necesario, vuelva a calibrar el desplazamiento (OFFSET) y la ganancia (GAIN).

Calibración y configuración de los módulos EM 231 y EM 235

La figura A-13 muestra el potenciómetro de calibración y los interruptores DIP de configuración ubicados en el lado derecho del bloque de terminales inferior del módulo.

Anexo A

Figura A-13 Ubicación de los potenciómetros de calibración y de los interruptores DIP de configuración de los módulos EM 231 y EM 235

Configuración del módulo de ampliación EM 231

La tabla A-20 muestra cómo configurar el módulo EM 231 utilizando los interruptores DIP. El rango de las entradas analógicas se selecciona con los interruptores 1, 2 y 3. Todas las entradas analógicas se activan en un mismo rango. En la tabla, ON está cerrado y OFF está abierto. Los ajustes de los interruptores se leen sólo cuando está conectada la alimentación.

	Unipolar	Damas mán	Pacalusián	
Int. 1	Int. 2	Int. 3	Rango max.	Resolution
	OFF	ON	0 a 10 V	2,5 mV
ON		OFF	0 a 5 V	1,25 mV
	UN		0 a 20 mA	5 μΑ
	Bipolar	Bongo máy	Popolución	
Int. 1	Int. 2	Int. 3	Kango max.	Resolucion
OFF	OFF	ON	± 5 V	2,5 mV
OT	ON	OFF	± 2,5 V	1,25 mV

 Tabla A-20
 Tabla de interruptores de configuración del EM 231 para seleccionar el rango de entradas analógicas

Configuración del módulo de ampliación EM 235

La tabla A-21 muestra cómo configurar el módulo EM 235 utilizando los interruptores DIP. El rango de las entradas analógicas y la resolución se seleccionan con los interruptores 1 a 6. Todas las entradas se activan en un mismo rango y formato. La tabla A-21 muestra cómo seleccionar el formato unipolar/bipolar (interruptor 6), la ganancia (interruptores 4 y 5) y la atenuación (interruptores 1, 2 y 3). En la tabla, ON está cerrado y OFF está abierto. Los ajustes de los interruptores se leen sólo cuando está conectada la alimentación.

 Tabla A-21
 Tabla de interruptores de configuración del EM 235 para seleccionar el rango de las entradas analógicas y la resolución

Unipolar		Dan an an fai	Popolución				
Int. 1	Int. 2	Int. 3	Int. 4	Int. 5	Int. 6	Rango max.	Resolucion
ON	OFF	OFF	ON	OFF	ON	0 a 50 mV	12,5 μV
OFF	ON	OFF	ON	OFF	ON	0 a 100 mV	25 μV
ON	OFF	OFF	OFF	ON	ON	0 a 500 mV	125 μV
OFF	ON	OFF	OFF	ON	ON	0 a 1 V	250 μV
ON	OFF	OFF	OFF	OFF	ON	0 a 5 V	1,25 mV
ON	OFF	OFF	OFF	OFF	ON	0 a 20 mA	5 μΑ
OFF	ON	OFF	OFF	OFF	ON	0 a 10 V	2,5 mV
Bipolar					.		
Int. 1	Int. 2	Int. 3	Int. 4	Int. 5	Int. 6	Rango max.	Resolucion
Int. 1 ON	Int. 2 OFF	Int. 3 OFF	Int. 4 ON	Int. 5 OFF	Int. 6 OFF	<u>+</u> 25 mV	Resolucion 12,5 μV
Int. 1 ON OFF	Int. 2 OFF ON	Int. 3 OFF OFF	Int. 4 ON ON	Int. 5 OFF OFF	Int. 6 OFF OFF	<u>+</u> 25 mV <u>+</u> 50 mV	12,5 μV 25 μV
Int. 1 ON OFF OFF	Int. 2 OFF ON OFF	Int. 3 OFF OFF ON	Int. 4 ON ON ON	Int. 5 OFF OFF OFF	Int. 6 OFF OFF OFF	±25 mV ±50 mV ±100 mV	Resolution 12,5 μV 25 μV 50 μV
Int. 1 ON OFF OFF ON	Int. 2 OFF ON OFF OFF	Int. 3 OFF OFF ON OFF	Int. 4 ON ON OFF	Int. 5 OFF OFF OFF ON	Int. 6 OFF OFF OFF OFF	±25 mV ±50 mV ±100 mV ±250 mV	Resolution 12,5 μV 25 μV 50 μV 125 μV
Int. 1 ON OFF OFF ON OFF	Int. 2 OFF ON OFF OFF ON	Int. 3 OFF OFF ON OFF OFF	Int. 4 ON ON OFF OFF	Int. 5 OFF OFF OFF ON ON	Int. 6 OFF OFF OFF OFF OFF	±25 mV ±50 mV ±100 mV ±250 mV ±250 mV ±250 mV	Resolution 12,5 μV 25 μV 50 μV 125 μV 250 μV
Int. 1 ON OFF OFF ON OFF OFF	Int. 2 OFF ON OFF OFF ON OFF	Int. 3 OFF OFF ON OFF OFF ON	Int. 4 ON ON OFF OFF OFF	Int. 5 OFF OFF OFF ON ON ON	Int. 6 OFF OFF OFF OFF OFF	±25 mV ±50 mV ±100 mV ±250 mV ±250 mV ±100 mV ±100 mV	Resolution 12,5 μV 25 μV 50 μV 125 μV 250 μV 500 μV
Int. 1 ON OFF OFF ON OFF OFF ON	Int. 2 OFF ON OFF OFF OFF OFF	Int. 3 OFF OFF ON OFF ON OFF	Int. 4 ON ON OFF OFF OFF OFF	Int. 5 OFF OFF ON ON ON ON	Int. 6 OFF OFF OFF OFF OFF OFF	±25 mV ±50 mV ±100 mV ±250 mV ±200 mV ±250 V	Resolution 12,5 μV 25 μV 50 μV 125 μV 250 μV 250 μV 125 μV
Int. 1 ON OFF OFF ON OFF ON OFF	Int. 2 OFF ON OFF ON OFF OFF ON	Int. 3 OFF OFF ON OFF ON OFF OFF	Int. 4 ON ON OFF OFF OFF OFF OFF	Int. 5 OFF OFF OFF ON ON ON OFF OFF	Int. 6 OFF OFF OFF OFF OFF OFF OFF	±25 mV ±50 mV ±100 mV ±250 mV ±250 V ±250 V ±500 V ±1 V ±2,5 V ±2,5 V	Resolution 12,5 μV 25 μV 50 μV 125 μV 250 μV 500 μV 500 μV 500 μV 2,5 mV

Anexo A

Formato de la palabra de datos de entrada de los módulos de ampliación EM 231 y EM 235

La figura A-14 muestra la disposición del valor de 12 bits dentro de la palabra de entrada analógica de la CPU.

Figura A-14 Formato de la palabra de datos de entrada de los módulos de ampliación EM 231 y EM 235

Consejo

Los 12 bits del valor de conversión analógica/digital (ADC) se justifican a la izquierda en el formato de palabra de datos. El MSB (bit más significativo) indica el signo, en tanto que cero indica un valor positivo de la palabra de datos.

En formato unipolar, los tres ceros a la derecha modifican el valor de la palabra de datos en incrementos de 8 por cada cambio del valor ADC.

En formato bipolar, los cuatro ceros a la derecha modifican el valor de la palabra de datos en incrementos de 16 por cada cambio del valor ADC.

Esquemas de conexiones de las entradas de los módulos de ampliación EM 231 y EM 235

Figura A-15 Esquema funcional de las entradas del módulo EM 231

Figura A-16 Esquema funcional de entradas del módulo EM 235

Formato de la palabra de datos de salida de los módulos de ampliación EM 232 y EM 235

La figura A-17 muestra la disposición del valor de 12 bits dentro de la palabra de salida analógica de la CPU.

Figura A-17 Formato de la palabra de datos de salida de los módulos de ampliación EM 232 y EM 235

Consejo

Los 12 bits del valor de conversión digital/analógica (DAC) se justifican a la izquierda en el formato de palabra de datos de salida. El MSB (bit más significativo) indica el signo, en tanto que cero indica un valor positivo de la palabra de datos. Los cuatro ceros a la derecha se truncan antes de cargarse en los registros DAC. Estos bits no tienen efecto alguno en el valor de señal de salida.

lout

Vout

0..20 mA

-10.. +10 voltios

Conversión tensión/intensidad

Búfer tensión de salida

R

Esquemas de conexiones de las salidas de los módulos de ampliación EM 232 y EM 235

Figura A-18 Esquema funcional de las salidas de los módulos EM 232 y EM 235

+/- 2V

Reglas de instalación

Vref

11

DATOS

Conversión D/A

0

Conversión digital/analógica

Tenga en cuenta las siguientes reglas para asegurar la precisión y la repetibilidad:

Asegúrese de que la alimentación de sensores 24 V c.c. sea estable y esté exenta de interferencias.

1/4 R

R

4

М

- Utilice cables lo más cortos posible para la alimentación de sensores.
- Utilice cables dobles trenzados apantallados para el cableado de la alimentación de sensores.
- Conecte el apantallado sólo del lado de los sensores.
- Desvíe las entradas de los canales no utilizados (v. fig. A-18).
- Evite doblar excesivamente los cables.
- Conduzca los cables a través de canales.
- Evite colocar los cables de señales en paralelo con cables de alta tensión. Si los cables se deben cruzar, hágalo en ángulo recto.
- Verifique que las señales de entrada se encuentren dentro de los límites de tensión en modo común, aislando dichas señales o referenciándolas al hilo común externo de 24V del módulo analógico.

Consejo

No es recomendable utilizar termopares junto con los módulos de ampliación EM 231 y EM 235.

Descripción del módulo de entradas analógicas: precisión y repetibilidad

Los módulos de ampliación EM 231 y EM 235 disponen de entradas analógicas de 12 bits, siendo rápidos y de bajo costo. Pueden convertir una señal de entrada analógica a su correspondiente valor digital en 149 µs. La señal de entrada se convierte cada vez que el programa accede a la entrada analógica en cuestión. Los tiempos de conversión mencionados se deben agregar al tiempo de ejecución básico de la operación utilizada para acceder a la entrada analógica.

Los módulos EM 231 y EM 235 proporcionan un valor digital no procesado (sin linealización ni filtraje) que corresponde a la tensión o a la intensidad analógicas en los terminales de entrada del módulo. Puesto que se trata de módulos rápidos, la señal de entrada analógica puede cambiar rápidamente (incluyendo interferencias internas y externas).

Las diferencias de un muestreo a otro, causadas por interferencias de una señal de entrada analógica que cambie constante o lentamente, se pueden reducir creando un promedio de una serie de muestreos. Cuanto mayor sea la cantidad de muestreos utilizados para calcular el promedio, tanto más lento será el tiempo de respuesta a cambios en la señal de entrada.

La figura A-19 muestra el rango de repetibilidad (que contiene un 99% de los muestreos), el valor promedio de los muestreos individuales y la precisión media.

Los datos relativos a la repetibilidad describen las diferencias de un muestreo a otro en el caso de las señales de entrada que no cambien. Dichos datos definen el rango que contiene un 99% de todos los muestreos. La repetibilidad se describe en la curva representada en la figura.

La precisión media describe el valor promedio del error (la diferencia entre el valor promedio de los muestreos individuales y el valor exacto de la señal real de la entrada analógica).

En la tabla A-22 figuran los datos relativos a la repetibilidad y la precisión media con respecto a los rangos configurables.

Definición de los datos analógicos

- Derecisión: desviación del valor previsto en una E/S determinada.
- Resolución: efecto de un cambio de LSB reflejado en la salida.

Tabla A-22 Datos técnicos de los módulos de ampliación EM 231 y EM 235

Repetibilio		lidad ¹	Precisión me	dia ^{1,2,3,4}
Rango max.	% del rango máx.	Contajes	% del rango máx.	Contajes
	Da	tos del módulo EM 231		
0 a 5 V				
0 a 20 mA	± 0,075%	± 24	±0,1%	
0 a 10 V				± 32
± 2,5 V		. 19	. 0.05%	
± 5 V		± 40	± 0,03 %	
	Dat	tos del módulo EM 235		
0 a 50 mV			± 0,25%	± 80
0 a 100 mV			± 0,2%	± 64
0 a 500 mV		± 24		
0 a 1 V	± 0,075%			
0 a 5 V			± 0,05%	± 16
0 a 20 mA				
0 a 10 V				
± 25 mV			± 0,25%	± 160
± 50 mV			± 0,2%	± 128
± 100 mV			± 0,1%	± 64
± 250 mV				
± 500 mV	± 0,075%	± 48		
± 1 V			0.050/	
± 2,5 V			± 0,05%	± 32
± 5 V				
± 10 V				

1 2

Mediciones realizadas después de haber calibrado el rango de entrada seleccionado. El error de desplazamiento en la señal próxima a cero de la entrada analógica no se corrige y no se considera en los datos relativos a la

El error de desplazamiento en la senal proxima a cero de la entrada analogica no se corrige y no se considera en los datos relativos à la precisión. Al transferir de canal a canal se presenta un error de conversión debido al tiempo de estabilización finito del multiplexor analógico. El error máximo de transferencia es de 0,1 % de la diferencia entre canales. La precisión media incluye los efectos de la falta de linealidad y de la deriva de 0 a 55 grados C. 3

4

Datos técnicos de los módulos de ampliación Termopar y RTD

Tabla A-23	Números de referencia de los módulos de ampliación Termopar y RT	D

№ de referencia	Módulo de ampliación	Entradas del módulo	Salidas del módulo	Bloque de terminales extraíble
6ES7 231-7PD22-0XA0	EM 231 Termopar, 4 entradas analógicas	4 termopares	-	No
6ES7 231-7PB22-0XA0	EM 231 RTD, 2 entradas analógicas	2 RTD	-	No

Tabla A-24 Datos técnicos generales de los módulos de ampliación Termopar y RTD

№ de referencia	Nombre y descripción de la CPU	Dimensiones en mm (I x a x p)	Peso	Disipación	Tensión +5 V c.c.	c.c. disponible +24 V c.c.
6ES7 231-7PD22-0XA0	EM 231 Termopar, 4 entradas analógicas	71,2 x 80 x 62	210 g	1,8 W	87 mA	60 mA
6ES7 231-7PB22-0XA0	EM 231 RTD, 2 entradas analógicas	71,2 x 80 x 62	210 g	1,8 W	87 mA	60 mA

Tabla A-25 Datos técnicos de los módulos Termopar y RTD

Datos generales	6ES7 231-7PD22-0XA0 Termoelemento	6ES7 231-7PB22-0XA0 RTD
Separación galvánica		
Campo a circuito lógico	500 V c.a.	500 V c.a.
Campo a 24 V c.c.	500 V c.a.	500 V c.a.
24 V C.C. a circuito logico	500 V c.a.	500 v c.a.
(de canal de entrada en modo comun	120 V C.a.	0
Rechazo en modo común	> 120 dB a 120 V c.a.	> 120 dB a 120 V c.a.
Tipo de entrada	Termopar flotante	RTD referenciado a tierra
Rangos de entradas ¹	Tipos de termopar (seleccionar 1 por módulo) S, T, R, E, N, K, J	Tipos de RTD (seleccionar 1 por módulo) Platino (Pt), cobre (Cu), níquel (Ni) o resistencia
	Rango de tensión: +/- 80 mV	En la tabla A-30 se indican los tipos RTD disponibles.
Resolución de las entradas		
Temperatura	0,1° C / 0,1° F	0,1° C / 0,1° F
Tensión	Signo más (+) de 15 bits	-
Resistencia	-	Signo más (+) de 15 bits
Principio de medición	Sigma-delta	Sigma-delta
Tiempo de actualización del módulo: todos los canales	405 mS	405 ms (700 ms para Pt10000)
Longitud del hilo	Máx. 100 metros hasta el sensor	Máx. 100 metros hasta el sensor.
Resistencia de bucle del hilo	Máx. 100Ω	Máx. 20Ω, 2,7Ω para Cu
Supresión de interferencias	85 dB a 50 Hz/60 Hz/ 400 Hz	85 dB a 50 Hz/60 Hz/ 400 Hz
Formato palabra de datos	Tensión -27648 a + 27648	Resistencia 0 a +27648
Disipación máxima del sensor	-	1 mW
Impedancia de entrada	≥1 MΩ	≥ 10 MΩ
Tensión de entrada máxima	30 V c.c.	30 V c.c. (detección), 5 V c.c. (fuente)
Atenuación del filtro de entrada	-3 db a 21 kHz	-3 dB a.6 kHz
Error básico	0,1% FS (tensión)	0,1% FS (resistencia)
Repetibilidad	0,05% FS	0,05% FS
Error en la unión fría	±1,5 ° C	-
Rango de tensión de alimentación 24 V c.c.	20,4 a 28,8 V c.c.	20,4 a 28,8 V c.c.

La selección del rango de entrada (temperatura, tensión o resistencia) es aplicable a todos los canales del módulo.

Compatibilidad

Los módulos RTD y Termopar se han diseñado para que se utilicen junto con las CPUs 222, 224, 224, 224XP y 226.

Ŷ

Consejo

Los módulos RTD y Termopar ofrecen un rendimiento máximo al instalarse en entornos de temperatura estable.

Por ejemplo, el módulo Termopar EM 231 tiene circuitos especiales de compensación de unión fría que miden la temperatura en los conectores del módulo, exigiendo que se modifiquen las mediciones para compensar las diferencias entre la temperatura de referencia y la temperatura del módulo. Si la temperatura ambiente cambia rápidamente en el lugar donde está instalado el módulo Termopar EM 231, se presentan errores adicionales.

Para lograr una precisión y repetibilidad máximas, Siemens recomienda que los módulos Termopar y RTD S7-200 se monten en lugares que tengan una temperatura ambiente estable.

Inmunidad a interferencias

Utilice hilos blindados para obtener el mayor nivel posible de inmunidad a interferencias. Si no se utiliza un canal de entrada del termopar, es recomendable cortocircuitar las entradas de canal no utilizadas, o bien conectarlas en paralelo a otro canal.

Módulo EM 231 Termopar

El módulo EM 231 Termopar provee una interfaz aislada para conectar siete tipos de termopares a la gama S7-200, a saber: J, K, E, N, S, T y R. El módulo sirve para conectar el S7-200 a señales analógicas de nivel bajo en un rango de ±80 mV. Todos los termopares conectados al módulo deben ser del mismo tipo.

Nociones básicas de los termopares

Los termopares se forman cuando se unen dos metales distintos que, al calentarse, generan una fuerza electromotriz. La tensión generada es proporcional a la temperatura de unión. Se trata de una tensión pequeña; un microvoltio puede representar varios grados. La base de la medición de temperatura utilizando termopares consiste en medir la tensión de un termopar, compensar las uniones adicionales y linealizar posteriormente el resultado.

Cuando un termopar se conecta al módulo EM 231, dos hilos de distintos metales se unen al conector de señales del módulo. El punto donde dichos dos hilos se unen al módulo constituye el termopar sensor.

Dos termopares adicionales se forman cuando los dos hilos diferentes se unen al conector de señales. La temperatura del conector genera una tensión que se suma a la del termopar sensor. Si no se corrige esta tensión, la temperatura indicada será diferente a la temperatura del sensor.

La compensación de la temperatura en la unión fría se utiliza para compensar el termopar del conector. Las tablas de termopares se basan en una temperatura de unión de referencia que, por lo general, equivale a cero grados centígrados. La compensación de temperatura en la unión fría compensa el conector a cero grados centígrados, restableciendo la tensión sumada por los termopares del conector. La temperatura del módulo se mide internamente y se convierte luego a un valor a agregar a la conversión del sensor. La conversión del sensor corregida se linealiza entonces utilizando las tablas de termopares.

Configurar el módulo EM 231 Termopar

Los interruptores DIP de configuración, ubicados en el lado inferior del módulo, sirven para seleccionar el tipo de termopar, la detección de hilos abiertos, la escala de temperatura y la compensación de temperatura en la unión fría. Para que los ajustes de los interruptores DIP tengan efecto, es preciso desconectar y conectar nuevamente la CPU y/o la fuente de alimentación externa de 24 V.

El interruptor DIP 4 está reservado para el uso futuro. Ajuste el interruptor DIP 4 en la posición 0 (abajo u "OFF"). En la tabla A-26 figuran otros ajustes de los interruptores DIP.

Interruptores 1,2 y 3	Tipo de termopar	Ajuste	Descripción
int. 1. 2. 3	J (estándar)	000	Los interruptores DIP 1 a 3
	К	001	termopar (o el funcionamiento mV)
Configuració	n T	010	de todos los canales del módulo. Por eiemplo, si desea seleccionar
1 2 3 4* 5 6 7 8 0 - OFF	E	011	el tipo de termopar E, deberá
	R	100	interruptor $1 = 0$, interruptor $2 = 1$
* Ajuste el interruptor DIP 4 en la posición 0 (hacia abajo).	S	101	e interruptor $3 = 1$.
	Ν	110	-
	+/-80 mV	111	-
Interruptor 5	Detección de hilos abiertos	Ajuste	Descripción
Int. 5	Sentido ascendente de la escala n (+3276,7 grados)	0	0 indica que hay un hilo abierto 1 indica que no hay un hilo abierto
11 - ON 1 2 3 4 5 6 7 8	Sentido descendente de la escala (-3276,8 grados)	1	_
Interruptor 6	Habilitar la detección de hilos abiertos	Ajuste	Descripción
Int. 6	Habilitar	0	La detección de conductores abiertos se efectúa inyectando una intensidad de 25 µA en los
11 - ON 12345678			terminales de entrada. El interruptor de detección de hilos abiertos habilita o inhibe la fuente de corriente. La detección de hilos abiertos se efectúa siempre, aunque esté inhibida la fuente de
	Inhibir	1	Termopar detecta los hilos abiertos si la señal de entrada excede aproximadamente ±200 mV. Cuando se detecta un hilo abierto, la lectura del módulo se ajusta al valor seleccionado por el interruptor de detección de hilos abiertos.
Interruptor 7	Escala de temperatura	Ajuste	Descripción
Int. 7 Configuración 1 2 3 4 5 6 7 8 ↓0 - OFF	Escala Celsius (°C) Escala Fahrenheit (°F)	0	El módulo EM 231 Termopar puede indicar la temperatura en grados centígrados o Fahrenheit. La conversión de grados centígrados a Fahrenheit se efectúa en el módulo.
Interruptor 8	Unión fría	Ajuste	Descripción
Int. 8 Configuració ↑1 - ON ↓0 - OFF	Habilitar la compensación de la temperatura en la n unión fría	0	La compensación de la temperatura en la unión fría se debe habilitar cuando se están utilizando termopares. Si no está habilitada dicha compensación, las conversiones del módulo serán erróneas, debido a la tensión que
	Inhibir la compensación de la temperatura en la unión fría	1	se crea cuando el hilo del termopar está unido al conector del módulo. La compensación de la temperatura en la unión fría se inhibe automáticamente al seleccionarse el rango de ±80 mV.

Tabla A-26 Configurar los interruptores DIP del módulo Termopar

Consejo

- Es posible que la fuente de corriente del hilo abierto interfiera con las señales de algunas fuentes de bajo nivel (por ejemplo simuladores de termopares).
- Las tensiones de entrada superiores a aprox. ±200 mV dispararán la detección de hilos abiertos, aunque esté inhibida la fuente de corriente.

Consejo

- Si cambia la temperatura ambiente, el error del módulo podría ser superior a lo indicado en los datos técnicos.
- Si se excede el rango de temperatura ambiente del módulo, ello podría provocar un error de la compensación de la temperatura en la unión fría.

Indicadores de estado del módulo termopar

El módulo Termopar EM 231 le suministra a la CPU palabras de estado que indican la temperatura o condiciones de error. Los bits de estado indican los errores de rango y el fallo de la alimentación externa o interna. Los LEDs indican el estado del módulo. El programa de usuario debe incorporar lógica para detectar las condiciones de error y reaccionar de forma apropiada conforme a la aplicación. La tabla A-27 muestra los indicadores de estado del módulo EM 231 Termopar.

Error	Datos de canal	LED SF rojo	LED 24 V verde	Bit de estado (error de rango) ¹	Alimentación externa 24 V c.c. defectuosa ²
Sin errores	Datos de conversión	OFF	ON	0	0
Falta la alimentación de 24 V	32766	OFF	OFF	0	1
Detección de hilos abiertos y fuente de corriente habilitadas	-32768/32767	PARPA- DEANTE	ON	1	0
Entrada fuera de rango	-32768/32767	PARPA- DEANTE	ON	1	0
Error de diagnóstico ³	0000	ON	OFF	0	Nota ³

Tabla A-27 Indicadores de estado del módulo EM 231 Termopar

¹ El bit de error de rango es el bit 3 del byte de registro de errores del módulo (SMB9 en el caso del módulo 1, SMB11 en el caso del módulo 2, etc.)

² El bit de fallo de alimentación es el bit 2 del byte de registro de errores del módulo (SMB 9, SMB 11, etc. Consulte el anexo D).

³ Los errores de diagnóstico causan un error de configuración del módulo. El bit de fallo de alimentación se puede activar o no antes del error de configuración del módulo.

Consejo

El canal tiene un formato de datos de palabra de 16 bits (complemento a 2). La temperatura se indica en unidades de 0,1 grados. (Por ejemplo, si se mide una temperatura de 100,2 grados, se indicará 1002). Los datos de tensión se escalan a 27648. Por ejemplo, -60,0 mV se indica como -20736 (= -60 mV/80 mV * 27648).

Si la CPU ha leído los datos, los cuatro canales se actualizarán cada 405 milisegundos. Si la CPU no lee los datos dentro de un intervalo de actualización, el módulo indicará los datos antiguos hasta que se produzca la siguiente actualización (después de que la CPU haya leído los datos). Para mantener los datos de canal actualizados, es recomendable que el programa de la CPU lea los datos al menos con la misma frecuencia de actualización del módulo.

Consejo

Si utiliza el módulo Termopar EM 231, deberá desactivar el filtro de entradas analógicas de la CPU. La filtración de entradas analógicas puede provocar que las condiciones de error no se detecten a tiempo.

Palabra de 0	datos (1 dígito =),1 °C)	dígito = Tipo J Tipo K Tipo T Tipo F Tipos R. S Tipo N +80 mV						+80 mV	
DEC	Hex	ripo 5	TIPO K	npo i	TIPO L	npos R, S	пром	00 III v	
32767	7FFF	>1200,0 °C	>1372,0 °C	>400,0 °C	>1000,0°C	>1768,0°C	>1300,0°C	>94,071 mV	DE
1	1							1	1
32511	7EFF							94,071 mV	
:	:								SR
27649	6C01							80,0029 mV	
27648	6C00	_				↑		80 mV	
:	:	_							
17680	4510	_	î			1768,0°C			
:	:	_							RN
13720	3598	_	1372,0°C				Î Î		
:	:	_	sobre rango					J	
13000	32C8	1	1300,0°C				1300,0°C		
:	:		J						
12000	2EE0	1200,0°C			î				
:	:					J			
10000	2710			Î	1000,0°C				
:	:								
4000	0FA0			400,0°C		400,0°C	_		
:	:								
1	0001	0,1°C	0,1°C	0,1°C	0,1°C	0,1°C	0,1°C	0,0029 mV	
0	0000	0,0°C	0,0°C	0,0°C	0,0°C	0,0°C	0,0°C	0,0 mV	
-1	FFFF	-0,1°C	-0,1°C	-0,1°C	-0,1°C	-0,1°C	-0,1°C	-0,0029 mV	
:	:					bajo rango			
-500	FE0C					-50,0°C			
-1500	FA24	-150,0°C				Ļ			
:	:								
-2000	F830	bajo rango	-200,0°C						
:	:			1					
-2100	F7CC	-210,0°C							
:	:								
-2400	F6A0	1			-240,0°C				
:	:		bajo rango		bajo rango				
-2550	F60A			-255,0°C					
:	:			bajo rango					
-2700	F574	_ †	-270,0°C	-270,0°C	-270,0°C		-270,0°C		RN
:	:	-							
-27648	9400	-	Ļ	Ļ	Ļ		Ļ	-80 mV	I
-27649	93FF							-80,0029 mV	
:	:	-							
-32512	8100	-							
	0100	-						-94,071 mV	BR
+	\$000	<-210.0°C	<- 270 0°C	<-270.0°C	<-270.0°C	< 50 0°C	<- 270 0°C	↓ <-94.071 m\/	
Precisión en	todo el rando	+0.1%	+0.3%	+0.6%	+0.3%	+0.6%	+0.4%	+0.1%	00
Precisión (ra	ngo normal sin	±1.5°C	+1.7°C	+1.4°C	+1.3°C	+3.7°C	+1.6°C	+0.10%	
unión fría)		1,5 0	±1,7 U	±1,7 0	±1,5 C		±1,0 0	-0,1070	
Error en la ur	nión fría	±1,5°C	±1,5°C	±1,5°C	±1,5 °C	±1,5°C	±1,5°C	N/A	
[^] DE = desbo	rdamiento por exce	eso; SR = sobre ra	ango; RN = rango	o normal; BR =	bajo rango; DD	= desbordamier	to por defecto		

Tabla A-28 Rangos de temperatura (°C) y precisión de los termopares

† indica que todos los valores analógicos superiores a éste e inferiores al valor umbral de conductos abiertos devuelven los valores de datos de desbordamiento por exceso, 32767 (0x7FFF).
 ‡ indica que todos los valores analógicos inferiores a éste y superiores al valor umbral de conductos abiertos devuelven los valores de datos de desbordamiento por defecto, -32768 (0x8000).

Palabra (1 dígit	de datos	Tine	Tine K	Tine T	Tine E	Tines D. S.	Tine N	90 m)/	
DEC	Hex	про Ј	про к	прот	про Е	Tipos R, S	про м	±80 mv	
32767	7FFF	>2192,0 °F	>2502,0 °F	>752,0 °F	>1832,0°F	>3214,0°F	>2372,0°F	>94,071 mV	DE
Î	1					1		1	1
32511	7EFF							94,071 mV	
32140	7D90					3214,0°F	1		SR
27649	6C01							80,0029 mV	
27648	6C00		î			2764,8°F		80 mV	
:	:								
25020	61B8		2502.0°F	1			1 t		
:			sobre rango						RN
23720	5CA8		2372 0 ⁰ F				2372 0°E	1	
			2372,0 1				2012,01		
21920	55A0	2192,0°F			ſ				
:	:	_				J			
18320	4790			Î	1832,0°F				
:	:								
7520	1D60			752,0°F		752,0°F			
:	:	_							
320	0140	-				bajo rango	32,0°F		
:	:	-						1	
1	0001	0,1°F	0,1°F	0,1°F	0,1°F	0,1°F	0,1°F	0,0029 mV	
0	0000	0,0°F	0,0°F	0,0°F	0,0°F	0,0°F	0,0°F	0,0 mV	
-1	FFFF	-0,1°F	-0,1°F	-0,1°F	-0,1°F	-0,1°F	-0.1°F	-0,0029 mV	
:	:	_	-,	- ,	- ,	- /	-,	-,	
-580	FDBC	-				-58.0°F			
:	:	-							
-2380	E6B4	-238 0°F							
		haia manaa	220.0%				baio rango		
-3280	F330	bajo rango	-328,0°F				Daju langu		
:	:								
-3460	F27C	-346,0°F				Ļ			
:	:		bajo rango						
-4000	F060				-400,0°F				
:	:				bajo rango				
-4270	EF52			-427,0°F					
:	:			bajo rango					
-4540	EE44	Ļ	-454,0°F	-454,0°F	-454,0°F		-454,0°F		DN
:	:								RN
-27648	9400		Ļ	Ļ	Ļ		Ļ	-80 mV	
-27649	93FF							-80,0029 mV	
:	:								
-32512	8100							-94.071 mV	
1									SR
+	* 8000	<-346.0° F	<-454 0° E	<-454 0° F	<-454 0° F	<-58.0° F	<-454 0° E	+ <-94.07 mV	+ DD
*DE = desbore	damiento por ex	ceso; SR = sobre ra	ango; RN = rando	o normal; BR =	bajo rango; DD	= desbordamien	to por defecto	,	
↑ indica que t desbordamier	odos los valores	analógicos superio 2767 (0x7FFF).	ores a éste e infe	eriores al valor u	imbral de condu	ictos abiertos de	vuelven los val	ores de datos de	

Tabla A-29 Rangos de temperatura (°F) de los termopares

desbordamiento por exceso, 32767 (0x7FFF).
 indica que todos los valores analógicos inferiores a éste y superiores al valor umbral de conductos abiertos devuelven los valores de datos de desbordamiento por defecto, -32768 (0x8000).

Módulo EM 231 RTD

1

El módulo EM 231 RTD provee una interfaz aislada para conectar diversas RTDs (termorresistencias) a la gama S7-200, sirviendo también para medir tres rangos de resistencia diferentes con un sistema de automatización S7-200. Las dos RTDs conectadas al módulo deben ser de un mismo tipo.

Configurar el módulo EM 231 RTD

Los interruptores DIP sirven para seleccionar el tipo de RTD, el esquema de cableado, la escala de temperatura y el sentido de la saturación térmica. Como muestra la figura A-21, están ubicados en el lado inferior del módulo. Para que los ajustes de los interruptores DIP tengan efecto, es preciso desconectar y conectar nuevamente la CPU y/o la fuente de alimentación externa de 24 V.

Seleccione el tipo de RTD ajustando los interruptores DIP 1, 2, 3, 4 y 5, de manera que correspondan a las termorresistencias (RTDs) que muestra la tabla A-30. En la tabla A-31 figuran otros ajustes de los interruptores DIP. Configuración $\uparrow 1 - ON$ $\downarrow 0 - OFF$ 1 2 3 4 5 6 7 8

Interruptores DIP del módulo EM 231 RTD

Figura A-21

Tipo de RTD y alpha ¹	Int. 1	Int. 2	Int. 3	Int. 4	Int. 5	Tipo de RTD y alpha ¹	Int. 1	Int. 2	Int. 3	Int. 4	Int. 5
100Ω Pt 0,003850 (estándar)	0	0	0	0	0	100Ω Pt 0,003902	1	0	0	0	0
200Ω Pt 0,003850	0	0	0	0	1	200Ω Pt 0,003902	1	0	0	0	1
500Ω Pt 0,003850	0	0	0	1	0	500Ω Pt 0,003902	1	0	0	1	0
1000Ω Pt 0,003850	0	0	0	1	1	1000Ω Pt 0,003902	1	0	0	1	1
100Ω Pt 0,003920	0	0	1	0	0	SPARE	1	0	1	0	0
200Ω Pt 0,003920	0	0	1	0	1	100Ω Ni 0,00672	1	0	1	0	1
500Ω Pt 0,003920	0	0	1	1	0	120Ω Ni 0,00672	1	0	1	1	0
1000Ω Pt 0,003920	0	0	1	1	1	1000Ω Ni 0,00672	1	0	1	1	1
100Ω Pt 0,00385055	0	1	0	0	0	100Ω Ni 0,006178	1	1	0	0	0
200Ω Pt 0,00385055	0	1	0	0	1	120Ω Ni 0,006178	1	1	0	0	1
500Ω Pt 0,00385055	0	1	0	1	0	1000Ω Ni 0,00617 8	1	1	0	1	0
1000Ω Pt 0,00385055	0	1	0	1	1	10000Ω Pt 0,003850	1	1	0	1	1
100Ω Pt 0,003916	0	1	1	0	0	10Ω Cu 0,004270	1	1	1	0	0
200Ω Pt 0,003916	0	1	1	0	1	Resistencia 150Ω FS	1	1	1	0	1
500Ω Pt 0,003916	0	1	1	1	0	Resistencia 300Ω FS	1	1	1	1	0
1000Ω Pt 0,003916	0	1	1	1	1	Resistencia 600ΩFS	1	1	1	1	1

Tabla A-30 Seleccionar el tipo de RTD con los interruptores DIP 1 a 5

Todos los RTDs representan 0° C a la resistencia indicada, excepto Cu 10 ohmios. Cu 10 ohmios es 25° C a 10 ohmios y 0° C a 9,035 ohmios.

Figura A-22 Cablear la termorresistencia RTD al sensor utilizando 4, 3 y 2 hilos

Indicadores de estado del módulo EM 231 RTD

El módulo RTD provee a la CPU con palabras de estado que indican la temperatura o condiciones de error. Los bits de estado indican los errores de rango y el fallo de la alimentación externa o interna. Los LEDs indican el estado del módulo. El programa de usuario debe incorporar lógica para detectar las condiciones de error y reaccionar de forma apropiada conforme a la aplicación. La tabla A-32 muestra los indicadores de estado del módulo EM 231 RTD.

Consejo

El canal tiene un formato de datos de palabra de 16 bits (complemento a 2). La temperatura se indica en unidades de 0,1 grados. (Por ejemplo, si se mide una temperatura de 100,2 grados, se indicará 1002). Los datos de resistencia se escalan a 27648. Por ejemplo, 75% de la resistencia de escala total se indica como 20736.

 $(225\Omega / 300\Omega * 27648 = 20736)$

|--|

Error	Datos de canal	LED SF rojo	LED 24 V verde	Bit de estado (error de rango) ¹	Alimentación externa 24 V c.c. defectuosa ²
Sin errores	Datos de conversión	OFF	ON	0	0
Falta la alimentación de 24 V	32766	OFF	OFF	0	1
El interruptor detecta un hilo abierto	-32768/32767	PARPAD EANTE	ON	1	0
Entrada fuera de rango	-32768/32767	PARPAD EANTE	ON	1	0
Error de diagnóstico ³	0000	ON	OFF	0	Nota ³

¹ El bit de error de rango es el bit 3 del byte de registro de errores del módulo (SMB9 en el caso del módulo 1, SMB11 en el caso del módulo 2, etc.)

² El bit de fallo de alimentación es el bit 2 del byte de registro de errores del módulo (p. ej. SMB 9, SMB 11, etc.). Consulte el anexo D.

³ Los errores de diagnóstico causan un error de configuración del módulo. El bit de fallo de alimentación se puede activar o no antes del error de configuración del módulo.

Si la CPU ha leído los datos, los datos de canal se actualizarán cada 405 milisegundos. Si la CPU no lee los datos dentro de un intervalo de actualización, el módulo indicará los datos antiguos hasta que se produzca la siguiente actualización (después de que la CPU haya leído los datos). Para mantener los datos de canal actualizados, es recomendable que el programa de la CPU lea los datos al menos con la misma frecuencia de actualización del módulo.

Consejo

Si utiliza el módulo RTD, deberá desactivar el filtro de entradas analógicas de la CPU. La filtración de entradas analógicas puede provocar que las condiciones de error no se detecten a tiempo.

El software interno del módulo RTD detecta si hay hilos abiertos. Las entradas fuera de rango y los hilos abiertos se indican ajustando el bit de estado de rango en el SMB y aumentando o reduciendo los datos del canal utilizando los interruptores DIP. La detección de hilos abiertos tarda como mínimo tres ciclos del módulo o más, dependiendo del hilo (de los hilos) que esté(n) abierto(s). Los hilos abiertos Fuente+ y/o Fuente- se detectan en el tiempo mínimo. La detección de los hilos abiertos pueden presentar datos válidos al azar, que se detectan de forma intermitente, especialmente en entornos con muchas interferencias. Las interferencias eléctricas también pueden prolongar el tiempo necesario para detectar hilos abiertos. Tras haberse devuelto datos válidos, en el programa de aplicación es recomendable utilizar cerrojos para las indicaciones de hilos abiertos o fuera de rango.

Consejo

Si no desea utilizar un canal, puede cablearlo con un resistor en vez del RTD para evitar que se detecten hilos abiertos, con lo que el LED SF parpadeará. El resistor debe tener el valor nominal del RTD. Por ejemplo, utilice 100 ohmios para el RTD PT100.

Rangos del módulo EM 231 RTD

En las tablas A-33 y A-34 figuran los rangos de temperatura y la precisión de todos los módulos EM 231 RTD.

Palabra d (1 dígito	le sistema = 0,1 °C)	Pt10000	Pt100, Pt200,	Ni100, Ni120,	Cu10	0 - 150 Ω	0 - 300Ω	0 - 600Ω	
Decimal	Hex		Pt500, Pt1000	Ni10001					
32767	7FF.	1	1	1	1	1	1	1	1
32766	7FFE					î	î	î	
32511	7EFF					176,383Ω	352,767Ω	705,534Ω	
29649	6C01					150,005Ω	300,011 Ω	600,022Ω	
27648	6C00					150,000Ω	300,000Ω	600,000Ω	1
25000	61A8								1
18000	4650								SR
15000	3A98								
13000	32C8	1	î						
10000	2710	1000,0°C	1000,0°C						
8500	2134		850,0°C						
6000	1770	600,0°C			1				
3120	0C30			1	312,0°C				
2950	0B86			295,0°C					
2600	0A28				260,0°C				
2500	09C4			250,0°C					
		1							
1	0001	0,1°C	0,1°C	0,1°C	0,1°C	0,005Ω	0,011Ω	0,022Ω	
0	0000	0,0°C	0,0°C	0,0°C	0,0°C	0,000Ω	0,000Ω	0,000Ω	
-1	FFFF	-0,1°C	-0,1°	-0,1°C	-0,1°C	(no son posil	bles los valores	negativos)	1
		-				Ļ	Ŷ	¥	
-600	FDA8	-		-60,0°C					R
		-			1				N
-1050	FBE6	-		-105,0°C					
		-		↓	1				
-2000	F830	-200,0°C	-200,0°		-200,0°C				
-2400	F6A0			í .	-240,0°C	1			
-2430	F682	-243,0°C	-243,0°C		4				
		4	Ļ	J					
-5000	EC78								
-6000	E890								BR
-10500	D6FC								4
-12000	VD120								
-20000	4E20								
-32767	8001								
-32768	8000								
Precisión en to	odo el rango	±0,4%	±0,1%	±0,2%	±0,5%	±0,1%	±0,1%	±0,1%	
Precisión (mar	gen normal)	±4° C	±1° C	±0,6° C	±2,8° C	±0,15Ω	±″≤Ω	±0,6Ω	
*DE = desbord	lamiento por exc	eso; SR = sobre ra	ngo; RN = rango nor	mal: BR = baio ran	ao: DD = desb	ordamiento por	defecto		

Tabla A-33	Rangos de temperatura	(°C) v	precisión	de los	módulos RTD
100107100	rungee de temperatura	$\langle \circ \rangle$	p100101011	40.00	

↑ o ↓ indican que todos los valores analógicos que excedan los límites devuelven el valor fuera de rango, 32767 (0x7FF.) ó -32768 (0x8000).

El límite inferior del rango normal de 1000 Ω Ni con un alpha de 0,006178 es 0 grados centígrados (no hay bajo rango). En esta tabla se muestra el 1000 Ω Ni con un alpha de 0,00672.

Palabra de sistema (1 dígito = 0,1 $^{\circ}$ F)		PT1000 PT100, Pt200, Pt500,	Ni100, Ni120,	C:: 40				
Decimal	Hexadecimal	P11000	Pt1000	Ni1000 ¹	Cu 10			
32767	7FF.							
32766	7PHAGE							
						1		
						Sobre rango		
		↑	↑	_				
18320	4790	1832,0°F	1832,0°F					
15620	3D04		1562,0°F					
11120	2B70	1112,0°F						
					↑			
5936	1730			↑	593,6°F			
5630	15FE			563,0°F				
5000	1388				500,0°F	1		
4820	12D4			482,0°F	·			
						Rango normal		
1	0001	0,1°F	0,1°F	0,1°F	0,1°F			
0	0000	0,0°F	0,0°F	0,0°F	0,0°F			
-1	FFFF	-0,1°F	-0,1°F	-0,1°F	-0,1°F			
-760	FD08			-76,0°F				
					1			
-1570	F9DE			-157,0°F				
				Ļ	1			
-3280	F330	-328,0°F	-328,0°F		-328,0°F			
-4000	F060				-400,0°F			
-4054	F02A	-405,4°F	-405,4°F		4	2		
		↓	↓ 					
-5000	EC78							
-6000	E890	1				Valor insuficiente		
-10500	D6FC					4		
-32767	8001							
-32768	8000							
↑ o ↓ indican que	o ↓ indican que todos los valores analógicos que excedan los límites devuelven el valor fuera de rango, 32767 (0x7FFF) ó -32768 (0x8000).							

 Tabla A-34
 Rangos de temperatura (°F) de los tipos RTD

¹ El límite inferior del rango normal de 1000 Ω Ni con un alpha de 0,006178 es 32 grados Fahrenheit (no hay bajo rango). En esta tabla se muestra el 1000 ΩNi con un alpha de 0,00672.

Datos técnicos del módulo de ampliación EM 277 PROFIBUS-DP

Tabla A-35 Número de referencia del módulo EM 277 PROFIBUS-DP

№ de referencia	Módulo de ampliación	Entradas del módulo	Salidas del módulo	Bloque de terminales extraíble
6ES7 277-0AA22-0XA0	EM 277 PROFIBUS-DP	-	-	No

Tabla A-36 Datos técnicos generales del módulo de ampliación EM 277 PROFIBUS-DP

Nº de referencia	Nombre y descripción de la CPU	Dimensiones en mm (I x a x p) Peso		Disipación	Tensión c.c. disponible +5 V c.c. +24 V c.c.	
6ES7 277-0AA22-0XA0	EM 277 PROFIBUS-DP	71 x 80 x 62	175 g	2,5 W	150 mA	v. abajo

Tabla A-37 Datos técnicos del módulo de ampliación EM 277 PROFIBUS-DP

Datos generales	6ES7 277-0AA22-0XA0		
Nº de puertos (potencia limitada)	1		
Puerto eléctrico	RS-485		
Velocidades de transferencia PROFIBUS-DP/MPI (ajustadas automáticamente)	9,6, 19,2, 45,45, 93,75, 187,5 y 500 kbit/s; 1, 1,5, 3, 6 y 12 Mbit/s		
Protocolos	Esclavo PROFIBUS-DP y esclavo MPI		
Longitud del cable			
Hasta 93,75 kbit/s	1200 m		
187,5 kbit/s	1000 m		
500 kbit/s	400 m		
1 a 1,5 Mbit/s	200 m		
3 Mbit/s a 12 Mbit/s	100 m		
Capacidad de red			
Ajustes de la dirección de estación	0 - 99 (utilizando interruptores rotativos)		
Nº máximo de estaciones por segmento	32		
Nº máximo de estaciones por red	126, hasta 99 estaciones EM 277		
Enlaces MPI	6 en total, 2 reservados (1 para una PG y 1 para un OP)		
Corriente de entrada de 24 V c.c. necesaria			
Rango de tensión	20,4 a 28,8 V c.c. (clase 2, potencia limitada o alimentación de sensores de la CPU)		
Intensidad máxima Módulo sólo con puerto activo Sumar 90 mA a la carga de 5V del puerto Sumar 120 mA a la carga de 24V del puerto	30 mA 60 mA 180 mA		
Rizado/corriente parásita (<10 MHz)	Máx. 1 V de pico a pico		
Aislamiento (campo a circuito lógico) ¹	500 V c.a., 1 minuto		
5 V c.c. en el puerto de comunicación			
Corriente máx. por puerto	90 mA		
Aislamiento (24 V c.c. a circuito lógico)	500 V c.a., 1 minuto		
Intensidad de 24 V c.c. en el puerto de comunicación			
Rango de tensión	20,4 a 28,8 V c.c.		
Corriente máx. por puerto	120 mA		
Intensidad límite	0,7 a 2,4 A		
Separación galvánica	No aislado, igual circuito que la entrada 24 V c.c.		

La fuente de alimentación de 24 V c.c. no le suministra corriente a la lógica del módulo. La fuente de alimentación de 24 V c.c. le suministra corriente al puerto de comunicación.

1

CPUs S7-200 que soportan módulos inteligentes

El módulo esclavo EM 277 PROFIBUS-DP es un módulo de ampliación inteligente diseñado para su utilización junto con las CPUs S7-200 que muestra la tabla A-38.

Tabla A-38	Compatibilidad del	módulo l	EM 277	PROFIBUS	-DP co	n las Cl	PUs S7	-200
------------	--------------------	----------	--------	----------	--------	----------	--------	------

CPU	Descripción
CPU 222, versión 1.10 o superior	CPU 222 DC/DC/DC y CPU 222 AC/DC/relé
CPU 224, versión 1.10 o superior	CPU 224 DC/DC/DC y CPU 224 AC/DC/relé
CPU 224XP, versión 2.0 o superior	CPU 224XP DC/DC/DC y CPU 224XP AC/DC/relé
CPU 226, versión 1.00 o superior	CPU 226 DC/DC/DC y CPU 226 AC/DC/relé

Interruptores de direccionamiento y LEDs

La figura A-23 muestra los interruptores de direccionamiento y los LEDs de estado (ubicados en el lado frontal del módulo), así como la asignación de pines del conector de puerto del esclavo DP. Los LEDs de estado se describen en la tabla A-42.

Vista frontal del módulo EM 277 PROFIBUS-DP

Interruptores de direccionamiento:

x10=ajusta el dígito más significativo de la dirección

x1= ajusta el dígito menos significativo de la dirección

Figura A-23 EM 277 PROFIBUS-DP

Comunicación en redes de periferia descentralizada (DP)

PROFIBUS-DP (o estándar DP) es un protocolo de telecomunicación definido en la norma europea EN 50170. Los dispositivos que cumplen con dicha norma son compatibles entre sí, aunque sean de diferentes fabricantes. DP es la abreviatura inglesa de Distributed Peripherals que significa periferia descentralizada (o periferia distribuida). PROFIBUS es la abreviatura de Process Field Bus.

El protocolo estándar DP está implementado en el módulo EM 277 PROFIBUS-DP como se define para las unidades esclavas en las normas siguientes en relación con los protocolos de comunicación:

- EN 50 170 (PROFIBUS) describe el acceso de bus y el protocolo de transferencia, indicando las propiedades del soporte de transferencia de datos.
- EN 50 170 (estándar DP) describe el intercambio de datos rápido y cíclico entre los maestros DP y los esclavos DP. En esta norma se definen también los procedimientos de configuración y parametrización, el intercambio de datos cíclico con las unidades periféricas descentralizadas y las funciones de diagnóstico asistidas.

La configuración de un maestro DP le permite reconocer las direcciones, los tipos de esclavos y las informaciones relativas a la parametrización que éstos necesitan. Al maestro se le indica también dónde depositar los datos que haya leído de los esclavos (entradas) y de dónde obtener los datos a escribir en los esclavos (salidas). El maestro DP establece la red e inicializa sus esclavos DP, escribiendo posteriormente los parámetros y la configuración de E/S en el esclavo. Luego lee las informaciones de diagnóstico del esclavo DP para verificar que éste haya aceptado los parámetros y la configuración de E/S. El maestro comienza entonces a intercambiar datos con el esclavo. En cada intercambio con el esclavo, escribe en las salidas y lee de las entradas. Dicho intercambio de datos continúa indefinidamente. Los esclavos pueden informar al maestro si se presenta una condición excepcional. Entonces, el maestro lee la información de diagnóstico del esclavo.

Una vez que un maestro DP haya escrito los parámetros y la configuración de E/S en un esclavo DP y éste los haya aceptado, el esclavo será propiedad del maestro. El esclavo sólo acepta peticiones de escritura de su respectivo maestro. Los demás maestros de la red pueden leer las entradas y salidas del esclavo, pero no escribir datos en él.

Utilizar el módulo EM 277 para conectar un S7-200 como esclavo DP

La CPU S7-200 se puede conectar a una red PROFIBUS-DP a través del módulo de ampliación EM 277 esclavo PROFIBUS-DP. El EM 277 se conecta a la CPU S7-200 a través del bus de E/S serie. La red PROFIBUS se conecta al módulo EM 277 PROFIBUS-DP por su puerto de comunicación DP. Éste último puede funcionar a una velocidad de transferencia cualquiera comprendida entre 9.600 bit/s y 12 Mbit/s. En los datos técnicos del módulo EM 277 PROFIBUS-DP se indican las velocidades de transferencia soportadas.

En calidad de esclavo DP, el módulo EM 277 acepta varias configuraciones de E/S diferentes del maestro, permitiendo adaptar a la aplicación la cantidad de datos transferidos. A diferencia de numerosos aparatos DP, el módulo EM 227 no se limita a transferir datos de E/S. Las entradas, los valores de los contadores y de los temporizadores, así como cualquier otro valor calculado se pueden enviar al maestro transfiriendo primero los datos a la memoria de variables de la CPU S7-200. De igual manera, los datos recibidos del maestro se almacenan en la memoria de variables de la CPU S7-200, pudiéndose transferir de allí a otras áreas de datos.

El puerto DP del módulo EM 277 PROFIBUS-DP se puede conectar a un maestro DP en la red, siendo posible comunicarse aún como esclavo MPI con otros maestros tales como unidades de programación (PGs) SIMATIC o CPUs S7-300/S7-400 en esa misma red. La figura A-24 muestra una red PROFIBUS con una CPU 224 y un módulo EM 277 PROFIBUS-DP.

- En este ejemplo, la CPU 315-2 es el maestro DP que ha sido configurado utilizando una unidad de programación SIMATIC con el software de programación STEP 7.
- La CPU 224 es un esclavo DP de la CPU 315-2. El módulo ET 200 es también un esclavo de la CPU 315-2.
- La CPU S7-400 se encuentra conectada a la red PROFIBUS y está leyendo datos de la CPU 224 mediante las operaciones XGET contenidas en el programa de usuario de la CPU S7-400.

Configuración

Para utilizar el módulo EM 277 PROFIBUS-DP en calidad de esclavo DP es preciso ajustar la dirección de estación del puerto DP para que coincida con la dirección fijada en la configuración del maestro. La dirección de estación se ajusta con los interruptores rotativos del módulo EM 277. Tras haber efectuado un cambio con un interruptor es preciso desconectar la CPU y conectarla de nuevo para poder adoptar la nueva dirección del esclavo.

El maestro intercambia datos con cada uno de sus esclavos, enviando informaciones de su área de salidas al búfer de salida del esclavo en cuestión (o "buzón receptor"). El esclavo responde al mensaje del maestro retornando un búfer de entrada (o "bandeja de salida") que el maestro almacena en un área de entradas.

La figura A-25 muestra un ejemplo de la memoria V y del área de direcciones de E/S de un maestro PROFIBUS-DP.

El maestro DP puede configurar el módulo EM 277 PROFIBUS-DP para que éste reciba datos de salida del maestro y retorne datos de entrada al mismo. Los búfers de salida y de entrada se almacenan en la memoria de variables (memoria V) de la CPU S7-200. Al configurar el maestro DP, se define la dirección de byte en la memoria V donde debe comenzar el búfer de salida como parte de la asignación de parámetros para el EM 227. Asimismo, se define la configuración de E/S como la cantidad de datos de salida a escribir en la CPU S7-200 y de datos de entrada a leer de la misma. El módulo EM 227 fija el tamaño de los búfers de entrada y de salida conforme a la configuración de E/S. El maestro DP escribe la asignación de parámetros y la configuración de E/S en el módulo EM 277 PROFIBUS DP. El EM 277 transfiere a la CPU la dirección de la memoria V, así como las longitudes de los datos de entrada y salida.

La figura A-25 muestra un ejemplo de la memoria V en una CPU 224, así como las áreas de direcciones de E/S de una CPU que actúa de maestro DP. En el ejemplo, el maestro DP ha definido una configuración de E/S compuesta por 16 bytes de salida y 16 bytes de entrada, así como un offset (desplazamiento) de 5000 bytes en la memoria V. La longitud de los búfers de salida y de entrada en la CPU 224, determinada conforme a la configuración de E/S, es de 16 bytes en ambos casos. El búfer de salida comienza en V5000, siguiéndole inmediatamente el búfer de entrada que comienza en V5016. Los datos de salida (del maestro) se depositan en la dirección V5000 de la memoria V. Los datos de entrada (al maestro) provienen de la dirección V5016 en la memoria V.

Consejo

Al utilizar una unidad de datos (coherentes) de tres bytes o unidades de datos (coherentes) superiores a cuatro bytes, será preciso usar SFC14 para leer las entradas del esclavo DP y SFC15 para direccionar las salidas del mismo. Para obtener informaciones más detalladas al respecto, consulte el manual *Software de sistema para SIMATIC S7-300/400 - Funciones estándar y funciones de sistema*.

En la tabla A-39 figuran las configuraciones soportadas por el módulo EM 277 PROFIBUS-DP. La configuración estándar del módulo EM 277 es de dos palabras de entrada y dos palabras de salida.

Configuración	Entradas al maestro	Salidas del maestro	Coherencia de datos
1	1 palabra	1 palabra	
2	2 palabras	2 palabras	
3	4 palabras	4 palabras	
4	8 palabras	8 palabras	
5	16 palabras	16 palabras	
6	32 palabras	32 palabras	Oshannais da aslahara
7	8 palabras	2 palabras	Conerencia de palabras
8	16 palabras	4 palabras	
9	32 palabras	8 palabras	
10	2 palabras	8 palabras	
11	4 palabras	16 palabras	
12	8 palabras	32 palabras	
13	2 bytes	2 bytes	
14	8 bytes	8 bytes	
15	32 bytes	32 bytes	Conerencia de bytes
16	64 bytes	64 bytes	
17	4 bytes	4 bytes	
18	8 bytes	8 bytes	
19	12 bytes	12 bytes	Conerencia de bufers
20	16 bytes	16 bytes	

Tabla A-39	Opciones de configuración del módulo EM 277
------------	---

La dirección de los búfers de entrada y de salida se puede configurar de manera que se almacenen en cualquier dirección de la memoria V de la CPU S7-200, siendo VB0 el ajuste estándar. La dirección de los búfers de entrada y salida forma parte de la parametrización que el maestro escribe en la CPU S7-200. El maestro se debe configurar para que reconozca a sus esclavos y para que escriba los parámetros necesarios y la configuración de E/S en cada uno de ellos.

Utilice las siguientes aplicaciones para configurar el maestro DP:

- Dera los maestros SIMATIC S5, utilice el software de Windows COM PROFIBUS.
- Dera los maestros SIMATIC S7, utilice el software de programación STEP 7.
- Para los maestros SIMATIC 505, utilice COM PROFIBUS y TISOFT2 o SoftShop.

Para más información acerca del software de configuración y programación, consulte los manuales correspondientes a los dispositivos en cuestión. Para obtener informaciones más detalladas acerca de las redes PROFIBUS y sus componentes, consulte el manual *Sistemas de periferia descentralizada ET 200*.

Anexo A

Coherencia de datos

PROFIBUS asiste tres tipos de coherencia de datos:

- La coherencia de bytes garantiza que éstos se transfieran en unidades enteras.
- La coherencia de palabras garantiza que otros procesos en la CPU no puedan interrumpir las transferencias de palabras (los dos bytes que conforman la palabra se transfieren siempre juntos y no se pueden separar). Utilice la coherencia de palabras si los valores de datos a transferir son números enteros.

- Figura A-26 Coherencia de bytes, palabras y búfers
- La coherencia de búfers garantiza que el búfer de datos se transfiera en forma de una unidad, sin que ningún otro proceso de la CPU pueda interrumpir la transferencia. Es recomendable utilizar la coherencia de búfer cuando se deseen transferir valores de palabra doble, valores en coma flotante o un grupo de valores de datos que deban actuar como una sola unidad.

La coherencia de datos se ajusta como parte de la configuración de E/S en el maestro. La coherencia seleccionada se escribe en el esclavo DP como parte de la inicialización del mismo. Tanto el maestro DP como el esclavo DP utilizan la coherencia seleccionada para garantizar que los valores de datos (bytes, palabras o búfers) se transfieran sin interrupciones entre el maestro y el esclavo. La figura A-26 muestra los tres tipos de coherencia.

Consideraciones relativas al programa de usuario

Una vez que un maestro DP haya configurado correctamente el módulo EM 277 PROFIBUS-DP, ambos equipos pasarán al modo de intercambio de datos. En modo de intercambio de datos, el maestro escribe los datos de salida en el módulo EM 277 PROFIBUS-DP y éste último responde con los datos de entrada más recientes de la CPU S7-200. El módulo EM 277 actualiza continuamente sus entradas desde la CPU S7-200 para facilitarle los datos de entrada más recientes al maestro DP. El módulo transmite entonces los datos de salida a la CPU S7-200. Los datos de salida del maestro se depositan en la memoria V (en el búfer de salida) que comienza en la dirección indicada por el maestro DP durante la inicialización. Los datos de entrada se leen de las direcciones de la memoria V (el búfer de entrada) que le siguen inmediatamente a los datos de salida.

El programa de usuario contenido en dicha CPU debe transferir los datos de salida que envíe el maestro desde el búfer de salida a las áreas de datos donde se utilizarán. Igualmente, los datos de entrada dirigidos al maestro se deben transferir de diversas áreas de datos al búfer de entrada para poder enviarlos de allí al maestro.

Los datos de salida que envíe el maestro DP se depositan en la memoria V inmediatamente después de haberse ejecutado la correspondiente parte del ciclo del programa de usuario. Los datos de entrada (dirigidos al maestro) se copian de la memoria V en el EM 277 para transmitirlos simultáneamente al maestro.

Los datos de salida sólo se escriben en la memoria V cuando el maestro suministra nuevos datos.

Los datos de entrada se transmiten al maestro en el siguiente intercambio de datos con él.

La dirección inicial de los búfers de datos en la memoria V y sus longitudes se deben conocer cuando se cree el programa de usuario para la CPU S7-200.

Información de estado

50 bytes del área de marcas especiales (SM) están asignados a cada módulo inteligente, conforme a su posición física. Los módulos actualizan las marcas especiales correspondientes a su posición en relación con la CPU (con respecto a los demás módulos). El primer módulo actualizará de SMB200 hasta SMB249. Si es el segundo módulo, actualizará de SMB250 hasta SMB299, etc. (v. tabla A-40).

Tabla A-40	B vtes	de marcas	SMB200 a	SMB549
	Dyico	ac marous	01110200 0	

	Bytes de marcas SMB200 a SMB549						
Módulo	Módulo	Módulo	Módulo	Módulo	Módulo	Módulo	
inteligente	inteligente	inteligente	inteligente	inteligente	inteligente	inteligente	
en el slot 0	en el slot 1	en el slot 2	en el slot 3	en el slot 4	en el slot 5	en el slot 6	
SMB200 a	SMB250 a	SMB300 a	SMB350 a	SMB400 a	SMB450 a	SMB500 a	
SMB249	SMB299	SMB349	SMB399	SMB449	SMB499	SMB549	

Estas marcas tienen valores estándar si no se ha establecido la comunicación DP con un maestro. Una vez que un maestro haya escrito los parámetros y la configuración de E/S en el módulo EM 277 PROFIBUS-DP, las marcas especiales adoptarán la configuración ajustada por el maestro DP. Antes de utilizar la información contenida en las marcas especiales que figuran en la tabla A-41, o bien los datos depositados en el búfer de la memoria V, compruebe el byte de estado del protocolo (por ejemplo, SMB224 si se trata del slot 0) para verificar que el módulo EM 277 se encuentre actualmente en modo de intercambio de datos con el maestro.

Consejo

Los tamaños o las direcciones de los búfers de E/S del módulo EM 277 PROFIBUS-DP no se pueden configurar escribiendo en las marcas especiales. Sólo el maestro DP puede configurar el módulo EM 277 PROFIBUS-DP para que pueda trabajar en modo DP.

Módulo inteligente en el slot 0	 Módulo inteligente en el slot 6	Descripción
SMB200 a SMB215:	 SMB500 a SMB515	Nombre del módulo (16 caracteres ASCII) "EM277 ProfibusDP"
SMB216 a SMB219	 SMB516 a SMB519	Número de revisión S/W (4 caracteres ASCII) xxxx
SMW220	 SMW520	Código de error16#0000Sin error16#0001Sin alimentación externa16#0002 a 16#FFFFReservados
SMB222	 SMB522	La dirección del módulo DP esclavo se ajusta con los interruptores de direccionamiento (0 - 99 decimal)
SMB223	 SMB523	Reservados
SMB224	 SMB524	Byte de estado del protocolo estándar DP MSB LSB 0 0 0 S1 S0 S1 S0 Descripción del byte de estado del estándar DP O O 0 0 Comunicación DP no iniciada desde el arranque O 1 Error de configuración/parametrización detectado 1 0 Modo de intercambio de datos activado 1 1 Modo de intercambio de datos desactivado
SMB225	 SMB525	Protocolo estándar DP - dirección del maestro del esclavo (0 a 126)
SMW226	 SMW526	Protocolo estándar DP - dirección en la memoria V del búfer de salida (desplazamiento de VB0)
SMB228	 SMB528	Protocolo estándar DP - número de bytes de los datos de salida
SMB229	 SMB529	Protocolo estándar DP - número de bytes de los datos de entrada
SMB230 a SMB249	 SMB530 a SMB549	Reservado - se borra durante el arranque

 Tabla A-41
 Marcas especiales del módulo de ampliación EM 277 PROFIBUS-DP

Nota: Las marcas especiales se actualizan cada vez que el módulo esclavo DP acepta datos de configuración y/o de parametrización. Dichas direcciones se actualizan aun si se detecta un error de configuración y/o parametrización. Las direcciones se borran durante cada arranque.

LEDs de estado del módulo EM 277 PROFIBUS-DP

El módulo EM 277 PROFIBUS-DP dispone de cuatro LEDs en el panel frontal que indican el estado del puerto DP:

- Después del arranque de la CPU S7-200, el LED DX MODE permanecerá apagado mientras que no se intente establecer la comunicación DP.
- Una vez iniciada correctamente la comunicación DP (el módulo EM 277 PROFIBUS-DP pasa a modo de intercambio de datos con el maestro), el LED DX MODE se encenderá en verde y permanecerá encendido hasta que se desactive el modo de intercambio de datos.
- Si se interrumpe la comunicación DP, lo que obliga al módulo EM 277 a salir del modo de intercambio de datos, el LED DX MODE se apagará (OFF) y el LED DP ERROR se encenderá en rojo. Dicho estado persistirá hasta que la CPU S7-200 se desconecte o hasta que se restablezca el intercambio de datos.
- Si se detecta un error en la configuración de E/S o en la parametrización que el maestro DP está escribiendo en el módulo EM 227, el LED DP ERROR parpadeará en rojo.
- Si no se suministra 24 V c.c., el LED "POWER" permanece apagado (OFF).

La tabla A-42 resume los diversos estados de los LEDs del módulo EM 277.

LED	OFF	Rojo	Parpadeante (rojo)	Verde
CPU FAULT	Módulo OK	Fallo interno del módulo		
POWER	Sin alimentación 24 V c.c.			Alimentación externa 24 V c.c.: OK
DP ERROR	No se presentó ningún error.	Modo de intercambio de datos desactivado	Error de configuración/parametriz ación	
DX MODE	Modo de intercambio de datos desactivado			Modo de intercambio de datos activado

Tabla A-42 Indicadores de estado (LEDs) del módulo EM 277 PROFIBUS-DP

Nota: Si el módulo EM 277 PROFIBUS-DP actúa exclusivamente de esclavo MPI, sólo estará activado el LED verde.

Funciones de configuración adicionales

El módulo EM 277 PROFIBUS-DP puede servir de interfaz de comunicación con otros maestros MPI, así esté actuando o no de esclavo PROFIBUS-DP. El módulo permite conectar una CPU S7-300/400 a una CPU S7-200 utilizando las operaciones XGET/XPUT de la S7-300/400. STEP 7-Micro/WIN y un procesador de comunicaciones (por ejemplo, un CP5611) con el juego de parámetros MPI o PROFIBUS, o bien un panel de operador (OP) o el TD 200 (versión 2.0 o superior, nº de referencia 6ES7 272-0AA20-0YA0) se pueden utilizar para la comunicación con la CPU S7-200 a través del módulo EM 277 PROFIBUS-DP.

Además del maestro DP, es posible conectar seis equipos (como máximo) al módulo EM 277 PROFIBUS-DP. Una conexión se reserva para una unidad de programación (PG) y otra, para un panel de operador (OP). Las cuatro conexiones restantes pueden ser utilizadas por cualquier maestro MPI. Para que el módulo EM 277 PROFIBUS-DP se pueda comunicar con varios maestros, todos los maestros deberán utilizar una misma velocidad de transferencia. La figura A-27 muestra un ejemplo de una configuración de red.

Si el módulo EM 277 PROFIBUS-DP se utiliza para la comunicación MPI, el maestro MPI deberá utilizar la dirección de estación del módulo para todos los mensajes que se envíen a la CPU S7-200 conectada al módulo. Los mensajes MPI que se envíen al módulo EM 277 PROFIBUS-DP se transmiten a la CPU S7-200.

El EM 277 PROFIBUS-DP es un módulo esclavo, por lo que no se puede utilizar para la comunicación entre CPUs S7-200 utilizando las operaciones NETR y NETW. El módulo EM 277 PROFIBUS-DP no se puede usar para la comunicación en modo Freeport.

Figura A-27 Red PROFIBUS-DP/MPI

Archivo de datos maestros de los dispositivos GSD

Los diversos dispositivos PROFIBUS tienen diferentes propiedades de rendimiento. Estas propiedades difieren con respecto a la funcionalidad (por ejemplo, el número de señales de E/S y de mensajes de diagnóstico) o a los parámetros de bus, tales como la velocidad de transferencia y el tiempo de vigilancia. Los parámetros varían de un dispositivo a otro y de un fabricante a otro, documentándose por lo general en un manual técnico. Para facilitar la configuración de las redes PROFIBUS, las propiedades de rendimiento de los diversos dispositivos se indican en un archivo de datos maestros (archivo GSD). Las herramientas de configuración basadas en los archivos GSD permiten integrar fácilmente los dispositivos de diferentes fabricantes en una misma red.

Los archivos GSD ofrecen una descripción detallada de las propiedades de un dispositivo en un formato definido exactamente. Dichos archivos GSD son preparados para cada tipo de dispositivo por el correspondiente fabricante, poniéndolos a disposición del usuario de equipos PROFIBUS. El archivo GSD permite que el sistema de configuración lea las propiedades de un dispositivo PROFIBUS y utilice dichas informaciones al configurar la red.

Las versiones más recientes de COM PROFIBUS o del software STEP 7 incluyen archivos de configuración para el módulo EM 277 PROFIBUS-DP. Si su versión del software no incluye un archivo de configuración para el EM 277, podrá descargar el archivo GSD más reciente (SIEM089D.GSD) del sitio web: www.profibus.com.

Si utiliza un maestro no SIMATIC, consulte la documentación suministrada por el fabricante en cuestión para configurar el maestro utilizando el archivo GSD.
;======================================	
; GSD File for the EM 277 PROFIBUS-DP with a	
DPC31 ; MLFB : 6ES7 277-0AA20XA0	;======================================
; DATE : 26-March-2001	; Continuation of GSD File
;======================================	;======================================
#Profibus_DP	
;General parameters	; Module Definition List
GSD Revision = 1	Module = "2 Bytes Out/ 2 Bytes In -" 0x31
Vendor Name = "Siemens"	EndModule
Model Name = "EM 277 PROFIBUS-DP"	Module = "8 Bytes Out/ 8 Bytes In -" 0x37
Revision = "V1.02"	EndModule
Ident Number = 0x089D	Module = "32 Bytes Out/ 32 Bytes In -"
Protocol Ident = 0	0xC0,0x1F,0x1F
Station Type = 0	EndModule
FMS = 0	Module = "64 Bytes $Out/ 64$ Bytes In -"
Hardware Release = "1.00"	0xC0.0x3F.0x3F
Software Release = $"1.02"$	EndModule
9.6 supp = 1	Module = "1 Word Out/ 1 Word In $-$ " 0x70
19.2 gupp = 1	EndModule
45.45 gupp = 1	Module = "2 Word Out/ 2 Word In $-$ " 0x71
43.45 - supp = 1	EndModule
$197.5_{\text{supp}} = 1$	Module = "A Word Out / A Word In $-$ " 0x73
107.5_supp = 1	EndModulo
$500_supp = 1$	Module = #9 Word Out / 9 Word In # 0x77
$1.5M_supp = 1$	Toduce - 8 word Out/ 8 word III - 0X//
$3M_{supp} = 1$	Enamodule
$6M_{supp} = 1$	Module = "16 word Out/ 16 word in -" UX/F
$12M_{supp} = 1$	EndModule
$MaxTsdr_{9.6} = 60$	Module = "32 word Out/ 32 word in -"
$MaxTsdr_{19.2} = 60$	0xC0,0x5F,0x5F
$MaxTsdr_{45.45} = 250$	EndModule
$MaxTsdr_{93.75} = 60$	Module = "2 Word Out/ 8 Word In -"
$MaxTsdr_{187.5} = 60$	0xC0,0x41,0x47
MaxTsdr_500 = 100	EndModule
MaxTsdr_1.5M = 150	Module = "4 Word Out/ 16 Word In -"
MaxTsdr_3M = 250	0xC0,0x43,0x4F
$MaxTsdr_{6M} = 450$	EndModule
MaxTsdr 12M = 800	Module = "8 Word Out/ 32 Word In -"
Redundancy = 0	0xC0,0x47,0x5F
Repeater Ctrl Sig = 2	EndModule
24V Pins = 2	Module = "8 Word Out/ 2 Word In -"
-	0xC0,0x47,0x41
: Slave-Specification:	EndModule
OrderNumber="6ES7 277-0AA20-0XA0"	Module = "16 Word Out/ 4 Word In -"
Peripherv="SIMATIC_S5"	0xC0.0x4F.0x43
Slave Family=100TdF0SIMATIC	EndModule
	Module = "32 Word Out / 8 Word In -"
Freeze Mode supp = 1	0xC0 0x5F 0x47
Sync Mode supp = 1	EndModule
Set Slave Add Supp = 0	Module = "A Byte buffer $I/O = " 0xB3$
Auto Baud supp = 1	FndModule
Min Slave Intervall = 1	Modulo = "8 Puto buffor $I/0$ " 0xP7
Fail Safe = 0	FndModulo
Max Diag Data Len = 6	Module = (12) Byte buffer I/Q (0 yPR
Madul Offact = 0	Module - 12 Byte Buller 1/0 - 0XBB
Modular Station = 1	Madule
	Module = "16 Byte Duffer 1/0 -" UXBF
Max_Module = 1	EndModule
Max_input_ien = 128	
Max_Output_len = 128	
Max_Data_len = 256	
; UserPrmData-Definition	
ExtUserPrmData=1 "I/O Offset in the V-memory"	
Unsigned16 0 0-10239	
EndExtUserPrmData	
; UserPrmData: Length and Preset:	
User_Prm_Data_Len=3	
User_Prm_Data= 0,0,0	
Max_User_Prm_Data_Len=3	I
<pre>Ext_User_Prm_Data_Const(0)=0x00,0x00,0x00</pre>	
Ext User Prm Data Ref(1)=1	

Figura A-28 Listado del archivo GSD para el módulo EM 277 PROFIBUS

Programa de ejemplo para la comunicación DP con una CPU

A continuación figura un programa de ejemplo en el lenguaje de programación AWL (Lista de instrucciones) para el módulo PROFIBUS-DP en el slot 0 de una CPU que utiliza la información del puerto DP en la memoria de marcas especiales. El programa averigua la dirección de los búfers DP mediante SMW226 y lee los tamaños de los búfers de SMB228 y SMB229. Estas informaciones se utilizan para copiar los datos del búfer de salida DP en la imagen de proceso de las salidas de la CPU. De forma similar, los datos contenidos en la imagen del proceso de las entradas de la CPU se copian en el búfer de entrada de la memoria V.

En el siguiente programa de ejemplo para un módulo DP en el slot 0, los datos de configuración DP en el área de marcas especiales suministran la configuración del esclavo DP. El programa utiliza los datos siguientes:

SMW220	Estado de error del módulo DP
SMB224	Estado DP
SMB225	Dirección del maestro
SMW226	Offset en la memoria de variables para los datos de salida
SMB228	Número de bytes de los datos de salida
SMB229	Número de bytes de los datos de entrada
VD1000	Puntero de los datos de salida
VD1004	Puntero de los datos de entrada

Datos técnicos del módulo Módem EM 241

Tabla A-43 Número de referencia del módulo Módem EM 241

№ de referencia	Módulo de ampliación	Entradas del módulo	Salidas del módulo	Bloque de terminales extraíble
6ES7 241-1AA22-0XA0	Módulo Módem EM 241	-	81	No

1) 8 salidas lógicas se utilizan como controles lógicos de la función de módem, sin controlar directamente ninguna señal externa.

Tabla A-44 Datos técnicos generales del módulo Módem EM 241

№ de referencia	Nombre y descripción de la CPU	Dimensiones en mm (I x a x p)	Peso	Disipación	Tensić +5 V c.c.	n c.c. disponible +24 V c.c.
6ES7 241-1AA22-0XA0	Módulo Módem EM 241	71,2 x 80 x 62	190 g	2,1 W	80 mA	70 mA

Tabla A-45 Datos técnicos del módulo Módem EM 241

Datos generales	6ES7 241-1AA22-0XA0
Conexión telefónica	
Separación galvánica	
(linea telefónica a circuito lógico y potencia de campo)	1500 V c.a. (separación galvánica)
Conexión física	RJ11 (6 posiciones, 4 hilos)
Módems estándar	Bell 103, Bell 212, V.21, V.22, V.22 bis, V.23c, V.32, V.32 bis, V.34 (estándar)
Funciones de seguridad	Contraseña Devolución de llamadas
Marcación	Impulsos o tono
Protocolos de mensajes	Numérico TAP (alfanumérico) Comandos UCP 1, 30, 51
Protocolos industriales	Modbus PPI
Corriente de entrada de 24 V c.c. necesaria	
Rango de tensión	20,4 a 28,8 V c.c.
Aislamiento (potencia de campo a circuito lógico)	500 V c.a., 1 minuto

El módulo Módem EM 241 se puede utilizar en lugar de un módem externo conectado al puerto de comunicación de la CPU. Teniendo un EM 241 instalado en el sistema S7-200, lo único que se necesita para establecer la comunicación con una CPU remota es un PC equipado con un módem externo y STEP 7-Micro/WIN.

Para más información sobre cómo configurar la comunicación, consulte el capítulo 7 ("Comunicación en redes"). En el capítulo 10 ("Crear un programa para el módulo Módem") se describen la programación y las funciones avanzadas del módulo.

El asistente de módems de STEP 7-Micro/WIN sirve para configurar el módulo Módem

EM 241. Para más información acerca de este asistente, consulte el capítulo 10.

Figura A-29 Esquema funcional del módulo Módem EM 241

CPUs S7-200 que soportan módulos inteligentes

El módulo Módem EM 241 es un módulo de ampliación inteligente diseñado para su utilización junto con las CPUs S7-200 que muestra la tabla A-46.

Tabla A-46 Compatibilidad del módulo Módem EM 241 con las CPUs S	7-20)(
--	------	----

CPU	Descripción
CPU 222, versión 1.10 o superior	CPU 222 DC/DC/DC y CPU 222 AC/DC/relé
CPU 224, versión 1.10 o superior	CPU 224 DC/DC/DC y CPU 224 AC/DC/relé
CPU 224XP, versión 2.0 o superior	CPU 224XP DC/DC/DC y CPU 224XP DC/DC/relé
CPU 226, versión 1.00 o superior	CPU 226 DC/DC/DC y CPU 226 AC/DC/relé

Instalar el EM 241

Para instalar el módulo EM 241, proceda de la manera siguiente:

- 1. Enganche el módulo EM 241 en el raíl DIN y enchufe el cable plano.
- Conecte la alimentación para sensores de 24 V c.c. de la CPU o la fuente de alimentación externa y conecte el conductor neutro a la toma de tierra del sistema.
- 3. Enchufe la línea de teléfono en el enchufe RJ11.
- Ajuste los selectores de código de país conforme a la tabla A-47. Para poder leer el código de país correcto es preciso ajustar estos selectores antes de arrancar la CPU.
- 5. Arranque la CPU. El LED verde "MG" (módulo OK) se debería encender.

El módulo EM 241 estará listo para la comunicación.

Tabla A-47	Códigos de país soportados por e
	módulo EM 241

Código	País	Estándar de telecomunicación
00	Australia	ACA TS-002
01	Austria	CTR21
02	Bélgica	CTR21
05	Canadá	IC CS03
06	China	GB3482
08	Dinamarca	CTR21
09	Finlandia	CTR21
10	Francia	CTR21
11	Alemania	CTR21
12	Grecia	CTR21
16	Irlanda	CTR21
18	Italia	CTR21
22	Luxemburgo	CTR21
25	Países Bajos	CTR21
26	Nueva Zelanda	PTC 200
27	Noruega	CTR21
30	Portugal	CTR21
34	España	CTR21
35	Suecia	CTR21
36	Suiza	CTR21
38	Reino Unido	CTR21
39	EE UU	FCC Part 68

Enchufe RJ11

La figura A-30 muestra el enchufe RJ11. Es posible utilizar adaptadores para otros conectores de teléfono estándar. Para más información, consulte la documentación del adaptador.

Figura A-30 Enchufe RJ11

Cuidado

Las sobretensiones por descargas atmosféricas u otras sobretensiones inesperadas en la línea telefónica pueden averiar el módulo Módem EM 241.

Utilice un dispositivo de protección contra sobretensiones para líneas telefónicas de uso en el comercio (como los que se utilizan para proteger los módems de PCs). Los dispositivos de protección contra sobretensiones se pueden deteriorar mientras protegen el módulo Módem EM 241. Utilice un dispositivo dotado de un indicador que muestre que está funcionando correctamente.

Compruebe con regularidad el dispositivo de protección contra sobretensiones para garantizar la protección del módulo Módem EM 241.

Datos técnicos del módulo de posicionamiento EM 253

Tabla A-48 Número de referencia del módulo de posicionamiento EM 253

№ de referencia	Módulo de ampliación	Entradas del módulo	Salidas del módulo	Bloque de terminales extraíble
6ES7 253-1AA22-0XA0	Módulo de posicionamiento EM 253	-	8 ¹	Sí

1) 8 salidas lógicas se utilizan como controles lógicos de la función de movimiento, sin controlar directamente ninguna señal externa.

Tabla A-49 Datos técnicos generales del módulo de posicionamiento EM 253

№ de referencia	Nombre y descripción de la CPU	Dimensiones en mm (I x a x p)	Peso	Disipación	Tensid +5 V c.c.	on c.c. disponible +24 V c.c.
6ES7 253-1AA22-0XA0	Módulo de posicionamiento EM 253	71,2 x 80 x 62	0,190 kg	2,5 W	190 mA	v. abajo

Tabla A-50 Datos técnicos del módulo de posicionamiento EM 253

Datos generales	6ES7 253-1AA22-0XA0
Características de las entradas	
Nº de entradas	5
Tipo de entrada	Sumidero/fuente (tipo de sumidero IEC 1, excepto ZP)
Tensión de entrada Tensión máx. continua admisible STP, RPS, LMT+, LMT- ZP Sobretensión (todas las entradas) Valor nominal STP, RPS, LMT+, LMT- ZP Señal "1" lógica (mín.) STP, RPS, LMT+, LMT- ZP Señal "0" lógica (máx.) STP, RPS, LMT+, LMT- ZP	30 V c.c. 30 V c.c. a 20 mA (máximo) 35 V c.c. 0,5 s 24 V c.c. a 4 mA, nominal 24 V c.c. a 15 mA, nominal 15 V c.c. a 2,5 mA (mínimo) 3 V c.c. a 1 mA (máximo) 1 V c.c. a 1 mA (máximo) 1 V c.c. a 1 mA (máximo)
Aislamiento (campo a circuito lógico) Separación galvánica Grupos de aislamiento de:	500 V c.a., 1 minuto 1 para STP, RPS y ZP 2 para LMT+ y LMT-
STP, RPS, LMT+, LMT- ZP (ancho del impulso contable)	0,2 ms a 12,8 ms, personalizable 2 μseg (mínimo)
Conexión de sensor de proximidad de 2 hilos (Bero) Corriente de fuga admisible	Máx. 1 mA
Longitud del cable No apantallado STP, RPS, LMT+, LMT- ZP Apantallado STP, RPS, LMT+, LMT- ZP	30 metros No recomendable 100 metros 10 metros
	Todas a 55 O (Tonzonial), todas a 45 O (Venical)

Datos generales 6ES7 253-1AA22-0XA0		7 253-1AA22-0XA0	
Características de las salidas			
Nº de salidas integradas	6 (4 señales)		
Ilpo de salida	Driver PS422/485		
P0. P1. DIS. CLR	Drenador abierto		
Tonsión do salida			
Drivers P0 P1 RS-422 tensión diferencial de salida			
en circuito abierto	Típ. 3,5 V		
En diodo optoacoplador con resistencia serie de 200 Ω	Mín. 2,8 V		
Carga de 100Ω	Mín. 1,5 V		
Carga de 54 Ω	Mín. 1,0 V		
P0, P1, DIS, CLR drenador abierto			
tensión recomendada, circuito abierto	5 V c.c., disponible del módulo		
tension admisible, circuito abierto	30 V C.C.'		
Sumidero de comente	Max. 50 MA		
Corriente de fuga en OEE 30 V c.c.	Máx. 1552		
Resistor interno de actuación, drenaje de salida a T1	3,3K Ω ²		
Intensidad de salida	-		
	1		
Salidas ON simultáneamente	Todas a 55° C (borizontal) todas a 4	5° C (vertical)	
Intensidad de derivación por salida		o (venical)	
P0, P1, DIS, CLR	Máx. 10 μA		
Protección contra sobrecargas	No		
Aislamiento (campo a circuito lógico)			
Separación galvánica	500 V c.a., 1 minuto		
Potardo do las solidas			
DIS CLR: OFF a ON / ON a OFF	30 us (máximo)		
Distorsión de impulsos	M442 75 25		
P0, P1, Salidas, dilvers RS-422, 100 \$2 de carga externa	Max. 75 hs		
P0. P1. salidas, drenador abierto, 5 V / 470 Ω de	Máx. 300 ns		
carga externa			
Frecuencia de conmutación			
P0+, P0-, P1+, P1-, P0 y P1	200 kHz		
Longitud del cable			
No apantallado	No recomendado		
Apantallado	10 metros		
Alimentación			
L + tensión de alimentación	11 a 30 V c c (clase 2 potopois limits	ida o alimentación de sensoros do la CPU	
Salida de alimentación lógica	+5 V c c + -10% 200 mA (máximo)	an o anneniacion de sensoles de la CFU)	
Alimentación L+ vs. carga 5 V c.c.			
Intensidad de carga			
0 mA (sin carga)	Entrada 12 V c.c.	Entrada 24 V c.c.	
200 mA (carga nominal)	120 mA	70 mA	
	300 MA	130 MA	
Aislamiento	500 Marca durante di esterito		
Potencia L+ a circuito logico Potencia L+ a entradas	500 V c.a. durante 1 minuto		
Potencia L+ a salidas	SUU V c.a. durante i minuto Ninguno		
Peloridad inverse			
Folanuad Inversa	positiva en un terminal M cualquiera	notegidas con diodos. Si se aplica una tensión con respecto a las conexiones de las salidas	
	podrían producirse corrientes potencialmente dañinas.		

Tabla A-50 Datos técnicos del módulo de posicionamiento EM 253, continuación

1 El funcionamiento de salidas en drenador abierto a más de 5 V c.c. podría incrementar las emisiones de radiofrecuencia por encima de los límites permitidos. Es posible que deba prever medidas de contención de radiofrecuencias en el sistema o en el cableado.

² Dependiendo del receptor de impulsos y del cable, la utilización adicional de un resistor interno de actuación podría mejorar la calidad de los impulsos y la inmunidad a interferencias.

CPUs S7-200 que soportan módulos inteligentes

El módulo de posicionamiento EM 253 es un módulo de ampliación inteligente diseñado para su utilización junto con las CPUs S7-200 que muestra la tabla A-51.

Tabla A-51	Compatibilidad del módulo	de posicionamiento EM 253 con las CPUs S7-200
	CPU	Descripción
CPU 222, v	ersión 1.10 o superior	CPU 222 DC/DC/DC y CPU 222 AC/DC/relé
CPU 224, v	ersión 1.10 o superior	CPU 224 DC/DC/DC y CPU 224 AC/DC/relé
CPU 224XF	P, versión 2.0 o superior	CPU 224XP DC/DC/DC y CPU 224XP DC/DC/relé
CPU 226, v	ersión 1.00 o superior	CPU 226 DC/DC/DC y CPU 226 AC/DC/relé

LEDs de estado del módulo de posicionamiento EM 253

Los LEDs de estado del módulo de posicionamiento EM 253 figuran en la tabla A-52.

Tabla A-52	LEDs de estado del módulo de posicionamiento
	EEDe de coldae del modulo de poelelenamiente

E/S físicas	LED	Color	Descripción del funcionamiento
-	MF	Rojo	Se ilumina si el módulo detecta un error fatal.
-	MG	Verde	Se ilumina si no hay fallos en el módulo y parpadea si se detecta un error de configuración.
-	PWR	Verde	Se ilumina si hay tensión 24 V c.c. aplicada en los terminales L+ y M del módulo.
Entrada	STP	Verde	Se ilumina si está activada la entrada STOP.
Entrada	RPS	Verde	Se ilumina si está activada la entrada del interruptor del punto de referencia.
Entrada	ZP	Verde	Se ilumina si está activada la entrada "Impulso cero".
Entrada	LMT-	Verde	Se ilumina si está activada la entrada "Límite negativo".
Entrada	LMT +	Verde	Se ilumina si está activada la entrada "Límite positivo".
Salida	P0	Verde	Se ilumina si hay impulsos en la salida P0.
Salida	P1	Verde	Se ilumina si hay impulsos en la salida P1 o si ésta indica un movimiento positivo.
Salida	DIS	Verde	Se ilumina si está activada la salida DIS.
Salida	CLR	Verde	Se ilumina si está activada la salida "Borrar contador de desviación".

Figura A-31 Módulo de posicionamiento EM 253

Diagramas de cableado

Los terminales presentan fallos en los esquemas siguientes. La figura A-31 muestra la disposición de los terminales.

Figura A-32 Esquema interno de las entradas y salidas del módulo de posicionamiento EM 253

Figura A-33 Conectar un módulo de posicionamiento EM 253 a un accionamiento paso a paso FM SIMATIC

Figura A-34 Conectar un módulo de posicionamiento EM 253 a un Industrial Devices Corp. (paso siguiente)

Figura A-35 Conectar un módulo de posicionamiento EM 253 a un Oriental Motor UPK Standard

Figura A-36 Conectar un módulo de posicionamiento EM 253 a un Parker/Compumotor OEM 750

Datos técnicos del módulo Ethernet (CP 243-1)

Tabla A-53 Número de referencia de módulo Ethernet (CP 243-1)

№ de referencia	Módulo de ampliación	Entradas del módulo	Salidas del módulo	Bloque de terminales extraíble
6GK7 243-1EX00-OXE0	Módulo Ethernet (CP 243-1)	-	8 ¹	No

¹ 8 salidas lógicas se utilizan como controles lógicos de la función Ethernet, sin controlar directamente ninguna señal externa.

Tabla A-54 Datos técnicos del módulo Ethernet (CP 243-1)

№ de referencia	Nombre y descripción de la CPU	Dimensiones en mm (I x a x p)	Peso	Disipación	Tens +5 V c.c.	ión c.c. disponible +24 V c.c.
6GK7 243-1EX00-OXE0	Módulo Ethernet (CP 243-1)	71,2 x 80 x 62	Aprox. 150 g	1,75 W	55 mA	60 mA

Tabla A-55 Datos técnicos del módulo Ethernet (CP 243-1)

Datos generales	6GK7 243-1EX00-0XE0	
Velocidad de transferencia	10 Mbit/s y 100 Mbit/s	
Tamaño de la memoria flash	1 MB	
Tamaño de la memoria SDRAM	8 MB	
Interfaz de conexión a Industrial Ethernet (10/100 Mbit/s)	Enchufe RJ45 de 8 pines	
Tensión de entrada	20,4 a 28,8 V c.c.	
Nº máx. de enlaces	Máx. 8 enlaces S7 (XPUT/XGET y READ/WRITE) más 1 enlace a STEP 7-Micro/WIN vía el módulo Ethernet (CP 243-1) ²	
Duración de arranque o de rearranque	Aprox. 10 segundos	
Datos de usuario	Cliente: Máx. 212 bytes para XPUT/XGET Servidor: Hasta 222 bytes para XGET o READ Hasta 212 bytes para XPUT o WRITE	

² Conecte sólo un módulo Ethernet (CP 243-1) por cada CPU S7-200.

El módulo Ethernet (CP243-1) es un procesador de comunicaciones para conectar el sistema S7-200 a Industrial Ethernet (IE). El S7-200 se puede configurar, programar y diagnosticar vía Ethernet utilizando STEP 7 Micro/WIN. El S7-200 se puede comunicar con otros autómatas programables S7-200, S7-300 ó S7-400 vía Ethernet, así como con un servidor OPC.

Industrial Ethernet se ha diseñado para la industria. Se puede utilizar bien sea con cables de par trenzado a prueba de interferencias (ITP), o bien con cables de par de trenzado conforme al estándar industrial (TP). Industrial Ethernet se puede implementar para numerosas aplicaciones, tales como conmutación, redundancia rápida, enlaces rápidos y redes redundantes. Si se utiliza el módulo Ethernet (CP 243-1), la CPU S7-200 es compatible con una gran variedad de productos que soportan Ethernet.

CPUs S7-200 que soportan módulos inteligentes

El módulo Ethernet (CP 243-1) es un módulo de ampliación inteligente diseñado para su utilización junto con las CPUs S7-200 que muestra la tabla A-46.

Tabla A-56	Compatibilidad del módulo Ethernet	t (CP 243-1) con las CPUs S7-200
------------	------------------------------------	----------------------------------

CPU	Descripción
CPU 222, versión 1.10 o superior	CPU 222 DC/DC/DC y CPU 222 AC/DC/relé
CPU 224, versión 1.10 o superior	CPU 224 DC/DC/DC y CPU 224 AC/DC/relé
CPU 224XP, versión 2.00 o superior	CPU 224XP DC/DC/DC y CPU 224XP AC/DC/relé
CPU 226, versión 1.00 o superior	CPU 226 DC/DC/DC y CPU 226 AC/DC/relé

El módulo Ethernet (CP 243-1) se suministra con una dirección MAC unívoca ajustada de fábrica que no se puede modificar.

Funciones

El módulo Ethernet (CP 243-1) procesa la comunicación de datos de forma independiente en la red Industrial Ethernet.

- La comunicación se basa en TCP/IP.
- Para la comunicación entre CPUs S7-200 y otros sistemas de control S7 o PCs vía Ethernet se dispone de servicios de cliente y servidor. Es posible utilizar 8 enlaces simultáneos como máximo.
- Las aplicaciones para PCs se pueden implementar gracias a la integración del servidor S7-OPC.
- El módulo Ethernet (CP 243-1) hace que el software de programación STEP 7-Micro/WIN pueda acceder directamente al S7-200 vía Ethernet.

Configuración

El asistente Ethernet de STEP 7-Micro/WIN se puede utilizar para configurar el módulo Ethernet (CP 243-1) con objeto de conectar una CPU S7-200 a una red Ethernet. El asistente Ethernet le ayuda a definir los parámetros del módulo Ethernet (CP 243-1) y deposita la configuración en la carpeta de operaciones del proyecto. Para iniciar el asistente Ethernet, elija el comando de menú **Herramientas > Asistente Ethernet**. El asistente utiliza las informaciones siguientes: dirección IP, máscara de subred, dirección de puerta de enlace ("gateway") y tipo de enlace de comunicación.

Conectores

El módulo Ethernet (CP 243-1) está equipado con los conectores indicados a continuación. Estos conectores están ubicados debajo de las tapas frontales.

- Bloque de terminales para la alimentación de 24 V c.c. y la puesta a tierra
- Enchufe RJ45 de 8 pines para la conexión a Ethernet
- Conector para el bus de E/S
- Cable plano integrado con enchufe para el bus de E/S

(CP 243-1)

Informaciones adicionales

Para más información acerca del módulo Ethernet (CP 243-1), consulte el manual SIMATIC NET CP 243-1 Procesador de comunicaciones para Industrial Ethernet.

Datos técnicos del módulo Internet (CP 243-1 IT)

Tabla A-57 Número de referencia de módulo Internet (CP 243-1 IT)

№ de referencia	Módulo de ampliación	Entradas del módulo	Salidas del módulo	Bloque de terminales extraíble
6GK7 243-1GX00-OXE0	Módulo Internet (CP 243-1 IT)	-	8 ¹	No

1) 8 salidas lógicas se utilizan como controles lógicos de la función IT, sin controlar directamente ninguna señal externa.

Tabla A-58 Datos técnicos del módulo Internet (CP 243-1 IT)

Nº de referencia	Nombre y descripción de la CPU	Dimensiones en mm (I x a x p)	Peso	Disipación	Tensi +5 V c.c.	ón c.c. disponible +24 V c.c.
6GK7 243-1GX00-OXE0	Módulo Internet (CP 243-1 IT)	71,2 x 80 x 62	Aprox. 150 g	1,75 W	55 mA	60 mA

Tabla A-59 Datos técnicos del módulo Internet (CP 243-1 IT)

Datos generales	6GK7 243-1GX00-0XE0
Velocidad de transferencia	10 Mbit/s y 100 Mbit/s
Tamaño de la memoria flash	8 MB como ROM para el firmware del módulo Internet (CP 243-1 IT), 8 MB como RAM para el sistema de archivos
Tamaño de la memoria SDRAM	16 MB
Vida útil garantizada de la memoria flash para el sistema de archivos	1 millón de operaciones de escritura o borrado
Interfaz de conexión a Industrial Ethernet (10/100 Mbit/s)	Enchufe RJ45 de 8 pines
Tensión de entrada	20,4 a 28,8 V c.c.
№ máx. de enlaces	Máx. 8 enlaces S7 (XPUT/XGET y READ/WRITE) más 1 enlace a STEP 7-Micro/WIN vía el módulo Internet (CP 243-1 IT) ¹
Nº máx. de enlaces IT	1 para servidor FTP 1 para cliente FTP 1 para cliente de e-mail 4 para enlaces HTTP
Duración de arranque o de rearranque	Aprox. 10 segundos
Datos de usuario	Cliente: Máx. 212 bytes para XPUT/XGET Servidor: Hasta 222 bytes para XGET o READ Hasta 212 bytes para XPUT o WRITE
Tamaño máx. de e-mail	1024 caracteres
Sistema de archivos: Longitud de ruta incl. el tamaño de archivo y nombres de unidades Longitud del nombre de archivos Profundidad de anidado de directorios	254 caracteres máx. 99 caracteres máx. 49 máx.
Puertos de servidor disponibles: HTTP Canal de comandos FTP Canales de datos FTP para el servidor FTP Establecer enlaces S7 Servidor S7	80 21 3100 a 3199 102 3000 a 3008

¹ Conecte sólo un módulo Internet (CP 243-1 IT) por cada CPU S7-200.

El módulo Internet (CP243-1 IT) es un procesador de comunicaciones para conectar el sistema S7-200 a Industrial Ethernet (IE). El S7-200 se puede configurar, programar y diagnosticar vía Ethernet utilizando STEP 7 Micro/WIN. El S7-200 se puede comunicar con otros autómatas programables S7-200, S7-300 ó S7-400 vía Ethernet, así como con un servidor OPC.

Las funciones IT del módulo Internet (CP 243-1 IT) sirven para monitorizar y, en caso necesario, también para manejar sistemas de automatización con un browser WEB desde un PC integrado en la red. Los mensajes de diagnóstico se pueden enviar por correo electrónico desde un sistema. Las funciones IT permiten intercambiar fácilmente archivos enteros con otros ordenadores y autómatas programables.

Industrial Ethernet es la red para el nivel de control de proceso y el nivel de celdas del sistema de comunicación abierta SIMATIC NET. Desde el punto de vista físico, Industrial Ethernet es una red eléctrica basada en hilos coaxiales apantallados, cables de par trenzado y una red óptica de conductores de fibra de vidrio. Industrial Ethernet se define en la norma internacional IEEE 802.3.

CPUs S7-200 que soportan módulos inteligentes

El módulo Internet (CP 243-1 IT) es un módulo de ampliación inteligente diseñado para su utilización junto con las CPUs S7-200 que muestra la tabla A-46.

Tabla A-60 Compatibilidad del módulo Internet (CP 243-1		1) (con la	s CI	JUs	S7	-20)0
---	--	------	--------	------	-----	----	-----	----

CPU	Descripción
CPU 222, versión 1.10 o superior	CPU 222 DC/DC/DC y CPU 222 AC/DC/relé
CPU 224, versión 1.10 o superior	CPU 224 DC/DC/DC y CPU 224 AC/DC/relé
CPU 224XP, versión 2.00 o superior	CPU 224XP DC/DC/DC y CPU 224XP AC/DC/relé
CPU 226, versión 1.00 o superior	CPU 226 DC/DC/DC y CPU 226 AC/DC/relé

El módulo Internet (CP 243-1 IT) ofrece las funciones indicadas a continuación:

El módulo Internet (CP 243-1 IT) es plenamente compatible con el módulo Ethernet (CP 243-1). Los programas de usuario creados para el módulo Ethernet (CP 243-1) se pueden ejecutar asimismo en el módulo Internet (CP 243-1 IT).

El módulo Internet (CP 243-1 IT) se suministra con una dirección MAC unívoca ajustada de fábrica que no se puede modificar.

Consejo

Conecte sólo un módulo Internet (CP 243-1 IT) por cada CPU S7-200. Si se conecta más de un módulo Internet (CP 243-1 IT), puede suceder que la CPU S7-200 no funcione correctamente.

Funciones

El módulo Internet (CP 243-1 IT) incorpora las funciones siguientes:

- La comunicación S7 se basa en TCP/IP
- Comunicación IT
- Configuración
- Temporizador de vigilancia
- Posibilidad de direccionar direcciones MAC preajustadas (valor de 48 bits)

Configuración

El asistente Internet de STEP 7-Micro/WIN se puede utilizar para configurar el módulo Internet (CP 243-1 IT) con objeto de conectar una CPU S7-200 a una red Ethernet/Internet. El módulo Internet (CP 243-1 IT) tiene funciones web adicionales que se pueden configurar con el asistente Internet. Para iniciar el asistente Internet, elija el comando de menú **Herramientas > Asistente Internet**.

Conectores

El módulo Internet (CP 243-1 IT) está equipado con los conectores indicados a continuación. Estos conectores están ubicados debajo de las tapas frontales.

- Bloque de terminales para la alimentación de 24 V c.c. y la puesta a tierra
- Enchufe RJ45 de 8 pines para la conexión a Ethernet
- Conector para el bus de E/S
- Cable plano integrado con enchufe para el bus de E/S

Informaciones adicionales

Para más información acerca del módulo Internet (CP 243-1), consulte el manual SIMATIC NET CP 243-1 IT Procesador de comunicaciones para Industrial Ethernet y tecnología informática.

Anexo A

Datos técnicos del módulo AS-Interface (CP 243-2)

Tabla A-01 Numero de referencia del modulo AS-interiace (CF 243-2	Tabla A-61	Número de referencia del módulo AS-Interface (0	CP 243-2)
---	------------	---	-----------

№ de referencia	Módulo de ampliación	Entradas del módulo	Salidas del módulo	Bloque de terminales extraíble
6GK7 243-2AX01-0XA0	Módulo AS-Interface (CP 243-2)	8 digitales y 8 analógicas	8 digitales y 8 analógicas	Sí

Tabla A-62 Datos técnicos generales del módulo AS-Interface (CP 243-2)

№ de referencia	Nombre y descripción de la CPU	Dimensiones en mm (I x a x p)	Peso	Disipación	Tens +5 V c.c.	ión c.c. disponible Del AS-Interface
6GK7 243-2AX01-0XA0	Módulo AS-Interface (CP 243-2)	71 x 80 x 62	Aprox. 250 g	3,7 W	220 mA	100 mA

Tabla A-63 Datos técnicos del módulo AS-Interface (CP 243-2)

Datos generales	6GK7 243-2AX01-0XA0
Tiempo de ciclo	5 ms con 31 esclavos 10 ms con 62 esclavos AS-I utilizando el modo de direccionamiento ampliado
Configuración	Active el botón en la placa frontal o utilice el comando de configuración total (consulte la descripción de los comandos AS-I en el Manual del CP 243-2 AS-I Interface Master).
Perfiles de maestro AS-I soportados	M1e
Conexión al cable AS-I	Vía un bloque de terminales S7-200. Intensidad admisible del terminal 1 al terminal 3 o del terminal 2 al terminal 4: máx. 3 A.
Rango de direcciones	Un módulo digital con 8 entradas digitales y 8 salidas digitales y un módulo analógico con 8 entradas analógicas y 8 salidas analógicas

Características

A un S7-200 se pueden conectar simultáneamente dos módulos AS-Interface, lo que incrementa considerablemente el número de entradas y salidas disponibles, tanto digitales como analógicas (máx. 124 entradas digitales y 124 salidas digitales en un AS-Interface por cada procesador de comunicaciones). El tiempo necesario para la instalación se acorta gracias a la posibilidad de configurar con tan sólo pulsar un botón. Los LEDs permiten reducir los tiempos de parada al ocurrir un error, puesto que muestran el estado del procesador de comunicaciones (CP) y de todos los esclavos conectados, vigilando además la tensión principal del módulo AS-Interface.

El módulo AS-Interface tiene las características siguientes:

- Soporta módulos analógicos.
- Soporta todas las funciones de módulo maestro y permite conectar hasta 62 esclavos AS-Interface.
- Los LEDs en la placa frontal indican el estado de operación y la disponibilidad de todos los esclavos conectados.
- Los LEDs en la placa frontal indican los errores detectados (incluyendo fallos de tensión del AS-Interface y errores de configuración).
- Dos terminales permiten conectar directamente el cable del AS-Interface.
- Dos botones muestran la información de estado de los esclavos y permiten cambiar el modo de operación y adoptar la configuración existente como configuración SET.

El asistente AS-i de STEP 7-Micro/WIN sirve para configurar el módulo AS-Interface (CP 243-2). Este asistente ayuda a utilizar los datos de una red AS-Interface en la configuración. Para iniciar el asistente, elija el comando de menú **Herramientas > Asistente AS-i**.

Funcionamiento

En la imagen del proceso del S7-200, el módulo AS-Interface ocupa un byte de entrada digital (byte de estado), un byte de salida digital (byte de control), 8 palabras de entrada analógica y 8 palabras de salida analógica. El módulo AS-Interface ocupa dos posiciones de módulo lógicas. Los bytes de estado y de control se pueden utilizar para ajustar el modo del módulo AS-Interface mediante el programa de usuario. Dependiendo del modo, el AS-Interface almacena los datos de E/S del esclavo AS-Interface o los valores de diagnóstico, o bien habilita las llamadas del maestro (por ejemplo, para cambiar la dirección de un esclavo) en el área de direcciones analógicas del S7-200.

Todos los esclavos AS-Interface conectados se pueden configurar pulsando un botón. No es necesario efectuar ningún otro ajuste de configuración del CP.

Cuidado

Si utiliza el módulo AS-Interface, deberá desactivar el filtro de entradas analógicas de la CPU.

En caso contrario, se destruirán los datos digitales y los errores no se indicarán como valores binarios de la palabra analógica.

Vigile que esté desactivado el filtro de entradas analógicas de la CPU.

Funciones

El CP 243-2 es el maestro AS-Interface de la categoría de maestros M1, por lo que soporta todas las funciones indicadas. Gracias a ello, el AS-Interface puede controlar hasta 31 esclavos digitales, asignando direcciones repetidas (A-B). El CP 243-2 se puede ajustar a dos modos diferentes:

- Modo estándar: acceso a los datos de E/S del esclavo AS-Interface.
- Modo extendido: llamadas del maestro (por ejemplo, para escribir parámetros) o petición de valores de diagnóstico

Conectores

El módulo AS-Interface dispone de las conexiones siguientes:

- Dos conexiones al cable del módulo AS-Interface (con puente interno).
- Una conexión a tierra.

Como muestra la figura A-39, los terminales están ubicados debajo de la tapa de la placa frontal.

Figura A-39 Conectar el cable del módulo AS-Interface

Cuidado

La capacidad de carga de los contactos del módulo AS-Interface es de 3 A como máximo. Si este valor se excede en el cable del AS-Interface, el módulo AS-Interface no se deberá conectar en bucle al cable AS-I, sino mediante un cable adicional. (En este caso se utiliza sólo un par de terminales del módulo AS-Interface). El AS-Interface se deberá conectar a la toma a tierra a través del terminal de puesta a tierra.

Consejo

El módulo AS-Interface tiene un terminal de puesta a tierra. Este terminal se deberá conectar al conductor PE con la menor resistencia posible.

Informaciones adicionales

Para más información sobre el CP 243-2 AS-Interface Master, consulte el manual SIMATIC NET CP 243-2 AS-Interface Master.

Cartuchos opcionales

Cartucho	Descripción	№ de referencia
Cartucho de memoria	Cartucho de memoria de 32 KB (programa de usuario)	6ES7 291-8GE20-0XA0
Cartucho de memoria	Cartucho de memoria de 64 KB (programa de usuario, recetas y registros de datos)	6ES7 291-8GF23-0XA0
Cartucho de memoria	Cartucho de memoria de 256 KB (programa de usuario, recetas y registros de datos)	6ES7 291-8GH23-0XA0
Reloj de tiempo real con pila	Precisión del cartucho de reloj: 2 minutos/mes a 25°C, 7 minutos/mes a 0°C a 55°C	6ES7 297-1AA23-0XA0
Cartucho de pila	Cartucho de pila (tiempo de respaldo de datos): típ. 200 días	6ES7 291-8BA20-0XA0

	Características generales	Dimensiones
Pila Tamaño Tipo	3 V, 30 mA hora, Renata CR 1025 9,9 mm x 2,5 mm Litio < 0,6 g	18 mm

Cartucho de Memoria

Existen restricciones respecto a la utilización de cartuchos de memoria en CPUs de distintos modelos. Los cartuchos de memoria programados con una CPU en particular sólo se pueden leer en CPUs del mismo modelo o de un modelo superior, como muestra la tabla A-64:

Tabla A-64 Restricciones de lectura de los cartuchos de memoria

Un cartucho de memoria programado con una	Se puede leer en una
CPU 221	CPU 221, 222, 224, 224XP y 226
CPU 222	CPU 222, 224, 224XP y 226
CPU 224	CPU 224, 224XP y 226
CPU 224XP	CPU 224XP y 226
CPU 226	CPU 226

Los cartuchos de memoria de 64 y 256 KB pueden utilizarse únicamente con las nuevas CPUs que tengan el número de referencia siguiente: 6ES7 21x-xx23-0XB0. Los números correspondientes a las equis ("x") son irrelevantes.

Es recomendable que no utilice un cartucho de memoria de 32 KB (6ES7 291-8GE20-0XA0) en CPUs de la versión "23", puesto que estos cartuchos no soportan las nuevas funciones de estas últimas. Si utiliza una CPU de la versión "23" para guardar un programa en un cartucho de memoria de 32 KB, el cartucho programado será compatible con la mayoría de las CPUs de modelos anteriores. Ninguna de las funciones avanzadas de las nuevas CPUs se puede guardar en un cartucho de memoria de 32 KB.

Es posible almacenar programas de usuario en cartuchos de memoria de 32 KB programados originalmente con CPUs de una versión anterior ("20", "21" o "22"). Las nuevas CPUs pueden leer estos cartuchos, conforme con las restricciones indicadas en la tabla A-64.

Cartucho de Reloj de Tiempo Real

El cartucho de reloj de tiempo real (6ES7 297-1AA23-0XA0) sólo funciona con las CPUs "23" . La versión anterior del cartucho de reloj de tiempo real (6ES7 297-1AA20-0XA0) no es ni física ni eléctricamente compatible con las CPUs "23".

Cable de módulo de ampliación

Características generales (6ES7 290-6AA20-0XA0)				
Longitud del cable	0,8 m			
Peso	25 g			
Tipo de conector	Cinta de 10 pines			

Figura A-40 Instalación típica del cable de conexión de E/S de ampliación

Consejo

En una cadena de CPUs/módulos de ampliación se permite utilizar un solo cable de ampliación.

Cable multimaestro RS-232/PPI y cable multimaestro USB/PPI

Descripción № de referencia	Cable multimaestro RS-232/PPI S7-200 6ES7 901-3CB30-0XA0	Cable multimaestro USB/PPI S7-200 6ES7-901-3DB30-0XA0			
Características generales					
Tensión de alimentación	14,4 a 28,8 V c.c.	14,4 a 28,8 V c.c.			
Intensidad a 24 V de alimentación nominal	Máx. 60 mA RMS	Máx. 50 mA RMS			
Retardo al cambio de sentido: bit de parada Flanco recibido en RS-232 a transmisión inhibida en RS-485	-	-			
Separación galvánica	RS-485 a RS-232 500 V c.c.	RS-485 a USB: 500 V c.c.			
Características eléctricas del enlace RS-485					
Rango de tensión en modo común	-7 V a +12 V, 1 segundo,3 V RMS continuo	-7 V a +12 V, 1 segundo,3 V RMS continuo			
Impedancia de entrada del receptor	5,4 K Ω mín. incluyendo cierre	5,4 K Ω mín. incluyendo cierre			
Cierre/polarización	10K Ω a +5V en B, pin 3 PROFIBUS 10K Ω a GND en A, pin 8 PROFIBUS	10K Ω a +5V en B, pin 3 PROFIBUS 10K Ω a GND en A, pin 8 PROFIBUS			
Umbral/sensibilidad del receptor	+/- 0.2 V, 60 mV histéresis típ.	+/- 0.2 V, 60 mV histéresis típ.			
Tensión de salida diferencial del transmisor	Mín. 2 V a R _L =100 Ω, Mín. 1,5 V a R _L =54 Ω	Mín. 2 V a R _L =100 Ω, Mín. 1,5 V a R _L =54 Ω			
Características eléctricas del enlace RS-232					
Impedancia de entrada del receptor	3K Ω (mínimo)	-			
Umbral/sensibilidad del receptor	Mín. 0,8 V bajo, máx. 2,4 V alto, histéresis típica: 0,5 V	-			
Tensión de salida del transmisor	Mín. +/- 5 V a R _L = 3K Ω	-			
Características eléctricas del enlace USB					
Velocidad máxima (12 MB/s), Human Interface Device (H	IID)				
Corriente de alimentación a 5V	-	Máx. 50 mA			
Corriente de desconexión	-	Máx. 400 uA			

Tabla A-65 Datos técnicos de los cables multimaestro RS-232/PPI y USB/PPI

Características

El cable multimaestro RS-232/PPI S7-200 viene ajustado de fábrica para garantizar un rendimiento óptimo con STEP 7-Micro/WIN 3.2 Service Pack 4 (o posterior). Los ajustes de fábrica de este cable se diferencian de los cables PC/PPI. Para configurar el cable, consulte la figura 1.

El cable multimaestro RS-232/PPI S7-200 se puede configurar de manera que funcione como un cable PC/PPI, de manera que sea compatible con cualquier versión del paquete de programación STEP 7-Micro/WIN. Ajuste para ello el interruptor 5 al modo PPI/Freeport y, a continuación, seleccione la velocidad de transferencia deseada.

El cable USB requiere STEP 7-Micro/WIN 3.2 Service Pack 4 (o posterior).

Consejo

Para más información acerca del cable PC/PPI, consulte la 3ª edición del *Manual del sistema de automatización S7-200* (número de referencia: 6ES7 298-8FA22-8BH0).

Cable multimaestro RS-232/PPI S7-200

Tabla A-66 Cable multimaestro RS-232/PPI S7-200 - Asignación de pines para el conector de RS-485 a RS-232 en modo local

Asigna	ción de pines del conector RS-485	Asignació	n de pines del conector local RS-232
№ de pin	Descripción de la señal	№ de pin	Descripción de la señal
1	Sin conexión	1	Data Carrier Detect (DCD) (no utilizado)
2	Hilo de retorno 24 V (tierra RS-485)	2	Receive Data (RD) (salida del cable PC/PPI)
3	Señal B (RxD/TxD+)	3	Transmit Data (TD) (entrada al cable PC/PPI)
4	RTS (nivel TTL)	4	Data Terminal Ready (DTR) ¹
5	Sin conexión	5	Tierra (RS-232)
6	Sin conexión	6	Data Set Ready (DSR) ¹
7	Alimentación 24 V	7	Request To Send (RTS) (no utilizado)
8	Señal A (RxD/TxD-)	8	Clear To Send (CTS) (no utilizado)
9	Selección de protocolo	9	Ring Indicator (RI) (no utilizado)

¹ Los pines 4 y 6 tienen una conexión interna.

Tabla A-67 Cable multimaestro RS-232/PPI S7-200 - Asignación de pines para el conector de RS-485 a RS-232 en modo remoto

Asignación de pines del conector RS-485		Asignación	de pines del conector remoto RS-232 ¹
№ de pin	Descripción de la señal	№ de pin	Descripción de la señal
1	Sin conexión	1	Data Carrier Detect (DCD) (no utilizado)
2	Hilo de retorno 24 V (tierra RS-485)	2	Receive Data (RD) (entrada al cable PC/PPI)
3	Señal B (RxD/TxD+)	3	Transmit Data (TD) (salida del cable PC/PPI)
4	RTS (nivel TTL)	4	Data Terminal Ready (DTR) ²
5	Sin conexión	5	Tierra (RS-232)
6	Sin conexión	6	Data Set Ready (DSR) ²
7	Alimentación 24 V	7	Request To Send (RTS) (salida del cable PC/PPI)
8	Señal A (RxD/TxD-)	8	Clear To Send (CTS) (no utilizado)
9	Selección de protocolo	9	Ring Indicator (RI) (no utilizado)

¹ Para los módems se debe efectuar una conversión de conector hembra a conectar macho y de 9 pines a 25 pines.
² Los pines 4 y 6 tienen una conexión interna.

Utilizar el cable multimaestro RS-232/PPI S7-200 con STEP 7-Micro/WIN como sustituto del cable PC/PPI para el modo Freeport

Para conectar el cable directamente al PC:

- Ajuste el modo PPI/Freeport (interruptor 5=0).
- Ajuste la velocidad de transferencia (interruptores 1, 2 y 3).
- Ajuste el modo local (interruptor 6=0). El modo local equivale al ajuste DCE del cable PC/PPI.
- Ajuste el modo de 11 bits (interruptor 7=0).

Para conectar el cable a un módem:

- Ajuste el modo PPI/Freeport (interruptor 5=0).
- Ajuste la velocidad de transferencia (interruptores 1, 2 y 3).
- Ajuste el modo remoto (interruptor 6=1). El modo remoto equivale al ajuste DTE del cable PC/PPI.
- Ajuste el modo de 10 u 11 bits (interruptor 7) para que el número de bits por carácter concuerde con el ajuste del módem.

Utilizar el cable multimaestro RS-232/PPI S7-200 con STEP 7-Micro/WIN 3.2 Service Pack 4 (o posterior)

Para conectar el cable directamente al PC:

- Ajuste el modo PPI (interruptor 5=1).
- Ajuste el modo local (interruptor 6=0).

Para conectar el cable a un módem:

- Ajuste el modo PPI (interruptor 5=1).
- Ajuste el modo remoto (interruptor 6=1).

La figura A-41 muestra las dimensiones, la etiqueta y los LEDs del cable multimaestro RS-232/PPI S7-200.

Figura A-41 Dimensiones, etiqueta y LEDs del cable multimaestro RS-232/PPI S7-200

Cable multimaestro USB/PPI S7-200

Para poder utilizar el USB deberá tener instalado STEP 7-Micro/WIN 3.2 Service Pack 4 (o posterior). Utilice el cable USB sólo con una CPU22x S7 200 o posterior. Este cable no soporta la comunicación Freeport ni tampoco la posibilidad de cargar el TP Designer en el TP070.

Tabla A-68 Cable multimaestro USB/PPI S7-200 - Asignación de pines para el conector USB serie "A" de RS-485 a RS-232

Asignación de pines del conector RS-485		Asignación de pines del conector USB	
№ de pin	Descripción de la señal	№ de pin	Descripción de la señal
1	Sin conexión	1	USB - DataP
2	Hilo de retorno 24 V (tierra RS-485)	2	USB - DataM
3	Señal B (RxD/TxD+)	3	USB 5V
4	RTS (nivel TTL)	4	Masa USB
5	Sin conexión		
6	Sin conexión		
7	Alimentación 24 V		
8	Señal A (RxD/TxD-)		
9	Selección de protocolo (bajo = 10 bits)		

La figura A-42 muestra las dimensiones, la etiqueta y los LEDs del cable multimaestro USB/PPI S7-200.

LED	Color	Descripción
Тх	Verde	Indicador de transmisión USB
Rx	Verde	Indicador de recepción USB
PPI	Verde	Indicador de transmisión RS-485

Figura A-42 Dimensiones y LEDs del cable multimaestro USB/PPI S7-200

Simuladores de entradas

№ de referencia	Simulador de 8 entradas 6ES7 274-1XF00-0XA0	Simulador de 14 entradas 6ES7 274-1XH00-0XA0	Simulador de 24 entradas 6ES7 274-1XK00-0XA0
Dimensiones (I x a x p)	61 x 33,5 x 22 mm	91,5 x 35,5 x 22 mm	148,3 x 35,5 x 22 mm
Peso	0,02 kg	0,03 kg	0,04 kg
Entradas	8	14	24

Figura A-43 Montaje del simulador de entradas

Precaución

Estos simuladores de entradas no están aprobados para su utilización en emplazamientos peligrosos ("hazardous locations") conforme a la clase I, categoría 2 o según la clase I, sección 2. Los interruptores pueden producir chispas.

No utilice los simuladores de entradas en emplazamientos peligrosos ("hazardous locations") conforme a la clase I, categoría 2 o según la clase I, sección 2.

Calcular la corriente necesaria

Requisitos de alimentación

Todas las CPUs S7-200 ofrecen alimentación tanto en 5 V c.c. como 24 V c.c.:

- Todas las CPUs disponen de una fuente de alimentación para sensores de 24 V c.c. que puede suministrar tensión para las entradas locales o para las bobinas de relés en los módulos de ampliación. Si el consumo de 24 V c.c. excede la corriente que puede aportar la CPU, entonces puede agregarse una fuente de alimentación externa de 24 V c.c. para abastecer con 24 V c.c. a los módulos de ampliación. La alimentación de 24 V c.c. se debe conectar manualmente a esas entradas o bobinas de relé.
- La CPU alimenta también con 5 V c.c. los módulos de ampliación cuando se conectan al módulo base. Si el consumo de 5 V c.c. de los módulos de ampliación excede la corriente que puede aportar la CPU, entonces es necesario desconectar tantos módulos de ampliación como sean necesarios para no superar la corriente suministrable por la CPU.

Las hojas de datos técnicos que se incluyen en el anexo A informan sobre las corrientes suministrables por las CPUs y sobre el consumo de los módulos de ampliación.

Consejo

Si se excede la corriente necesaria para la CPU, es posible que no se pueda conectar el número máximo de módulos soportado.

Precaución

Si se conecta una fuente de alimentación externa de 24 V c.c. en paralelo con la fuente de alimentación para sensores c.c. del S7-200, podría surgir un conflicto entre ambas fuentes, ya que cada una intenta establecer su propio nivel de tensión de salida.

Este conflicto puede tener como consecuencia una reducción de la vida útil o la avería inmediata de una o ambas fuentes de alimentación y, en consecuencia, el funcionamiento imprevisible del sistema de automatización, lo que podría ocasionar la muerte o lesiones graves al personal, y/o daños al equipo.

La fuente de alimentación para sensores del S7-200 y la fuente de alimentación externa deben alimentar diferentes puntos. Se permite una conexión común de los cables neutros.

Ejemplo de cálculo de los requisitos de alimentación

La tabla B-1 muestra un ejemplo de cálculo de los requisitos de alimentación de un S7-200 compuesto de los módulos siguientes:

- CPU S7-200 224 AC/DC/relé
- 3 módulos de ampliación EM 223, 8 entradas DC / 8 salidas de relé
- 1 módulo de ampliación EM 221, 8 entradas DC

Esta configuración tiene un total de 46 entradas y 34 salidas.

La CPU ya ha asignado la corriente necesaria para accionar las bobinas de relé internas. Por tanto, no es necesario esta corriente en el cálculo.

La CPU S7-200 de este ejemplo suministra suficiente corriente (5 V c.c.) a los módulos de ampliación, pero la alimentación de sensores no suministra suficiente corriente de 24 V c.c. a todas las entradas y salidas de relé. Las E/S requieren 400 mA, pero la CPU S7-200 sólo puede suministrar 280 mA. Para esta configuración se necesita una fuente adicional de alimentación de 120 mA (como mínimo) a 24 V c.c. para que todas las entradas y salidas puedan funcionar correctamente.

Tabla B-1	Cálculo de i	equisitos	de alimentación	en una co	onfiguración de	ejemplo

Corriente de la CPU	5 V c.c.	24 V c.c.
CPU 224 AC/DC/relé	660 mA	280 mA

Consumo del sistema	5 V c.c.		24 V c.c.	
CPU 224, 14 entradas			14 * 4 mA =	56 mA
3 EM 223, alimentación necesaria de 5 V	3 * 80 mA =	240 mA		
1 EM 221, alimentación necesaria de 5 V	1 * 30 mA =	30 mA		
3 EM 223, 8 entradas c/u			3 * 8 * 4 mA =	96 mA
3 EM 223, 8 salidas de relé c/u			3 * 8 * 9 mA =	216 mA
1 EM 221, 8 entradas			8 * 4 mA =	32 mA
Consumo total		270 mA		400 mA

igual a

Balance de corriente	5 V c.c.	24 V c.c.
Balance total de corriente	390 mA	[120 mA]

Calcular la corriente necesaria

т

Utilice la tabla siguiente para determinar cuánta corriente (o energía) puede suministrar la CPU S7-200 a la configuración en cuestión. Consulte el anexo A para obtener información sobre las corrientes suministrables por la CPU y el consumo de los módulos de ampliación.

Alimentación	5 V c.c.	24 V c.c.	
	menos		
Consumo del sistema	5 V c.c.	24 V c.c.	
Consumo total			

igual a

Balance de corriente	5 V c.c.	24 V c.c.
Balance total de corriente		

Códigos de error

La información relativa a los códigos de error permite identificar rápidamente los problemas que se hayan presentado en la CPU S7-200.

Índice del capítulo

Códigos y mensajes de los errores fatales	486
Errores de programación en el tiempo de ejecución	487
Violación de reglas de compilación	488

Códigos y mensajes de los errores fatales

Cuando ocurre un error fatal, el S7-200 detiene la ejecución del programa. Dependiendo de la gravedad del error, es posible que el S7-200 no pueda ejecutar todas las funciones, o incluso ninguna de ellas. El objetivo del tratamiento de errores fatales es conducir al S7-200 a un estado seguro, en el que se puedan analizar y eliminar las condiciones que hayan causado el error.

Cuando el S7-200 detecta un error fatal:

- Cambia a modo STOP.
- Se encienden los indicadores "SF/DIAG (Rojo)" (fallo del sistema) y "STOP".
- Se desactivan las salidas.

El S7-200 permanece en ese estado hasta que haya eliminado el error fatal. Para visualizar los códigos de error, elija el comando de menú **CPU > Información**. En la tabla C-1 figuran las descripciones de los códigos de errores fatales que se pueden leer del S7-200.

Tabla C-1 Códigos y mensajes de los errores fatales

Código de error	Descripción
0000	No hay errores fatales.
0001	Error de suma de verificación en el programa de usuario.
0002	Error de suma de verificación en el programa KOP compilado.
0003	Error de tiempo en la vigilancia del tiempo de ciclo (watchdog).
0004	Error memoria permanente.
0005	Error memoria permanente de suma de verificación en el programa de usuario.
0006	Error memoria permanente de suma de verificación en los parámetros de configuración (SDB0).
0007	Error memoria permanente de suma de verificación en los datos forzados.
0008	Error memoria permanente de suma de verificación en los valores estándar de la imagen de proceso de las salidas.
0009	Error memoria permanente de suma de verificación en los datos de usuario, DB1.
000A	Error en el cartucho de memoria.
000B	Error de suma de verificación del cartucho de memoria en el programa de usuario.
000C	Error de suma de verificación del cartucho de memoria en los parámetros de configuración (SDB0).
000D	Error de suma de verificación del cartucho de memoria en los datos forzados.
000E	Error de suma de verificación del cartucho de memoria en los valores estándar de la imagen de proceso de las salidas.
000F	Error de suma de verificación del cartucho de memoria en los datos de usuario, DB1.
0010	Error interno de software.
0011 ¹	Error de direccionamiento indirecto del contacto de comparación.
0012 ¹	Valor en coma flotante no válido en el contacto de comparación.
0013	Programa no apto para este S7-200.
0014 ¹	Error de rango de contactos de comparación.

¹ Los errores en relación con los contactos de comparación son los únicos que generan errores tanto fatales como no fatales. La condición de error no fatal se genera con objeto de almacenar la dirección del error en el programa.

Errores de programación en el tiempo de ejecución

Durante la ejecución normal del programa se pueden presentar errores no fatales (por ejemplo, errores de direccionamiento). El S7-200 genera entonces un código de error no fatal de tiempo de ejecución. La tabla C-2 muestra una lista con las descripciones de los errores no fatales.

Tabla C-2 Errores de programación en el tiempo de ejecución

Código de error	Descripción
0000	No hay errores fatales; sin error.
0001	Cuadro HSC habilitado antes de ejecutar el cuadro HDEF.
0002	Interrupción de entrada asignada a una entrada que ya está asociada a un contador rápido (conflicto).
0003	Entrada asignada a un contador rápido que ya está asociado a una interrupción de entrada u otro contador rápido (conflicto).
0004	Intento de ejecutar una operación no permitida en una rutina de interrupción.
0005	Antes de finalizar el primer HSC/PLC se ha intentado ejecutar un segundo HSC con el mismo número (HSC/PLS de la rutina de interrupción en conflicto con HSC/PLC del programa principal).
0006	Error de direccionamiento indirecto.
0007	Error en los datos de la operación TODW (Escribir en reloj de tiempo real) o TODR (Leer del reloj de tiempo real).
0008	Excedida la profundidad máxima de anidado de una subrutina de usuario.
0009	Ejecución simultánea de las operaciones XMT/RCV en el puerto 0.
000A	Intento de redefinir un HSC ejecutando otra operación HDEF para el mismo HSC.
000B	Ejecución simultánea de las operaciones XMT/RCV en el puerto 1.
000C	Falta cartucho de reloj para las operaciones TODR y TODW o para la comunicación.
000D	Intento de redefinir la salida de impulsos mientras está activada.
000E	El número de segmento del perfil PTO se ha puesto a 0.
000F	Valor numérico no válido en una operación de comparación.
0010	Comando no permitido en el modo PTO actual.
0011	Código de comando PTO no válido.
0012	Tabla de perfiles PTO no válida.
0013	Tabla del lazo PID no válida.
0091	Error de rango (con información sobre direcciones): verificar las áreas de operandos.
0092	Error en el campo de contaje de una operación (con información sobre el contaje): verificar el valor máximo de contaje.
0094	Error de rango al escribir en la memoria no volátil (con información sobre direcciones).
009A	Intento de cambiar a modo Freeport en una interrupción de usuario.
009B	Índice no válido (operación de cadena en la que se ha indicado un valor inicial de 0).
009F	El cartucho de memoria falta o no responde.

Violación de reglas de compilación

Al cargar un programa en el S7-200, éste lo compila. Si durante la compilación se detecta una violación de las reglas (por ejemplo, una operación no válida), el S7-200 detendrá el proceso de carga, generando entonces un código de error no fatal (de violación de las reglas de compilación). En la tabla C-3 se describen los códigos de error generados al violarse las reglas de compilación.

Tabla C-3 Violación de reglas de compilación

Código de error	Error de compilación (no fatal)
0080	Programa demasiado extenso para poder compilarlo: reducir el tamaño del programa.
0081	Rebase del límite inferior de la pila: dividir el segmento en varios segmentos.
0082	Operación no válida: comprobar la nemotécnica de la operación.
0083	Falta MEND u operación no admisible en el programa principal: agregar la operación MEND o borrar la operación incorrecta.
0084	Reservados
0085	Falta FOR: agregar la operación FOR o borrar la operación NEXT.
0086	Falta NEXT: agregar la operación NEXT o borrar la operación FOR.
0087	Falta meta (LBL, INT, SBR): agregar la meta apropiada.
0088	Falta RET u operación no admisible en una subrutina: agregar RET al final de la subrutina o borrar la operación incorrecta.
0089	Falta RETI u operación no admisible en una rutina de interrupción: agregar RETI al final de la rutina de interrupción o borrar la operación incorrecta.
008A	Reservados
008B	JMP (salto) no válido a o de un segmento SCR.
008C	Meta doble (LBL, INT, SBR): cambiar el nombre de una de las metas.
008D	Meta no válida (LBL, INT, SBR): vigilar que no se haya excedido el número admisible de metas.
0090	Parámetro no válido: comprobar los parámetros admisibles para la operación.
0091	Error de rango (con información sobre direcciones): verificar las áreas de operandos.
0092	Error en el campo de contaje de una operación (con información sobre el contaje): verificar el valor máximo de contaje.
0093	Excedida la profundidad de anidado FOR/NEXT.
0095	Falta la operación LSCR (cargar SCR).
0096	Falta la operación SCRE (fin de SCR) u operación no admisible antes de la operación SCRE.
0097	El programa de usuario contiene operaciones EV/ED con y sin número.
0098	Intento no válido de editar en modo RUN (intento de editar un programa con operaciones EV/ED sin número).
0099	Demasiados segmentos de programa ocultos (operación HIDE).
009B	Índice no válido (operación de cadena en la que se ha indicado un valor inicial de 0).
009C	Excedida la longitud máxima de la operación.
009D	Parámetro no válido detectado en SDB0.
009E	Demasiadas Ilamadas PCALL.
009F a 00FF	Reservados

Marcas especiales (SM)

Las marcas especiales (SM) permiten ejecutar diversas funciones de estado y control. Asimismo, sirven para intercambiar informaciones entre el S7-200 y el programa, pudiéndose utilizar en formato de bits, bytes, palabras o palabras dobles.

Índice del capítulo

SMB0: Bits de estado	490
SMB1: Bits de estado	490
SMB2: Recepción de caracteres en modo Freeport	491
SMB3: Error de paridad en modo Freeport	491
SMB4: Desbordamiento de la cola de espera	491
SMB5: Estado de las entradas y salidas	492
SMB6: Identificador de la CPU	492
SMB7: Reservado	492
SMB8 a SMB21: Identificadores y registros de errores de los módulos de ampliación	493
SMW22 a SMW26: Tiempos de ciclo	494
SMB28 y SMB29: Potenciómetros analógicos	494
SMB30 y SMB130: Registros de control del modo Freeport	494
SMB31 y SMW32: Control de escritura en la memoria no volátil (EEPROM)	495
SMB34 y SMB35: Duración de las interrupciones temporizadas	495
SMB36 a SMB65: Registros HSC0, HSC1 y HSC2	495
SMB66 a SMB85: Registros PTO/PWM	497
SMB86 a SMB94 y SMB186 a SMB194: Control de recepción de mensajes	499
SMW98: Errores en el bus de ampliación	500
SMB130: Registro de control del modo Freeport (véase SMB30)	500
SMB130 a SMB165: Registros HSC3, HSC4 y HSC5	500
SMB166 a SMB185: Tabla de definición de perfiles PTO0 y PTO1	501
SMB186 a SMB194: Control de recepción de mensajes (véase SMB86 a SMB94)	501
SMB200 a SMB549: Estado de los módulos inteligentes	502

SMB0: Bits de estado

Como muestra la tabla D-1, SMB0 contiene ocho bits de estado que la CPU S7-200 actualiza al final de cada ciclo.

Tabla D-1 Byte de marcas SMB0 (SM0.0 a SM0.7)

Bits SM	Descripción (sólo lectura)
SM0.0	Este bit siempre está activado.
SM0.1	Este bit se activa en el primer ciclo. Se utiliza, por ejemplo, para llamar una subrutina de inicialización.
SM0.2	Este bit se activa durante un ciclo si se pierden los datos remanentes. Se puede utilizar como marca de error o como mecanismo para llamar a una secuencia especial de arranque.
SM0.3	Este bit se activa durante un ciclo cuando se pasa a modo RUN tras conectarse la alimentación. Se puede utilizar durante el tiempo de calentamiento de la instalación antes del funcionamiento normal.
SM0.4	Este bit ofrece un reloj que está activado durante 30 segundos y desactivado durante 30 segundos, siendo el tiempo de ciclo de 1 minuto. Ofrece un retardo fácil de utilizar o un reloj de 1 minuto.
SM0.5	Este bit ofrece un reloj que está activado durante 0,5 segundos y desactivado durante 0,5 segundos, siendo el tiempo de ciclo de 1 segundo. Ofrece un retardo fácil de utilizar o un reloj de 1 segundo.
SM0.6	Este bit es un reloj que está activado en un ciclo y desactivado en el ciclo siguiente. Se puede utilizar como entrada de contaje de ciclos.
SM0.7	Este bit indica la posición del selector de modos de operación (OFF = TERM; ON = RUN). Si el bit se utiliza para habilitar el modo Freeport cuando el selector esté en posición RUN, se podrá habilitar la comunicación normal con la unidad de programación cambiando el selector a TERM.

SMB1: Bits de estado

Como muestra la tabla D-2, SMB1 contiene varios indicadores de los posibles errores. Estos bits son activados y desactivados por ciertas operaciones durante el tiempo de ejecución.

Tabla D-2 Byte de marcas SMB1 (SM1.0 a SM1.7)		
Bits SM	Descripción (sólo lectura)	
SM1.0	Este bit se activa al ejecutarse ciertas operaciones si el resultado lógico es cero.	
SM1.1	Este bit se activa al ejecutarse ciertas operaciones si se produce un desbordamiento o si se detecta un valor numérico no válido.	
SM1.2	Este bit se activa si el resultado de una operación aritmética es negativo.	
SM1.3	Este bit se activa si se intenta dividir por cero.	
SM1.4	Este bit se activa si la operación Registrar valor en tabla intenta sobrepasar el límite de llenado de la tabla.	
SM1.5	Este bit se activa si las operaciones FIFO o LIFO intentan leer de una tabla vacía.	
SM1.6	Este bit se activa si se intenta convertir un valor no BCD en un valor binario.	
SM1.7	Este bit se activa si un valor ASCII no se puede convertir en un valor hexadecimal válido.	
SMB2: Recepción de caracteres en modo Freeport

SMB2 es el búfer de recepción de caracteres en modo Freeport. Como muestra la tabla D-3, cada carácter recibido en dicho modo se deposita en este búfer, fácilmente accesible desde el programa KOP.

Consejo

SMB2 y SMB3 son compartidos por los puertos 0 y 1. Si, debido a la recepción de un carácter por el puerto 0, se ejecuta la rutina de interrupción asociada a ese evento (evento de interrupción 8), SMB2 contendrá el carácter recibido por el puerto 0, en tanto que SMB3 contendrá la paridad de ese carácter. Si, debido a la recepción de un carácter por el puerto 1, se ejecuta la rutina de interrupción asociada a ese evento (evento de interrupción 25), SMB2 contendrá el carácter recibido por el puerto 1, en tanto que SMB3 contendrá la paridad de ese carácter.

Tabla D-3	3 Byte de marcas SMB2	
Byte SM	Descripción (sólo lectura)	
SMB2	Este byte contiene todos los caracteres recibidos de los puertos 0 ó 1 en modo Freeport.	

SMB3: Error de paridad en modo Freeport

SMB3 se utiliza para el modo Freeport y contiene un bit de error de paridad que se activa si se detecta un error de este tipo en un carácter recibido. Como muestra la tabla D-4, SM3.0 se activa si se detecta un error de paridad. Utilice esta marca para rechazar el mensaje.

Tabla D-4 Byte de marcas SMB3 (SM3.0 a SM3.7)

Bits SM	escripción (sólo lectura)	
SM3.0	Error de paridad del puerto 0 ó 1 (0 = sin error; 1 = error)	
SM3.1 a SM3.7	Reservados	

SMB4: Desbordamiento de la cola de espera

Como muestra la tabla D-5, SMB4 contiene los bits de desbordamiento de la cola de espera, un indicador de estado que muestra las interrupciones habilitadas o inhibidas y una marca de transmisor en vacío. Los bits de desbordamiento de la cola de espera indican que las interrupciones se están presentando más rápidamente de lo que se pueden procesar, o bien que se han inhibido mediante la operación Inhibir todos los eventos de interrupción (DISI).

Tabla D-5Byte de marcas SMB4 (SM4.0 a SM4.7)

Bits SM	Descripción (sólo lectura)
SM4.0 ¹	Este bit se activa si se desborda la cola de espera para las interrupciones de comunicación.
SM4.1 ¹	Este bit se activa si se desborda la cola de espera para las interrupciones de E/S.
SM4.2 ¹	Este bit se activa si se desborda la cola de espera para las interrupciones temporizadas.
SM4.3	Este bit se activa si se detecta un error de programación en el tiempo de ejecución.
SM4.4	Este bit refleja el estado de habilitación de las interrupciones. Se activa cuando se habilitan las interrupciones.
SM4.5	Este bit se activa si el transmisor está inactivo (puerto 0).
SM4.6	Este bit se activa si el transmisor está inactivo (puerto 1).
SM4.7	Este bit se activa cuando se fuerza un valor.

Utilice los bits de estado 4.0, 4.1 y 4.2 sólo en rutinas de interrupción. Estos bits se desactivan cuando se vacía la cola de espera, retornando entonces el control al programa principal.

SMB5: Estado de las entradas y salidas

Como muestra la tabla D-6, SMB5 contiene los bits de estado acerca de las condiciones de error detectadas en las entradas y salidas (E/S). Estos bits indican los errores de E/S que se han detectado.

Tabla D-6 Byte de marcas SMB5 (SM5.0 a SM5.7)

Bits SM	Descripción (sólo lectura)
SM5.0	Este bit se activa si se presenta algún error de E/S.
SM5.1	Este bit se activa si se han conectado demasiadas entradas y salidas digitales al bus de E/S.
SM5.2	Este bit se activa si se han conectado demasiadas entradas y salidas analógicas al bus de E/S.
SM5.3	Este bit se activa si se han conectado demasiados módulos de ampliación inteligentes al bus de E/S.
SM5.4 a SM5.7	Reservados.

SMB6: Identificador de la CPU

Como muestra la tabla D-7, SMB6 es el identificador de la CPU S7-200. SM6.4 a SM6.7 indican el tipo de CPU S7-200. SM6.0 a SM6.3 están reservados para un uso futuro.

Tabla D-7	Byte de marcas	SMB6

Bits SM	Descripción	n (sólo lecti	ura)	
Formato	MSB 7 X X X	x x r	r r r	Identificador de la CPU
SM6.0 a SM6.3	Reservados			
SM6.4 a SM6.7	xxxx = 0 0 0 1	0000 = 0010 0110 = 1001	CPU 222 CPU 224 CPU 221 CPU 226/CPU 2	26XM

SMB7: Reservado

SMB7 está reservado para un uso futuro.

SMB8 a SMB21: Identificadores y registros de errores de los módulos de ampliación

SMB8 a SMB21 están organizados en pares de bytes para los módulos de ampliación 0 a 6. Como muestra la tabla D-8, el byte de número par de cada pareja de bytes constituye el registro del identificador de módulo. Este byte indica el tipo de módulo, el tipo de E/S y el número de entradas y salidas. El byte de número impar de cada pareja de bytes constituye el registro de errores del módulo. Este byte indica los errores de configuración y de alimentación de las E/S del correspondiente módulo de ampliación.

Tabla D-8	Bytes de marcas SMB8 a SMB21			
Byte SM	Descripción (sólo lectura)			
Formato	Byte de número par: ID del módulo Byte de número impar: Registro de errores del módulo MSB LSB 7 0 m t t a 1 a i q m: Módulo presente 0 presente 1 = no presente c: Error de configuración 0 = sin error tt: Tipo de módulo m: Módulo de ampliación no inteligente r: Área excedida 01 Módulo inteligente p: Error alimentac. usuario 1 = error 10 Reservado f: Fusible fundido t: Bloque de terminales suelto a: Tipo de E/S 0 = digital 1 = analógica t: Bloque de terminales suelto ii: Entradas 00 Sin entradas 01 4 Al ó 16 DI 11 8 Al ó 32 DI QQ: Salidas 0 Sin salidas 01 2 AQ u 8 DQ 10 4 AQ ó 16 DQ 1 8 AQ ó 32 DQ			
SMB8	Identificador del módulo 0			
SMB9	Registro de errores del módulo 0			
SMB10	Identificador del módulo 1			
SMB11	Registro de errores del módulo 1			
SMB12	Identificador del módulo 2			
SMB13	Registro de errores del módulo 2			
SMB14	Identificador del módulo 3			
SMB15	Registro de errores del módulo 3			
SMB16	Identificador del módulo 4			
SMB17	Registro de errores del módulo 4			
SMB18	Identificador del módulo 5			
SMB19	Registro de errores del módulo 5			
SMB20	Identificador del módulo 6			
SMB21	Registro de errores del módulo 6			

SMW22 a SMW26: Tiempos de ciclo

Como muestra la tabla D-9, las marcas especiales SMW22, SMW24, y SMW26 informan sobre el tiempo de ciclo. Permiten leer el último tiempo de ciclo, así como los tiempos de ciclo mínimo y máximo.

Tabla D-9 Palabras de marcas SMW22 a SMW26

Palabra de marcas	Descripción (sólo lectura)
SMW22	Tiempo del último ciclo en milisegundos.
SMW24	Tiempo de ciclo mínimo en milisegundos desde que inició el modo RUN.
SMW26	Tiempo de ciclo máximo en milisegundos desde que inició el modo RUN.

SMB28 y SMB29: Potenciómetros analógicos

Como muestra la tabla D-10, SMB28 almacena el valor digital que representa la posición del potenciómetro analógico 0. SMB29 almacena el valor digital que representa la posición del potenciómetro analógico 1.

Tabla D-10	Bytes de marcas	SMB28	/ SMB29

Byte SM	Descripción (sólo lectura)
SMB28	Este byte almacena el valor leído del potenciómetro analógico 0. El valor se actualiza una vez por ciclo en STOP/RUN.
SMB29	Este byte almacena el valor leído del potenciómetro analógico 1. El valor se actualiza una vez por ciclo en STOP/RUN.

SMB30 y SMB130: Registros de control del modo Freeport

SMB30 y SMB130 controlan la comunicación Freeport en los puertos 0 y 1, respectivamente. SMB30 y SMB130 son marcas de lectura y escritura. Como muestra la tabla D-11, estos bytes configuran la comunicación Freeport en los respectivos puertos y permiten seleccionar si se debe asistir el modo Freeport o el protocolo de sistema.

Puerto 0	Puerto 1	Descripción		
Formato de SMB30	Formato de SMB130	Byte de control del mod MSB 7 p p d b b b	o Freeport LSB 0 m m	
SM30.0 y SM30.1	SM130.0 y SM130.1	mm: Selección de protoco Nota: Si se selecciona el o ser una estación maestra operaciones NETR y NET	lo 00 =Protocolo de interfaz (PPI/modo esclavo) 01 =Protocolo Freeport 10 =PPI/modo maestro 11 =Reservado (cambia al ajuste estánda código mm = 10 (maestro F en la red, permitiendo que W. Los bits 2 a 7 se ignora	punto a punto r PPI/modo esclavo) PPI), el S7-200 pasará a se ejecuten las n en el modo PPI.
SM30.2 a SM30.4	SM130.2 a SM130.4	bbb: Velocidades de trans	ferencia Freeport 000 = 38.400 bit/s 001 =19,200 bit/s 010 =9.600 bit/s 011 =4.800 bit/s	100 =2.400 bit/s 101 =1.200 bit/s 110 =115.200 bit/s 111 = 57.600 bit/s
SM30.5	SM130.5	d: Bits por carácter	0 =8 bits por carácter 1 =7 bits por carácter	
SM30.6 y SM30.7	SM130.6 y SM130.7	pp: Elegir paridad	00 = sin paridad 01 =paridad par	10 =paridad impar 11 = paridad impar

Tabla D-11 Bytes de marcas SMB30

Anexo D

SMB31 y SMW32: Control de escritura en la memoria no volátil (EEPROM)

Un valor almacenado en la memoria de variables (memoria V) se puede guardar en la memoria no volátil (memoria permanente) mediante el programa. A este efecto, cargue en SMW32 la dirección que desea guardar. Cargue después SMB31 con el comando para guardar el valor. Tras haber cargado el comando, no modifique el valor en la memoria V hasta que el S7-200 haya desactivado SM31.7, indicando que ha finalizado la memorización.

El S7-200 comprueba al final de cada ciclo si se debe guardar algún valor en la memoria no volátil. En caso afirmativo, el valor indicado se almacenará allí.

Como muestra la tabla D-12, SMB31 define el tamaño de los datos a guardar en la memoria no volátil, incorporando también el comando que inicia la memorización. SMW32 almacena la dirección inicial en la memoria V de los datos a guardar en la memoria no volátil.

Tabla D-12Byte de marcas SMB31 y palabra de marcas SMW32

Byte SM	Descripción		
Formato	SMB31: MSB LSB Comando de 7 0 software C 0 0 0 s SMW32: MSB 15 LSB 0 Dirección en 15 Dirección en la memoria V 0		
SM31.0 y SM31.1	ss: Tamaño de los datos00 = byte10 = palabra01 = byte11 = palabra doble		
SM31.7	 c: Guardar en memoria permanente 0 = No hay petición de guardar. 1 = El programa de usuario solicita que se guarden los datos. El S7-200 desactiva este bit después de cada almacenamiento. 		
SMW32	La dirección en la memoria V (memoria de variables) de los datos a guardar se almacena en SMW32. Este valor se indica como desplazamiento (offset) de V0. Al ejecutarse la memorización, el valor contenido en esta dirección de la memoria V se escribe en la correspondiente dirección V en la memoria no volátil (permanente memoria).		

SMB34 y SMB35: Duración de las interrupciones temporizadas

Como muestra la tabla D-13, SMB34 y SMB35 especifican la duración de las interrupciones temporizadas 0 y 1, respectivamente. Los valores de esta duración se pueden indicar de 1 ms a 255 ms (en incrementos de 1 ms). El S7-200 captará el valor cuando la correspondiente interrupción temporizada sea asociada a una rutina de interrupción. Para cambiar su duración es preciso reasociar la interrupción temporizada a la misma rutina de interrupción, o bien a una diferente. Para terminar el evento de interrupción temporizada hay que desasociarlo.

Tabla D-13 Bytes de marcas SMB34 y SMB35

Byte SM	Descripción
SMB34	Este byte indica la duración (de 1 ms a 255 ms, en incrementos de 1 ms) de la interrupción temporizada 0.
SMB35	Este byte indica la duración (de 1 ms a 255 ms, en incrementos de 1 ms) de la interrupción temporizada 1.

SMB36 a SMB65: Registros HSC0, HSC1 y HSC2

Como muestra la tabla D-14, los bytes de marcas SMB36 a SMB65 se utilizan para supervisar y controlar el funcionamiento de los contadores rápidos HSC0, HSC1 y HSC2.

Byte SM	Descripción			
SM36.0 a SM36.4	Reservados			
SM36.5	Bit de estado del sentido de contaje actual de HSC0: 1 = contar adelante			
SM36.6	El valor actual de HSC0 es igual al bit de estado del valor predeterminado: 1 = igual			
SM36.7	El valor actual de HSC0 es mayor que el bit de estado del valor predeterminado: 1 = mayor que			
SM37.0	Bit de control para nivel de actividad de la entrada de puesta a 0: 0 = actividad alta, 1 = actividad baja			
SM37.1	Reservado			
SM37.2	Velocidad de contaje de los contadores A/B: 0 = velocidad cuádruple; 1 = velocidad simple			
SM37.3	Bit de control del sentido de contaje de HSC0: 1 = adelante			
SM37.4	Actualizar el sentido de contaje de HSC0: 1 = actualizar el sentido de contaje			
SM37.5	Actualizar el valor predeterminado de HSC0: 1 = escribir nuevo valor predeterminado en HSC0			
SM37.6	Actualizar el valor actual de HSC0: 1 = escribir nuevo valor actual en HSC0			
SM37.7	Bit de habilitación de HSC0: 1 = habilitar			
SMD38	Nuevo valor actual de HSC0.			
SMD42	Nuevo valor predeterminado de HSC0.			
SM46.0 a SM46.4	Reservados			
SM46.5	Bit de estado del sentido de contaje actual de HSC1: 1 = contar adelante			
SM46.6	El valor actual de HSC1 es igual al bit de estado del valor predeterminado: 1 = igual			
SM46.7	El valor actual de HSC1 es mayor que el bit de estado del valor predeterminado: 1 = mayor que			
SM47.0	Bit de control de nivel de actividad para puesta a 0 de HSC1: 0 = actividad alta, 1 = actividad baja			
SM47.1	Bit de control de nivel de actividad para arranque de HSC1: 0 = actividad alta, 1 = actividad baja			
SM47.2	Selección de velocidad de contaje de HSC1: 0 = cuádruple, 1 = simple			
SM47.3	Bit de control del sentido de contaje de HSC1: 1 = adelante			
SM47.4	Actualizar el sentido de contaje de HSC1: 1 = actualizar el sentido de contaje			
SM47.5	Actualizar el valor predeterminado de HSC1: 1 = escribir nuevo valor predeterminado en HSC1			
SM47.6	Actualizar el valor actual de HSC1: 1 = escribir nuevo valor actual en HSC1			
SM47.7	Bit de habilitación de HSC1: 1 = habilitar			
SMD48	Nuevo valor actual de HSC1.			
SMD52	Nuevo valor predeterminado de HSC1.			
SM56.0 a SM56.4	Reservados			
SM56.5	Bit de estado del sentido de contaje actual de HSC2: 1 = contar adelante			
SM56.6	El valor actual de HSC2 es igual al bit de estado del valor predeterminado: 1 = igual			
SM56.7	El valor actual de HSC2 es mayor que el bit de estado del valor predeterminado: 1 = mayor que			
SM57.0	Bit de control de nivel de actividad para puesta a 0 de HSC2: 0 = actividad alta, 1 = actividad baja			
SM57.1	Bit de control de nivel de actividad para arranque de HSC2: 0 = actividad alta, 1 = actividad baja			
SM57.2	Selección de velocidad de contaje de HSC2: 0 = cuádruple, 1 = simple			
SM57.3	Bit de control del sentido de contaje de HSC2: 1 = adelante			
SM57.4	Actualizar el sentido de contaje de HSC2: 1 = actualizar el sentido de contaje			

Tabla D-14 Bytes de marcas SMB36 a SMD62

-	
Byte SM	Descripción
SM57.5	Actualizar el valor predeterminado de HSC2: 1 = escribir nuevo valor predeterminado en HSC2
SM57.6	Actualizar el valor actual de HSC2: 1 = escribir nuevo valor actual en HSC2
SM57.7	Bit de habilitación de HSC2: 1 = habilitar
SMD58	Nuevo valor actual de HSC2.
SMD62	Nuevo valor predeterminado de HSC2.

Tabla D-14 Bytes de marcas SMB36 a SMD62, continuación

SMB66 a SMB85: Registros PTO/PWM

Como muestra la tabla D-15, SMB66 a SMB85 se utilizan para supervisar y controlar las funciones de tren de impulsos y modulación por ancho de impulsos y de las operaciones PTO/PWM. Consulte las informaciones sobre la operación de salida de impulsos en el capítulo 6 para obtener una descripción detallada de estas marcas.

Tabla D-15 Bytes de marcas SMB66 a SMB85

Byte SM	Descripción				
SM66.0 a SM66.3	Reservados				
SM66.4	Interrupción anormal del perfil PTO0: 0 = sin error, 1 = interrupción debida a un error de cálculo delta				
SM66.5	Interrupción anormal del perfil PTO0: 0 = no causada por el usuario, 1 = causada por el usuario				
SM66.6Desbordamiento de pipeline PTO0 (el sistema lo pone a 0 al utilizarse perfiles externos; en caso contrario, el usuario lo deberá poner a 0): 0 = sin desbordar 1 desbordamiento					
SM66.7	Actividad de PTO0: 0 = PTO activo, 1 = PTO inactivo				
SM67.0	Actualizar el tiempo de ciclo PTO0/PWM0: 1 = escribir nuevo valor del tiempo de ciclo				
SM67.1	Actualizar el ancho de impulsos de PWM0: 1 = escribir nuevo ancho de impulsos				
SM67.2	Actualizar el valor de contaje de impulsos de PTO0: 1 = escribir nuevo valor de contaje de impulsos				
SM67.3	Elegir base de tiempo PTO/PWM: 0 = 1 µs/ciclo, 1 = 1 ms/ciclo				
SM67.4	Actualización de PWM0: 0 = actualización asíncrona, 1 = actualización síncrona				
SM67.5Función PTO0: 0 = función monosegmento (tiempo de ciclo y contaje de in almacenados en la memoria SM), 1 = función multisegmento (tabla de per almacenada en la memoria V)					
SM67.6	Elegir modo PTO0/PWM0 0 = PTO, 1 = PWM				
SM67.7	Bit de habilitación de PTO0/PWM0: 1 = habilitar				
SMW68	Valor del tiempo de ciclo PTO0/PWM0 (2 a 65.535 unidades de la base de tiempo)				
SMW70	Valor del ancho de impulsos PWM0 (0 a 65.535 unidades de la base de tiempo)				
SMD72	Valor del contaje de impulsos PTO0 (1 a 2 ³² -1);				
SM76.0 a SM76.3	Reservados				
SM76.4	Interrupción anormal del perfil PTO1: 0 = sin error, 1 = interrupción debida a un error de cálculo delta				
SM76.5	Interrupción anormal del perfil PTO1: 0 = no causada por el usuario, 1 = causada por el usuario				
SM76.6 Desbordamiento de pipeline PTO1 (el sistema lo pone a 0 al utilizarse perfiles externos; en caso contrario, el usuario lo deberá poner a 0): 0 = sin desbordam = desbordamiento					
SM76.7	Actividad de PTO1: 0 = PTO activo, 1 = PTO inactivo				
SM77.0	Actualizar el tiempo de ciclo de PTO1/PWM1: 1 = escribir nuevo valor del tiempo de ciclo				

Byte SM	Descripción				
SM77.1	Actualizar el ancho de impulsos de PWM1: 1 = escribir nuevo ancho de impulsos				
SM77.2	Actualizar el valor de contaje de impulsos de PTO1: 1 = escribir nuevo valor de contaje de impulsos				
SM77.3	Elegir base de tiempo PTO/PWM: 0 = 1 µs/ciclo, 1 = 1 ms/ciclo				
SM77.4	Actualización de PWM1: 0 = actualización asíncrona, 1 = actualización síncrona				
SM77.5	Función PTO1: 0 = función monosegmento (tiempo de ciclo y contaje de impulsos almacenados en la memoria SM), 1 = función multisegmento (tabla de perfiles almacenada en la memoria V)				
SM77.6	Elegir modo PTO1/PWM1 0 = PTO, 1 = PWM				
SM77.7	Bit de habilitación de PTO1/PWM1: 1 = habilitar				
SMW78	Valor de tiempo de ciclo PTO1/PWM1 (2 a 65.535 unidades de la base de tiempo)				
SMW80	Valor del ancho de impulsos PWM1 (0 a 65.535 unidades de la base de tiempo)				
SMD82	Valor del contaje de impulsos PTO1 (1 a 2 ³² -1);				

	Tabla D-15	Bytes de marcas	SMB66 a	SMB85,	continuación
--	------------	-----------------	---------	--------	--------------

SMB86 a SMB94 y SMB186 a SMB194: Control de recepción de mensajes

Como muestra la tabla D-16, los bytes de marcas SMB86 a SMB94 y SMB186 a SMB194 se utilizan para controlar y leer el estado de la operación Recibir mensaje.

Puerto 0	Puerto 1	Descripción				
SMB86	SMB186	Byte de estado de recepción de				
		mensajes MSB LSB 7 0				
		n r e 0 0 t c p				
		 1 = El usuario ha inhibido la recepción de mensajes. 1 = Se ha finalizada la recepción da mensajes: error en los perómetros. 				
		de entrada o falta condición inicial o final				
		1 = Carácter final recibido				
		1 = Se ha finalizado la recepción de mensajes: ha transcurrido la temporización.				
		 1 = Se ha finalizado la recepción de mensajes: se ha excedido el número máximo de caracteres. 				
		1 = Se ha finalizado la recepción de mensajes debido a un error de paridad				
SMB87	SMB187	Byte de control de recepción de mensajes				
		MSB LSB 0				
		en sc ec il c/m tmr bk 0				
		 I = Habilitad la función de recibil mensajes. I = Habilitad la función de recibil mensajes. El bit para habilitar/inhibir la recepción de mensajes se comprueba cada vez que se ejecuta la operación RCV. sc: 0 = Ignorar SMB88 o SMB188. 1 = Utilizar el valor de SMB88 o de SMB188 para detectar el comienzo del mensaje. ec: 0 = Ignorar SMB89 o SMB189. 1 = Utilizar el valor de SMB89 o de SMB189 para detectar el final del mensaje. il: 0 = Ignorar SMB90 o SMB190. 1 = Utilizar el valor de SMW90 o SMW190 para detectar una condición de inactiv c/m: 0 = Utilizar el temporizador como temporizador entre caracteres. 1 = Utilizar el temporizador como temporizador de mensajes. tmr: 0 = Ignorar SMB92 o SMB192. 1 = Finalizar la recepción si se excede el período de tiempo indicado en SMW92 o SMW192. bk: 0 = Ignorar condiciones BREAK. 1 = Utilizar condición BREAK como comienzo de la detección de mensajes 				
SMB88	SMB188	Carácter de comienzo del mensaje. Carácter de fin del mensaje. D Tiempo de línea de inactividad en milisegundos. El primer carácter recibido una vez transcurrido el tiempo de línea de inactividad es el comienzo del nuevo mensaje. 2 Timeout del temporizador entre caracteres/de mensajes en milisegundos. Si se excede el tiempo, se finaliza la recepción de mensajes.				
SMB89	SMB189					
SMW90	SMW190					
SMW92	SMW192					
SMB94	SMB94 SMB194 Número máximo de caracteres a recibir (1 a 255 bytes).					
Nota: Este rango debe ajustarse al tamaño máximo esperado para el bu no se utiliza la finalización de mensajes por el contaje de caracteres.						

Tabla D-16 Marcas especiales SMB86 a SMB94 y SMB186 a SMB194

SMW98: Errores en el bus de ampliación

Como muestra la tabla D-17, SMW98 indica el número de errores en el bus de ampliación.

Tabla D-17	Byte de marcas SMW98
Byte SM	Descripción
SMW98	Esta dirección se incrementa cada vez que se detecta un error de paridad en el bus de ampliación. Se borra durante el encendido y el usuario la puede borrar.

SMB130: Registro de control del modo Freeport (véase SMB30)

Consulte la tabla D-11.

SMB130 a SMB165: Registros HSC3, HSC4 y HSC5

Como muestra la tabla D-18, los bytes de marcas SMB130 a SMB165 se utilizan para supervisar y controlar el funcionamiento de los contadores rápidos HSC3, HSC4 y HSC5.

Byte SM	Descripción				
SMB131 a SMB135	Reservados				
SM136.0 a SM136.4	Reservados				
SM136.5	Bit de estado del sentido de contaje actual de HSC3: 1 = contar adelante				
SM136.6	El valor actual de HSC3 es igual al bit de estado del valor predeterminado: 1 = igual				
SM136.7	El valor actual de HSC3 es mayor que el bit de estado del valor predeterminado: 1 = mayor que				
SM137.0 a SM137.2	Reservados				
SM137.3	Bit de control del sentido de contaje de HSC3: 1 = adelante				
SM137.4	Actualizar sentido de contaje de HSC3: 1 = actualizar el sentido de contaje				
SM137.5	Actualizar valor predeterminado de HSC3: 1 = escribir nuevo valor predeterminado en HSC3				
SM137.6	Actualizar valor actual de HSC3: 1 = escribir nuevo valor actual en HSC3				
SM137.7	Bit de habilitación de HSC3: 1 = habilitar				
SMD138	Nuevo valor actual de HSC3.				
SMD142	Nuevo valor predeterminado de HSC3.				
SM146.0 a SM146.4	Reservados				
SM146.5	Bit de estado del sentido de contaje actual de HSC4: 1 = contar adelante				
SM146.6	El valor actual de HSC4 es igual al bit de estado del valor predeterminado: 1 = igual				
SM146.7	El valor actual de HSC4 es mayor que el bit de estado del valor predeterminado: 1 = mayor que				
SM147.0	Bit de control para nivel de actividad de la entrada de puesta a 0: 0 = actividad alta, 1 = actividad baja				
SM147.1	Reservado				
SM147.2	Velocidad de contaje de los contadores A/B: 0 = velocidad cuádruple; 1 = velocidad simple				
SM147.3	Bit de control del sentido de contaje de HSC4: 1 = adelante				
SM147.4	Actualizar sentido de contaje de HSC4: 1 = actualizar el sentido de contaje				
SM147.5	Actualizar valor predeterminado de HSC4: 1 = escribir nuevo valor predeterminado en HSC4				
SM147.6	Actualizar valor actual de HSC4: 1 = escribir nuevo valor actual en HSC4				
SM147.7	Bit de habilitación de HSC4: 1 = habilitar				
SMD148	Nuevo valor actual de HSC4.				

Tabla D-18 Bytes de marcas SMB131 a SMB165

Byte SM	Descripción
SMD152	Nuevo valor predeterminado de HSC4.
SM156.0 a SM156.4	Reservados
SM156.5	Bit de estado del sentido de contaje actual de HSC5: 1 = contar adelante
SM156.6	El valor actual de HSC5 es igual al bit de estado del valor predeterminado: 1 = igual
SM156.7	El valor actual de HSC5 es mayor que el bit de estado del valor predeterminado: 1 = mayor que
SM157.0 a SM157.2	Reservados
SM157.3	Bit de control del sentido de contaje de HSC5: 1 = adelante
SM157.4	Actualizar sentido de contaje de HSC5: 1 = actualizar el sentido de contaje
SM157.5	Actualizar valor predeterminado de HSC5: 1 = escribir nuevo valor predeterminado en HSC5
SM157.6	Actualizar valor actual de HSC5: 1 = escribir nuevo valor actual en HSC5
SM157.7	Bit de habilitación de HSC5: 1 = habilitar
SMD158	Nuevo valor actual de HSC5.
SMD162	Nuevo valor predeterminado de HSC5.

Tabla D-18 Bytes de marcas SMB131 a SMB165, continuación

SMB166 a SMB185: Tabla de definición de perfiles PTO0 y PTO1

Como muestra la tabla D-19, los bytes de marcas SMB166 a SMB194 se utilizan para indicar el número de pasos del perfil activo y la dirección de la tabla de perfiles en la memoria V.

Byte SM	Descripción			
SMB166	Número actual del paso del perfil activo de PTO0.			
SMB167	Reservado			
SMW168	irección en la memoria V de la tabla del perfil PTO0 indicada como offset desde V0			
SMB170	Byte de estado de la operación PTO0 lineal.			
SMB171	Byte de resultado de la operación PTO0 lineal.			
SMD172	Indica la frecuencia a generar cuando el generador PTO0 lineal funciona en modo manual. La frecuencia se indica como valor de entero doble en Hz. SMB172 es el MSB y SMB175 es el LSB			
SMB176	Número actual del paso del perfil activo de PTO1.			
SMB177	Reservado			
SMW178	Dirección en la memoria V de la tabla del perfil PTO1 indicada como offset desde V0.			
SMB180	Byte de estado de la operación PTO1 lineal.			
SMB181	Byte de resultado de la operación PTO1 lineal.			
SMD182	Indica la frecuencia a generar cuando el generador PTO1 lineal funciona en modo manual. La frecuencia se indica como valor de entero doble en Hz. SMB182 es el MSB y SMB185 es el LSB			

Tabla D-19 Bytes de marcas SMB166 a SMB194

SMB186 a SMB194: Control de recepción de mensajes (véase SMB86 a SMB94)

Consulte la tabla D-16.

SMB200 a SMB549: Estado de los módulos inteligentes

Como muestra la tabla D-20, las marcas especiales SMB200 a SMB299 están reservadas para la información de estado de los módulos de ampliación inteligentes (por ejemplo, del módulo EM 277 PROFIBUS-DP). Para más información acerca de cómo los módulos utilizan las marcas especiales SMB200 a SMB549, consulte el anexo A.

En el caso de las CPUs S7-200 con firmware anterior a la versión 1.2, los módulos inteligentes se deberán disponer directamente junto a la CPU para garantizar la compatibilidad.

Bytes de marcas SMB200 a SMB549							
Módulo inteligente en el slot 0	Módulo inteligente en el slot 1	Módulo inteligente en el slot 2	Módulo inteligente en el slot 3	Módulo inteligente en el slot 4	Módulo inteligente en el slot 5	Módulo inteligente en el slot 6	Descripción
SMB200 a SMB215:	SMB250 a SMB265	SMB300 a SMB315	SMB350 a SMB365	SMB400 a SMB415	SMB450 a SMB465	SMB500 a SMB515	Nombre del módulo (16 caracteres ASCII)
SMB216 a SMB219	SMB266 a SMB269	SMB316 a SMB319	SMB366 a SMB369	SMB416 a SMB419	SMB466 a SMB469	SMB516 a SMB519	Número de versión del software (4 caracteres ASCII)
SMW220	SMW270	SMW320	SMW370	SMW420	SMW470	SMW520	Código de error
SMB222 a SMB249	SMB272 a SMB299	SMB322 a SMB349	SMB372 a SMB399	SMB422 a SMB449	SMB472 a SMB499	SMB522 a SMB549	Información específica del tipo de módulo en cuestión.

Tabla D-20 Bytes de marcas SMB200 a SMB549

Números de referencia

CPUs	Nº de referencia
CPU 221 DC/DC/DC 6 entradas/4 salidas	6ES7 211-0AA23-0XB0
CPU 221 AC/DC/relé 6 entradas/4 salidas de relé	6ES7 211-0BA23-0XB0
CPU 222 DC/DC/DC 8 entradas/6 salidas	6ES7 212-1AB23-0XB0
CPU 222 AC/DC/relé 8 entradas/6 salidas de relé	6ES7 212-1BB23-0XB0
CPU 224 DC/DC/DC 14 entradas/10 salidas	6ES7 214-1AD23-0XB0
CPU 224 AC/DC/relé 14 entradas/10 salidas de relé	6ES7 214-1BD23-0XB0
CPU 224XP DC/DC/DC 14 entradas/10 salidas	6ES7 214-2AD23-0XB0
CPU 224XP AC/DC/relé 14 entradas/10 salidas de relé	6ES7 214-2BD23-0XB0
CPU 226 DC/DC/DC 24 entradas/16 salidas	6ES7 216-2AD23-0XB0
CPU 226 AC/DC/relé 24 entradas/16 salidas de relé	6ES7 216-2BD23-0XB0
Módulos de ampliación	№ de referencia
EM 221 8 entradas digitales x 24 V c.c.	6ES7 221-1BF22-0XA0
EM 221 8 entradas digitales AC (8 x AC 120/230 V)	6ES7 221-1EF22-0XA0
EM 221 16 entradas digitales x 24 V c.c.	6ES7221-1BH22-0XA0
EM 222 8 salidas digitales x 24 V c.c.	6ES7 222-1BF22-0XA0
EM 222 8 salidas digitales x relé	6ES7 222-1HF22-0XA0
EM 222 8 salidas digitales AC (8 x 120/230 V500 V c.a.)	6ES7 222-1EF22-0XA0
EM 222 4 salidas digitales x 24 V c.c 5A	6ES7 222-1BD22-0XA0
EM 222 4 salidas digitales x relé-10A	6ES7 222-1HD22-0XA0
EM 223 4 entradas digitales/4 salidas digitales x 24 V c.c.	6ES7 223-1BF22-0XA0
EM 223 4 entradas digitales/4 salidas de relé x 24 V c.c.	6ES7 223-1HF22-0XA0
EM 223 8 entradas digitales/8 salidas digitales x 24 V c.c.	6ES7 223-1BH22-0XA0
EM 223 8 entradas digitales/8 salidas de relé x 24 V c.c.	6ES7 223-1PH22-0XA0
EM 223 16 entradas digitales/16 salidas digitales x 24 V c.c.	6ES7 223-1BL22-0XA0
EM 223 16 entradas digitales/16 salidas de relé x 24 V c.c.	6ES7 223-1PL22-0XA0
EM 231, 4 entradas analógicas	6ES7 231-0HC22-0XA0
EM 231 RTD, 2 entradas analógicas	6ES7 231-7PB22-0XA0
EM 231 Termopar, 4 entradas analógicas	6ES7 231-7PD22-0XA0
EM 232, 2 salidas analógicas	6ES7 232-0HB22-0XA0
EM 235, 4 entradas analógicas/1 salida analógica	6ES7 235-0KD22-0XA0
Módulo Módem EM 241	6ES7 241-1AA22-0XA0
Módulo de posicionamiento EM 253	6ES7 253-1AA22-0XA0
EM 277 PROFIBUS-DP	6ES7 277-0AA22-0XA0
Módulo AS-Interface (CP 243-2)	6GK7 243-2AX01-0XA0
Módulo Internet (CP 243-1 IT) (con documentación electrónica en CD)	6GK7 243-1GX00-0XE0
Módulo Ethernet (CP 243-1) (con documentación electrónica en CD)	6GK7 243-1EX00-0XE0

Cartuchos y cables	Nº de referencia
Cartucho de memoria, 32K (programa de usuario)	6ES7 291-8GE20-0XA0
Cartucho de memoria, 64K (programa de usuario, recetas y registros de datos)	6ES7 291-8GF23-0XA0
Cartucho de memoria, 256K (programa de usuario, recetas y registros de datos)	6ES7 291-8GH23-0XA0
Reloj de tiempo real con cartucho de pila	6ES7 297-1AA23-0XA0
Cartucho de pila BC 293, CPU 22x	6ES7 291-8BA20-0XA0
Cable para módulos de ampliación, 0,8 metros, CPU 22x/EM	6ES7 290-6AA20-0XA0
Cable multimaestro RS-232/PPI	6ES7 901-3CB30-0XA0
Cable multimaestro PPI/USB	6ES7 901-3DB30-0XA0
Software	Nº de referencia
Software STEP 7-Micro/WIN 32 (V4.0), licencia individual (CD-ROM)	Nº de referencia 6ES7 810-2CC03-0YX0
Software STEP 7-Micro/WIN 32 (V4.0), licencia individual (CD-ROM) STEP 7-Micro/WIN 32 (V4.0), licencia de actualización (CD-ROM)	Nº de referencia 6ES7 810-2CC03-0YX0 6ES7 810-2CC03-0YX3
Software STEP 7-Micro/WIN 32 (V4.0), licencia individual (CD-ROM) STEP 7-Micro/WIN 32 (V4.0), licencia de actualización (CD-ROM) S7-200 Toolbox: TP-Designer for TP070, versión 1.0 (CD-ROM)	Nº de referencia 6ES7 810-2CC03-0YX0 6ES7 810-2CC03-0YX3 6ES7 850-2BC00-0YX0
Software STEP 7-Micro/WIN 32 (V4.0), licencia individual (CD-ROM) STEP 7-Micro/WIN 32 (V4.0), licencia de actualización (CD-ROM) S7-200 Toolbox: TP-Designer for TP070, versión 1.0 (CD-ROM) Producto adicional para STEP 7-Micro/WIN: Librería de operaciones STEP 7-Micro/WIN 32, V1.1 (CD-ROM)	Nº de referencia 6ES7 810-2CC03-0YX0 6ES7 810-2CC03-0YX3 6ES7 850-2BC00-0YX0 6ES7 830-2BC00-0YX0
Software STEP 7-Micro/WIN 32 (V4.0), licencia individual (CD-ROM) STEP 7-Micro/WIN 32 (V4.0), licencia de actualización (CD-ROM) S7-200 Toolbox: TP-Designer for TP070, versión 1.0 (CD-ROM) Producto adicional para STEP 7-Micro/WIN: Librería de operaciones STEP 7-Micro/WIN 32, V1.1 (CD-ROM) S7-200 PC Access V1.0 (servidor OPC), licencia individual	Nº de referencia 6ES7 810-2CC03-0YX0 6ES7 810-2CC03-0YX3 6ES7 850-2BC00-0YX0 6ES7 830-2BC00-0YX0 6ES7 840-2CC01-0YX0
Software STEP 7-Micro/WIN 32 (V4.0), licencia individual (CD-ROM) STEP 7-Micro/WIN 32 (V4.0), licencia de actualización (CD-ROM) S7-200 Toolbox: TP-Designer for TP070, versión 1.0 (CD-ROM) Producto adicional para STEP 7-Micro/WIN: Librería de operaciones STEP 7-Micro/WIN 32, V1.1 (CD-ROM) S7-200 PC Access V1.0 (servidor OPC), licencia individual S7-200 PC Access V1.0 (servidor OPC), licencia multicopia	Nº de referencia 6ES7 810-2CC03-0YX0 6ES7 810-2CC03-0YX3 6ES7 850-2BC00-0YX0 6ES7 830-2BC00-0YX0 6ES7 840-2CC01-0YX0 6ES7 840-2CC01-0YX1

Procesadores de comunicaciones	Nº de referencia
CP 5411: Short AT ISA	6GK 1 541-1AA00
CP 5511: PCMCIA, tipo II	6GK 1 551-1AA00
CP 5611: Tarjeta PCI (versión 3.0 o superior)	6GK 1 561-1AA00
Manuales	№ de referencia
Manual del sistema de automatización S7-200 (alemán)	6ES7 298-8FA24-8AH0
Manual del sistema de automatización S7-200 (inglés)	6ES7 298-8FA24-8BH0
Manual del sistema de automatización S7-200 (francés)	6ES7 298-8FA24-8CH0
Manual del sistema de automatización S7-200 (español)	6ES7 298-8FA24-8DH0
Manual del sistema de automatización S7-200 (italiano)	6ES7 298-8FA24-8EH0
S7-200 Point-to-Point Interface Communication Manual (inglés/alemán)	6ES7 298-8GA00-8XH0
TP070 Touch Panel User Manual (inglés)	6AV6591-1DC01-0AB0
TP170 micro Operating Manual (inglés)	6AV6 691-1DB01-0AB0
CP 243-2 SIMATIC NET AS-Interface Master Manual (inglés)	6GK7 243-2AX00-8BA0
WinCC Flexible Micro User Manual (inglés)	6AV6 691-1AA01-0AB0

Anexo E

Cables, conectores de bus y repetidores	Nº de referencia
Cable MPI	6ES7 901-0BF00-0AA0
Cable para redes PROFIBUS	6XVI 830-0AH10
Conector de bus (con conector de interfaz de programación), salida vertical del cable	6ES7 972-0BB11-0XA0
Conector de bus (sin conector de interfaz de programación), salida vertical del cable	6ES7 972-0BA11-0XA0
Conector de bus RS-485 con salida del cable a 35° (sin conector para el puerto de programación)	6ES7 972-0BA40-0XA0
Conector de bus RS-485 con salida del cable a 35° (con conector para el puerto de programación)	6ES7 972-0BB40-0XA0
Bloque de conectores CPU 22x/EM, 7 terminales, extraíble	6ES7 292-1AD20-0AA0
Bloque de conectores CPU 22x/EM, 12 terminales, extraíble	6ES7 292-1AE20-0AA0
Bloque de conectores CPU 22x/EM, 14 terminales, extraíble	6ES7 292-1AF20-0AA0
Bloque de conectores CPU 22x/EM, 18 terminales, extraíble	6ES7 292-1AG20-0AA0
Repetidor RS-485 IP 20, aislado	6ES7 972-0AA00-0XA0
Paneles de operador	№ de referencia
Visualizador de textos TD 200	6ES7 272-0AA30-0YA0
Visualizador de textos TD 200C (panel frontal personalizable) ¹	6ES7 272-1AA10-0YA0
Panel de operador OP3	6AV3 503-1DB10T
Panel de operador OP7	6AV3 607-1JC20-0AX1
Panel de operador OP17	6AV3 617-1JC20-0AX1
Panel táctil TP070	6AV6 545-0AA15-2AX0
Panel táctil TP170 micro	6AV6 640-0CA01-0AX0
Varios	№ de referencia
Topes para raíles DIN	6ES5 728-8MAII
Bloque de 12 bornes de conexión para cableado de campo (CPUs 221 y 222),(paquete de 10)	6ES7 290-2AA00-0XA0
Kit de tapas de repuesto (contiene 4 de las tapas siguientes): tapas de bloques para 7, 12, 14, 18, 2x12, 2x14 terminales; tapa de acceso a la CPU, tapa de acceso a módulos de ampliación	6ES7 291-3AX20-0XA0
Simulador de 8 entradas	6ES7 274 1XF00-0XA0
Simulador de 14 entradas	6ES7 274 1XF00-0XA0
Simulador de 24 entradas	6ES7 274 1XK00-0XA0
Plantillas para el panel frontal del TD 200C (paquete con plantillas en blanco)	6ES7 272-1AF00-7AA0

1 Incluye una plantilla en blanco que se puede personalizar. Si necesita más plantillas en blanco, pida las plantillas para el panel frontal del TD 200C.

Tiempos de ejecución de las operaciones AWL

Los tiempos de ejecución de las operaciones son muy importantes en las aplicaciones con tiempos críticos. Estos tiempos figuran en la tabla F-2.

Consejo

Si utiliza los tiempos de ejecución indicados en la tabla F-2, es recomendable que considere los impactos de la circulación de corriente en la operación, del direccionamiento indirecto y del acceso a ciertas áreas de memoria. Estos factores pueden afectar directamente los tiempos de ejecución indicados en la tabla.

Impacto de la circulación de corriente

La tabla F-2 muestra el tiempo necesario para ejecutar la lógica o función de la operación cuando se aplica corriente en la operación (es decir, cuando el nivel superior de la pila es = 1 u ON).

Si no hay circulación de corriente, el tiempo de ejecución de la operación será de 1 µs.

Impacto del direccionamiento indirecto

La tabla F-2 muestra el tiempo necesario para ejecutar la lógica o función de la operación si los operandos y constantes se direccionan de forma indirecta.

Cuando las operaciones utilizan operandos direccionados de forma indirecta, el tiempo de ejecución de la operación se incrementará en 14 µs por cada uno de esos operandos.

Impacto del acceso a ciertas áreas de memoria

El acceso a ciertas áreas de memoria, tales como Al (entradas analógicas), AQ (salidas analógicas), L (memoria local) y AC (acumuladores), prolonga también el tiempo de ejecución.

La tabla F-1 muestra el tiempo adicional que se debe sumar al tiempo de ejecución de la operación cuando esas áreas de memoria se indiquen en un operando. a F-1 Tiempo adicional para acceder a ciertas áreas de memoria

Área de memoria	Tiempo de ejecución adicional:
Entrada analógica integrada (AI) Filtración desactivada Filtración activada	9,4 μs 8.4 μs
Entrada analógica de ampliación (AI) Filtración desactivada Filtración activada	134 μs 8,4 μs
Salida analógica integrada (AQ) Salida analógica de ampliación (AQ)	92 μs 48 μs
Memoria local (L)	2,8 μs
Acumuladores (AC)	2,8 μs

Operación	μ s	Operación
= Utilizando: I	0,24	ATT
SM, T, C, V, S, Q, M I	1,3 10,5	AW < =, =, >=, >, <, <>
+D	29	BCDI
-D	29	BITIM
* D	47	BIR Utilizando: Entradas integradas
/ D	250	Entradas en un módulo de ampliación
+1	25	BIW Utilizando: Salidas integradas
-1	25	Salidas en un módulo
*	37	DMP Total - tiampa básica -
/1	64	(longitud * ML)
=I Utilizando: Salidas integradas Salidas en un módulo de ampliación	16 24	Tiempo básico (longitud constante) Tiempo básico (longitud variable) Multiplicador de longitud (ML)
+R	Típ. 71 Máx. 99	BMD Total = tiempo básico + (longitud * ML) Tiempo básico (longitud constante)
-R	Típ. 72 Máx. 100	Tiempo básico (longitud variable) Multiplicador de longitud (ML)
*R	Típ. 56 Máx. 166	BMW Total = tiempo básico + (longitud * ML)
/R	Típ. 177 Máx. 230	Tiempo básico (longitud constante) Multiplicador de longitud (ML)
A Utilizando: I	0,22	BTI
L	6,1	CALL Sin utilizar parámetros:
AB < =, =, >=, >, <, <>	18	Utilizando parámetros: Total = tiempo básico + Σ
AD < =, =, >=, >, <, <>	27	(tiempo de operandos)
AENO	0,4	Tiempo básico Tiempo de operandos
Al Utilizando: Entradas integradas Entradas en un módulo de ampliación	15 21	bit (entrada, salida) byte (entrada, salida) palabra (entrada, salida) palabra debla (entrada,
ALD	0,22	salida)
AN Utilizando: I SM, T, C, V, S, Q, M L	0,22 0,72 6,1	Nota: Los operandos de salida se procesan durante el retorno desde la subrutina.
ANDB	19	
ANDD	30	Tiempo básico + N1 * ((ML1 * N2)
ANDW	25	+ ML2) Tiompo hásico
ANI Utilizando: Entradas integradas Entradas en un módulo de ampliación	15 21	Multiplicador de longitud 1 (ML1) Multiplicador de longitud 2 (ML2) N1 es la longitud de la cadena de
AR <=, =, >=, >, <, <>	29	origen N2 es la longitud del juego
AS=, <>Total = tiempo básico + (ML * N)		de caracteres
Tiempo básico Multiplicador de longitud (ML)	33 6.3	CITIM
N es el número de caracteres comparados		COS
ATCH	12	
ATH Total = tiempo básico + (longitud * ML)		CRET Con circulación de corriente Sin circulación de corriente
Tiempo básico (longitud constante) Tiempo básico (longitud variable)	23 31	CRETI Sin circulación de corriente
Multiplicador de longitud (ML)	10,2	CSCRE

5,7

10,6

8,6 9,5

Típ. 900 Máx. 0,8 0,2 3,1

10, 11 8, 7 10, 9 12, 10

Tabla F-2 Tiempos de ejecución de las operaciones AWL

Operación		μ s	Operación		μ s	
CTD	En un flanco de la entrada de contaje	27	IBCD			52
	De lo contrario	19	INCB			15
CTU	En un flanco de la entrada de contaje	31 19	INCD			22
CTUD	En un flanco de la entrada de contaie	37	INCW			20
0100	De lo contrario	24	INT	Tiempo típio	co con 1 interrupción	24
DECB		16	INVB			16
DECD		22	INVD			22
DECO		19	INVW			20
DECW		20	ITA			136
DISI		9	ITB			17
DIV		67	ITD			20
DLED		14	ITS			139
DTA		302	JMP			1,8
DTI		21	LBL			0,22
DTCH		12	LD	Utilizando:	1	0,22
DTR		Típ. 35 Máx. 40			SM, T, C, V, S, Q, M L	0,8 6
DTS		305	LDB <=	=, =, >=, >, <,	<>	18
ED		8	LDD <:	=, =, >=, >, <,	<>	27
ENCO		Máx. 24	LDI	Utilizando:	Entradas integradas	15
END	Sin circulación de corriente	0.2			Entradas en un modulo de ampliación	21
ENI		11	LDN	Utilizando:	1	0.3
EU		8			SM, T, C, V, S, Q, M L	0,9 6,1
EXP	Total - tiampo bácico + (lopaitud * ML)	Típ. 720 Máx. 860	LDNI	Utilizando:	Entradas integradas Entradas en un módulo de ampliación	15 21
1110	Tiempo básico Multiplicador de longitud (ML)	30 7	LDR<=	;, =, >=, >, <,	<>	29
FILL	Total = tiempo básico + (longitud * ML)		LDS			0,22
FND <	Tiempo básico (longitud constante) Tiempo básico (longitud variable) Multiplicador de longitud (ML) =, >, <>	15 29 3,2	LDS=, <> Total = tiempo básico + (ML * N) Tiempo básico Multiplicador de longitud (ML) N es el número de caracteres comparados		33 6,3	
	Tiempo básico + (longitud * ML)	39 6,5	LDW <	=, =, >=, >, <	.<>	24
	Multiplicador de longitud (ML)		LIFO		·	37
FOR bucles	Total = tiempo básico + (número de * ML) Tiempo básico	35 28	LN			Típ. 680 Máx. 820
	Multiplicador de bucles (ML)		LPP			0,22
GPA		16	LPS			0,24
HDEF		18	LRD			0,22
HSC		30	LSCR			7,3
HTA	-		MOVB			15
	Iotal = tiempo básico + (longitud * ML) Tiempo básico (longitud constante)	20 28	MOVD			20
	Tiempo básico (longitud variable)	5,2	MOVR			20
Multiplicador de longitud (ML)			MOVW	1		18
			MUL			37
			NETR			99

Operación	μ s	Operación μs	
NETW Total = tiempo básico + (ML * N) Tiempo básico Multiplicador de longitud (ML) N es el número de bytes a enviar	95 4	RLongitud=1 indicada como constante Tiempo básico para contadores (C)9,3Tiempo básico para temporizadores (T)16Tiempo básico para temporizadores (T)2,9	
NEXT	0	De lo contrario: Total = tiempo básico 8,6	
NOP	0,22	+ (longitud * ML) 8,3	
NOT	0,22	Tiempo básico para contadores (C) 14 Tiempo básico para temporizadores 51	
O Utilizando: I SM, T, C, V, S, Q, M L	0,22 0,72 6,4	(T) Tiempo básico para todos los demás 9,9 Multiplicador de longitud (ML) 0,5	
OB < =, =, >=, >, <, <>	18	para el operando C Multiplicador de longitud (ML) 17	
OD < =, =, >=, >, <, <>	26	para el operando T	
OI Utilizando: Entradas integradas Entradas en un módulo de ampliación	15 21	Multiplicador de longitud (ML) para todos los demás Si la longitud se ha guardado como variable, sumar al tiempo básico	
OLD	0,22	RCV 51	
ON Utilizando: I SM T C V S O M	0,22	RET 16	
ONI Utilizando: Entradas integradas Entradas en un módulo de amplicación	6,4 15 21	RI Total = tiempo básico + (longitud * ML) Tiempo básico 8,9 Multiplicador de longitud (ML) 13 utilizando salidas integradas 21	
	20	Multiplicador de longitud (ML)	
OR<=, =, >=, >, <, <>	29	de ampliación	
	19	Si la longitud se ha guardado como	
	29	Variable, sumar al tiempo basico	
OS=, < > Total = tiempo básico + (ML * N) Tiempo básico	33 6,3	RLB Total = tiempo basico + (ML * N) Tiempo básico 23 Multiplicador de longitud (ML) 0,2 N es el contaje de desplazamiento 0	
Multiplicador de longitud (ML) N es el número de caracteres comparados		RLD Total = tiempo básico + (ML * N) Tiempo básico 28 Multiplicador de longitud (ML) 1,4 N os el contrio do desplazamiento 14	
OW < =, =, >=, >, <, <>	24		
PID Típico Cambio de manual a automático Recálculo coeficiente Autosintonización	400 Máx. 800 Máx. 770 Máx. 650	RLW Total = tiempo basico + (ML * N) Tiempo básico 27 Multiplicador de longitud (ML) 0,9 N es el contaje de desplazamiento	
PLS: Utilizando: PWM PTO monosegmente	31 36	ROUND Típ. 5 Máx.	56 . 110
PTO multisegmento	50	RRBTotal = tiempo básico + (ML * N) Tiempo básico22 0,5Multiplicador de longitud (ML) N es el contaje de desplazamiento0,5	
		RRD Total = tiempo básico + (ML * N) Tiempo básico 28 Multiplicador de longitud (ML) 1,7 N es el contaje de desplazamiento 1	

Operad	ción	μ
RRW	Total = tiempo básico + (ML * N) Tiempo básico Multiplicador de longitud (ML) N es el contaje de desplazamiento	26 1,2
RTA	Total = tiempo básico + (ML * N) Tiempo básico (para el primer dígito del resultado x)	149
	Multiplicador de longitud (ML) N es el número de dígitos adicionales en el resultado	96
RTS	Total = tiempo básico + (ML * N) Tiempo básico (para el primer dígito del resultado)	154
	N es el número de dígitos adicionales en el resultado	90
S	Para longitud = 1, indicada como constante	2,9
	De lo contrario: Total = tiempo básico + (longitud * ML) Tiempo básico Multiplicador de longitud (ML)	14 0,5
	Si la longitud se almacena como variable, sumar al tiempo básico	17
SCAT	Total = tiempo básico + (ML * N) Tiempo básico Multiplicador de longitud (ML) N es el número de caracteres anexados	30 5,3
SCPY	Total = tiempo básico + (ML * N) Tiempo básico Multiplicador de longitud (ML) N es el número de caracteres	27 4,6
copiado	DS	0.04
SCRE		0,24
SCRI		10
SEG	— /	15
SEND	Tiempo max. = Tiempo básico + ((N1-N2) * LM2) + (N2 * LM1)	39
	Tiempo básico Multiplicador de longitud 1 (ML1) Multiplicador de longitud 2 (ML2) N1 es la longitud de la cadena de origen N2 es la longitud de la cadena de búsqueda	7,6 6,8
SHRB	Total = tiempo básico + (longitud * ML1) + ((longitud /8) * ML2) Tiempo básico (longitud constante) Tiempo básico (longitud variable) Multiplicador de longitud 1 (ML1) Multiplicador de longitud 2 (ML2)	48 52 1,0 1,5
SI	Total = Tiempo básico + (longitud * ML) Tiempo básico ML utilizando salidas integradas ML utilizando salidas de ampliación Si la longitud se almacena como variable, sumar al tiempo básico	8,9 13 21 17

Opera	ción	μ s
SIN		Típ. 900 Máx. 1070
SLB	Total = tiempo básico + (ML * N) Tiempo básico Multiplicador de longitud (ML) N es el contaje de desplazamiento	23 0,2
SLD	Total = tiempo básico + (ML * N) Tiempo básico Multiplicador de longitud (ML) N es el contaje de desplazamiento	29 1,1
SLEN		21
SLW	Total = tiempo básico + (ML+ N) Tiempo básico Multiplicador de longitud (ML) N es el contaje de desplazamiento	27 0,6
SPA		371
SQRT		Típ, 460 Máx. 550
SRB	Total = tiempo básico + (ML+ N) Tiempo básico Multiplicador de longitud (ML) N es el contaje de desplazamiento	22 0,6
SRD	Total = tiempo básico + (ML+ N) Tiempo básico Multiplicador de longitud (ML) N es el contaje de desplazamiento	28 1,5
SRW	Total = tiempo básico + (ML+ N) Tiempo básico Multiplicador de longitud (ML) N es el contaje de desplazamiento	27 1
SSCPY	 Total = tiempo básico + (ML * N) Tiempo básico Multiplicador de longitud (ML) N es el número de caracteres copiados 	42 5.3
STD	Total = tiempo básico + (ML * ×N) Tiempo básico (para el primer carácter de origen)	69
	Multiplicador de longitud (ML) N es el número de caracteres de origen adicionales	27
STI	Total = tiempo básico + (ML * ×N) Tiempo básico (para el primer carácter de origen) Multiplicador de longitud (ML)	58 27
	N es el número de caracteres de origen adicionales	

Operad	ión	μ s
STOP	Sin circulación de corriente	4
STR	Total = tiempo básico + (ML * ×N) Tiempo básico (para el primer carácter de origen)	51
	Multiplicador de longitud (ML) N es el número de caracteres de origen adicionales	81
SWAP		17
TAN		Típ. 1080 Máx. 1300
TODR		331
TODRX	Corrección del horario de verano	Típ. 391 Típ. 783
TODW		436
TODW	X	554
TOF		36
TON		33
TONR		32
TRUNC	;	Típ. 53 Máx. 106
WDR		7
XMT		42
XORB		19
XORD		29
XORW		25

Breviario del S7-200

Este anexo contiene informaciones sobre los temas siguientes:

- Marcas especiales
- Descripción de los eventos de interrupción
- Resumen de las áreas de memoria y funciones de las CPUs S7-200
- Contadores rápidos HSC0, HSC1, HSC2, HSC3, HSC4, HSC5
- Operaciones S7-200

Tabla G-1	Marcas especiales	

Marcas esp	peciales		
SM0.0	Siempre ON	SM1.0	Resultado de la operación = 0
SM0.1	Primer ciclo	SM1.1	Desbordamiento o valor no válido
SM0.2	Datos remanentes perdidos	SM1.2	Resultado negativo
SM0.3	Alimentación	SM1.3	División por 0
SM0.4	30 s OFF / 30 s ON	SM1.4	Tabla llena
SM0.5	0,5 s OFF / 0,5 s ON	SM1.5	Tabla vacía
SM0.6	OFF 1 ciclo / ON 1 ciclo	SM1.6	Error de conversión de BCD a binario
SM0.7	Selector en posición RUN	SM1.7	Error de conversión ASCII a hexadecimal

Nº de evento	Descripción de la interrupción	Prioridad	Grupo de prioridad	
8	Puerto 0: Recibir carácter		0	
9	Puerto 0: Transmisión finalizada	1	0	
23	Puerto 0: Recepción de mensajes finalizada	Comunicación	0	
24	Puerto 1: Recepción de mensajes finalizada	(más alta)	1	
25	Puerto 1: Recibir carácter	1	1	
26	Puerto 1: Transmisión finalizada	1	1	
19	PTO 0 interrupción completa		0	
20	PTO 1 interrupción completa	1	1	
0	I0.0, flanco positivo	1	2	
2	I0.1, flanco positivo	1	3	
4	I0.2, flanco positivo	1	4	
6	I0.3, flanco positivo	1	5	
1	I0.0, flanco negativo		6	
3	I0.1, flanco negativo	1	7	
5	I0.2, flanco negativo		8	
7	I0.3, flanco negativo		9	
12	HSC0 CV=PV (valor actual = valor predeterminado)		10	
27	HSC0 cambio de sentido		11	
28	HSC0, puesto a 0 externamente	Digital (media)	12	
13	HSC1 CV=PV (valor actual = valor predeterminado)		13	
14	HSC1, cambio de sentido		14	
15	HSC1 puesto a 0 externamente		15	
16	HSC2 CV=PV		16	
17	HSC2 cambio de sentido		17	
18	HSC2 puesto a 0 externamente		18	
32	HSC3 CV=PV (valor actual = valor predeterminado)		19	
29	HSC4 CV=PV (valor actual = valor predeterminado)		20	
30	HSC4 cambio de sentido		21	
31	HSC4, puesto a 0 externamente		22	
33	HSC5 CV=PV (valor actual = valor predeterminado)		23	
10	Interrupción temporizada 0		0	
11	Interrupción temporizada 1	Temporización	1	
21	Interrupción temporizador T32 CT=PT	(más baja)	2	
22	Interrupción temporizador T96 CT=PT	3		

Tabla G-2	Prioridades de los eventos de interrupción	

Anexo G

Descripción		CPU 221	CPU 222	CPU 224	CPU 224XP	CPU 226
Tamaño del programa con edición en modo sin edición en modo	de usuario RUN RUN	4096 bytes 4096 bytes	4096 bytes 4096 bytes	8192 bytes 12288 bytes	12288 bytes 16384 bytes	16384 bytes 24576 bytes
Tamaño de los datos	de usuario	2048 bytes	2048 bytes	8192 bytes	10240 bytes	10240 bytes
Imagen del proceso o entradas	de las	l 0.0 a l15.7	10.0 a 115.7	10.0 a 115.7	10.0 a 115.7	10.0 a 115.7
Imagen del proceso o salidas	de las	Q0.0 a Q15.7				
Entradas analógicas (sólo lectura)		AIW0 a AIW30	AIW0 a AIW30	AIW0 a AIW62	AIW0 a AIW62	AIW0 a AIW62
Salidas analógicas (sólo escritura)		AQW0 a AQW30	AQW0 a AQW30	AQW0 a AQW62	AQW0 a AQW62	AQW0 a AQW62
Memoria de variables	s (V)	VB0 a VB2047	VB0 a VB2047	VB0 a VB8191	VB0 a VB10239	VB0 a VB10239
Memoria local (L) ¹		LB0 a LB63				
Área de marcas (M)		M0.0 a M31.7				
Marcas especiales (S	SM)	SM0.0 a SM179.7	SM0.0 a SM299.7	SM0.0 a SM549.7	SM0.0 a SM549.7	SM0.0 a SM549.7
Sólo lectura		SM0.0 a SM29.7				
Temporizadores		256 (T0 a T255)				
Retardo a la conexión memoria	n con 1 ms	T0, T64				
	10 ms	T1 a T4 y T65 a T68				
	100 ms	T5 a T31 y T69 a T95				
Retardo a la conexión	n/	T22 T06				
desconexion	1 ms	132, 190 T33 a T36 y				
	10 113	T97 a T100				
	100 ms	T37 a T63 y T101 a T255				
Contadores		C0 a C255				
Contadores rápidos		HC0 a HC5				
Relés de control secu	uencial (S)	S0.0 a S31.7				
Acumuladores		AC0 a AC3				
Saltos a metas		0 a 255				
Llamadas a subrutinas		0 a 63	0 a 63	0 a 63	0 a 63	0 a 127
Rutinas de interrupcie	ón	0 a 127				
Detectar flanco positivo/negativo		256	256	256	256	256
Lazos PID		0 a 7	0 a 7	0 a 7	0 a 7	0 a 7
Puertos		Puerto 0	Puerto 0	Puerto 0	Puerto 0, puerto 1	Puerto 0, puerto 1

Tabla G-3 Áreas de memoria y funciones de las CPUs S7-200

 Puertos
 Puerto 0
 Puerto 1

 1
 STEP 7-Micro/WIN (versión 3.0 o posterior) reserva LB60 a LB63.

NA = 11-	HSC0		HSC3	HSC4	HSC4		HSC5	
Mode	Reloj	Sentido	Puesta a 0	Reloj	Reloj	Sentido	Puesta a 0	Reloj
0	10.0			10.1	10.3			10.4
1	10.0		10.2		10.3		10.5	
2								
3	10.0	I0.1			10.3	10.4		
4	10.0	I0.1	10.2		10.3	10.4	10.5	
5								
	HSC0				HSC4			
Mode	Reloj adelante	Reloj atrás	Puesta a 0		Reloj adelante	Reloj atrás	Puesta a 0	
6	10.0	10.1			10.3	10.4		
7	10.0	I0.1	10.2		10.3	10.4	10.5	
8								
	HSC0				HSC4	HSC4		
Mode	Fase A	Fase B	Puesta a 0		Fase A	Fase B	Puesta a 0	
9	10.0	10.1			10.3	10.4		
10	10.0	I0.1	10.2		10.3	10.4	10.5	
11								
	HSC0			HSC3				
Mode	Reloj			Reloj				
12	Q0.0			Q0.1				

Tabla G-4 Contadores rápidos HSC0, HSC3, HSC4 y HSC5

Tabla G-5 Contadores rápidos HSC1 y HSC2

	HSC1			HSC2				
Mode	Reloj	Reloj atrás	Puesta a 0	Aranque	Reloj	Sentido	Puesta a 0	Aranque
0	10.6				11.2			
1	10.6		l1.0		11.2		11.4	
2	10.6		l1.0	11.1	11.2		11.4	l1.5
3	10.6	10.7			11.2	11.3		
4	10.6	10.7	l1.0		11.2	11.3	11.4	
5	10.6	10.7	l1.0	11.1	11.2	11.3	11.4	l1.5
	HSC1				HSC2			
Mode	Reloj adelante	Reloj atrás	Puesta a 0	Aranque	Reloj adelante	Reloj atrás	Puesta a 0	Aranque
Mode 6	Reloj adelante	Reloj atrás	Puesta a 0 11.0	Aranque	Reloj adelante	Reloj atrás	Puesta a 0	Aranque
Mode 6 7	Reloj adelante 10.6 10.6	Reloj atrás 10.7 10.7	Puesta a 0 11.0 11.0	Aranque	Reloj adelante 11.2 11.2	Reloj atrás 11.3 11.3	Puesta a 0 11.4	Aranque
Mode 6 7 8	Reloj adelante 10.6 10.6 10.6	Reloj atrás 10.7 10.7 10.7	Puesta a 0 11.0 11.0 11.0	Aranque	Reloj adelante 11.2 11.2 11.2	Reloj atrás 11.3 11.3 11.3	Puesta a 0 11.4 11.4	Aranque
Mode 6 7 8 Mode	Reloj adelante 10.6 10.6 10.6 Fase A	Reloj atrás 10.7 10.7 10.7 Fase B	Puesta a 0 11.0 11.0 11.0 Puesta a 0	Aranque I1.1 Aranque	Reloj adelante 11.2 11.2 11.2 11.2 Fase A	Reloj atrás 11.3 11.3 11.3 Fase B	Puesta a 0 11.4 11.4 Puesta a 0	Aranque I11.5 Aranque
Mode 6 7 8 Mode 9	Reloj adelante 10.6 10.6 10.6 10.6 10.6 10.6	Reloj atrás 10.7 10.7 10.7 10.7 10.7 10.7 10.7	Puesta a 0 11.0 11.0 11.0 Puesta a 0	Aranque I1.1 Aranque	Reloj adelante 11.2 11.2 11.2 11.2 11.2 11.2 11.2	Reloj atrás 11.3 11.3 11.3 11.3 11.3 11.3 11.3	Puesta a 0 11.4 11.4 Puesta a 0	Aranque I1.5 Aranque
Mode 6 7 8 Mode 9 10	Reloj adelante 10.6 10.6 10.6 10.6 10.6 10.6	Reloj atrás 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	Puesta a 0 11.0 11.0 11.0 Puesta a 0 11.0	Aranque I1.1 Aranque	Reloj adelante 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2	Reloj atrás I1.3 I1.3 I1.3 I1.3 I1.3 I1.3 I1.3	Puesta a 0 11.4 11.4 Puesta a 0 11.4	Aranque I1.5 Aranque

Anexo G

eanas	Opera	aciones aritn	néticas, incrementar y decrementar
Cargar Cargar directamente	+l +D	IN1, OUT IN1, OUT	Sumar enteros, enteros dobles o números reales
Cargar valor negado	+R	IN1, OUT	IN1+OUT=OUT
AND Y directa	-I -D -R	IN1, OUT IN1, OUT IN1, OUT	Restar enteros, enteros dobles o números reales OUT-IN1=OUT
Y-NO Y-NO directa	MUL	IN1, OUT	Multiplicar enteros (16*16->32)
SM O directa	*D *R	IN1, OUT IN1, OUT IN1, IN2	Multiplicar enteros, enteros dobles o números reales IN1 * OUT = OUT
O-NO directa	DIV	IN1, OUT	Dividir enteros (16/16->32)
Cargar resultado de la comparación de bytes IN1 (x:<, <=,=, >=, >, <>I) IN2	/I /D,	IN1, OUT IN1, OUT	Dividir enteros, enteros dobles o números reales
Combinar mediante Y el resultado de la	/K	INT, OUT	OOT / INT = OOT

A	Bit	AND
AI	Bit	Y directa
AN	Bit	Y-NO
ANI	Bit	Y-NO directa
0	Bit	SM
	Bit	
ON	Bit	O-NO directa
LDBx	IN1, IN2	Cargar resultado de la comparación de bytes IN1 (x:<, <=,=, >=, >, <>I) IN2
ABx	IN1, IN2	Combinar mediante Y el resultado de la
		comparación de bytes IN1 (x:<, <=,=, >=, >, <>) IN2
OBx	IN1, IN2	Combinar mediante O el resultado de la comparación de bytes IN1 (x:<, <=,=, >=, >, <>) IN2
LDWx	IN1, IN2	Cargar resultado de la comparación de palabras IN1 (x:<, <=,=, >=, >, <>) IN2
AWx	IN1, IN2	Combinar mediante Y el resultado de la comparación de palabras IN1 (x:<, <=,=, >=, >, <>)I N2
OWx	IN1, IN2	Combinar mediante O el resultado de la comparación de palabras IN1 (x:<, <=,=, >=, >, <>) IN2
LDDx	IN1, IN2	Cargar resultado de la comparación de palabras dobles IN1 (x:<, <=,=, >=, >, <>) IN2
ADx	IN1, IN2	Combinar mediante Y el resultado de la comparación de palabras dobles IN1 (x:<, <=,=, >=, >, <>)IN2
ODx	IN1, IN2	Combinar mediante O el resultado de la comparación de palabras dobles IN1 (x:<, <=,=, >=, >, <>) IN2
LDRx	IN1, IN2	Cargar resultado de la comparación de números reales IN1 (x:<, <=,=, >=, >, <>) IN2
ARx	IN1, IN2	Combinar mediante Y el resultado de la comparación de números reales IN1 (x:<, <=,=, >=, >, <>) IN2
ORx	IN1, IN2	Combinar mediante O el resultado de la comparación de números reales IN1 (x:<, <=,=, >=, >, <>) IN2
NOT		Negar primer valor de pila
EU		Detectar flanco positivo
ED		Detectar flanco negativo
= =l	Bit Bit	Asignar Asignar directamente
S	Bit, N	Poner a 1 (activar)
R	Bit, N	Poner a 0 (desactivar)
SI	Bit, N	Poner a 1 directamente
KI	BIT, IN	Poner a 0 directamente
LDSx	IN1, IN2	Cargar el resultado de la comparación de cadenas IN1 (x: =, <>) IN2
ASx	IN1, IN2	Combinar mediante Y el resultado de la comparación de cadenas IN1 (x: =, <>) IN2
OSx	IN1, IN2	Combinar mediante O el resultado de la comparación de cadenas IN1 (x: =, <>) IN2
ALD OLD		Combinar primer y segundo valor mediante Y Combinar primer y segundo valor mediante O
LPS		Duplicar primer valor de la pila
		Copiar segundo valor de la pila
		Sagar primar valar da la sila
LDS	N	Sacar primer valor de la pila Cargar pila
	N	Sacar primer valor de la pila Cargar pila

Operaciones booleanas

Bit

Bit

Bit

Bit

LD

LDI

LDN

LDNI

-	IN1, OUT	Restar enteros, enteros dobles o números
-D -R	IN1, OUT IN1, OUT	OUT-IN1=OUT
MUL	IN1, OUT	Multiplicar enteros (16*16->32)
*	IN1, OUT	Multiplicar enteros, enteros dobles o
*D	IN1, OUT	números reales
*R	IN1, IN2	IN1 * OUT = OUT
DIV	IN1, OUT	Dividir enteros (16/16->32)
//	IN1, OUT	Dividir enteros, enteros dobles o números
/D, /R	IN1, OUT	OUT / IN1 = OUT
SQRT	IN, OUT	Raíz cuadrada
LN	IN, OUT	Logaritmo natural
EXP	IN, OUT	Exponencial natural
SIN	IN, OUT	Seno
COS	IN, OUT	Coseno
TAN	IN, OUT	Tangente
INCB	OUT	
INCW	OUT	Incrementar byte, palabra o palabra doble
INCD	OUT	
DECB	OUT	
DECW	OUT	Decrementar byte, palabra o palabra doble
DECD		
PID	TBL, LOOP	
Opera	ciones de te	emporizacion y contaje
TON	Txxx, PT	Temporizador como retardo a la conexión
TOP	Txxx, PT Txxx, PT	Temporizador como retardo a la desconexión Temporizador como retardo a la conexión con memoria
BITIM	OUT	Capturar intervalo inicial
CITIM	IN, OUT	Calcular intervalo
CTU	Cxxx, PV	Incrementar contador
CTUD	Cxxx, PV	Incrementar/decrementar contador
Opera	ciones del r	eloi de tiempo real
TODR	Т	Leer reloi de tiempo real
TODW	т	Escribir reloj de tiempo real
TODRX	т	Leer reloj de tiempo real ampliado
TODWX	Т	Ajustar reloj de tiempo real ampliado
Opera	ciones de co	ontrol del programa
FIN		Fin condicionado del programa
STOP		Pasar a STOP
WDR		Borrar temporizador de vigilancia (300 ms)
JMP	N	Saltar a meta
LBL	N	Definir meta
CALL	N [N1,]	Llamar a subrutina [N1, hasta 16 parámetros opcionales]
CRET		Retorno condicionado de subrutina
FOR FINAL NEXT	INDX, INIT,	Bucle FOR/NEXT
LSCR	N	
SCRT	Ν	Cargar, transición, fin condicionado y fin del
CSCRE		relé de control secuencial
SCRE		
COILE		

Opera rotació	ciones de tr ón	ansferencia, desplazamiento y
MOVB MOVW MOVD MOVR	IN, OUT IN, OUT IN, OUT IN, OUT	Transferir bytes, palabras, palabras dobles o números reales
BIR BIW	IN, OUT IN, OUT	Lectura y transferencia directa de bytes Escritura y transferencia directa de bytes
BMB BMW BMD	IN, OUT, N IN, OUT, N IN, OUT, N	Transferir bytes, palabras o palabras dobles en bloque
SWAP	IN	Invertir bytes de una palabra
SHRB S_BIT, N	DATA, I	Registro de desplazamiento
SRB SRW SRD	out, n out, n out, n	Desplazar byte, palabra o palabra doble a la derecha
SLB SLW SLD	OUT, N OUT, N OUT, N	Desplazar byte, palabra o palabra doble a la izquierda
RRB RRW RRD	out, n out, n out, n	Rotar byte, palabra o palabra doble a la derecha
RLB RLW RLD	out, n out, n out, n	Rotar byte, palabra o palabra doble a la izquierda
Opera	ciones lógic	as
ANDB ANDW ANDD	IN1, OUT IN1, OUT IN1, OUT	Combinación Y con bytes, palabras o palabras dobles
ORB ORW ORD	IN1, OUT IN1, OUT IN1, OUT	Combinación O con bytes, palabras o palabras dobles
XORB XORW XORD	IN1, OUT IN1, OUT IN1, OUT	Combinación O-exclusiva con bytes, palabras o palabras dobles
INVB INVW INVD	OUT OUT OUT	Invertir byte, palabra o palabra doble (complemento a 1)
Opera	ciones con	cadenas
SLEN SCAT SCPY SSCPY N, OUT CFND OUT SFND OUT	IN, OUT IN, OUT IN, OUT IN, INDX, IN1, IN2, IN1, IN2,	Longitud de cadena Concatenar cadena Copiar cadena Copiar subcadena de cadena Buscar carácter en cadena Buscar cadena en cadena

Operaciones de tabla, de búsqueda y de conversión					
ATT	DATA, TBL	Registrar valor en tabla			
LIFO FIFO	TBL, DATA TBL, DATA	Obtener datos de la tabla			
FND= INDX	TBL, PTN,				
FND<> INDX	TBL, PTN,	Buscar valor en tabla que concuerde con la			
FND< INDX	TBL, PTN,	comparacion			
INDX	IBL, PIN,				
FILL	IN, OUT, N	Inicializar memoria			
BCDI IBCD	OUT OUT	Convertir BCD en entero Convertir entero en BCD			
BTI	IN, OUT	Convertir byte en entero			
ITB	IN, OUT	Convertir entero en byte			
DTI	IN, OUT	Convertir entero doble en entero			
DTR	IN, OUT	Convertir palabra doble en real			
	IN, OUT	Convertir real en entero doble			
LEN					
LEN	IN, OUT,	Convertir hexadecimal en ASCI			
FMT	IN, OUI,	Convertir entero en ASCII			
DIA FM	IN, OUI,	Convertir entero doble en ASCII			
RTA FM	IN, OUT,	Convertir real en ASCII			
DECO ENCO	IN, OUT IN, OUT	Decodificar Codificar			
SEG	IN, OUT	Generar configuración binaria de 7 segmentos			
ITS	IN, FMT,	Convertir entero en cadena			
DTS	IN, FMT,	Convertir entero doble en cadena			
RTS OUT	IN, FMT,	Convertir real en cadena			
STI OUT	STR, INDX,	Convertir subcadena en entero			
STD OUT	STR, INDX,	Convertir subcadena en entero doble			
STR OUT	STR, INDX,	Convertir subcadena en real			
Operac	ciones de in	terrupción			
CRETI		Retorno condicionado desde rutina de interrupción			
ENI DISI		Habilitar todos los eventos de interrupción Inhibir todos los eventos de interrupción			
ATCH	INT. EVNT	Asociar interrupción			
DTCH	EVNT	Desasociar interrupción			
Operac	ciones de co	omunicación			
XMT	TBL, PORT	Transmitir mensaje (Freeport)			
KUV	IBL, PORT	Recipir mensaje (Freeport)			
NETR NETW	TBL, PORT TBL, PORT	Leer de la red Escribir en la red			
GPA T	ADDR,POR	Leer dirección de puerto			
SPA T	ADDR,POR	Ajustar dirección de puerto			
Operad	ciones con d	contadores rápidos			
HDEF	HSC, modo	Definir modo para contador rápido			
HSC	N	Activar contador rápido			
PLS	Q	Salida de impulsos			
	-				

Índice alfabético

Α

Abrir editor de programas, 11 tabla de estado, 75 Acceder a datos del S7-200, 37 datos del S7-200, 30 direccionamiento directo, 30 ACCEL_TIME (tiempo de aceleración), módulo de posicionamiento EM 253, 272 Acceso a palabras, 30 Acción derivativa, algoritmo PID, 162 Accionamientos. Véase MicroMaster Activar contador rápido (HSC), 131 ejemplo, 146 Actualización asíncrona, Modulación por ancho de impulsos (PWM), 150 Actualización síncrona, Modulación por ancho de impulsos (PWM), 150 Actualizar, forma de onda PWM, 150 Acumuladores, 33 Adaptador de módem nulo, 247 Advertencias, autosintonía PID, 399 Al. Véase entradas analógicas (Al) Aislamiento red, 235 reglas de cableado, 24 Ajustar byte de control de los contadores rápidos, 137 dirección remota del S7-200, 227 fecha, 90 hora, 90 potenciómetros analógicos, 56 valores actual y predeterminado de los contadores rápidos, 138 velocidad de transferencia, 225 Ajustar dirección de puerto, 108 Ajustar reloj de tiempo real, 90 Ajustar reloj de tiempo real ampliado, 91 Aiustes de comunicación. STEP 7-Micro/WIN. 10 Alarmas, regulación PID, 165 Algoritmo PID acción derivativa, 162 término integral, 161 término proporcional, 161 Alimentación, 8, 19 Almacenamiento permanente del programa, 44 Almacenar, datos del programa S7-200, 40 American Bureau of Shipping (ABS) Maritime Agency, 404 Ampliación, cables, 474 Anidado, subrutinas, 218 AQ. Véase salidas analógicas (AQ) Árbol de operaciones, 11, 64 Archivo de datos maestros (GSD), EM 277 PROFIBUS-DP, 454-455 Área de contadores (C), 32 Área de la memoria de variables (V), 31 Área de marcas (M), 31

guardar tras un corte de alimentación, 43 Área de marcas especiales (SM), 34 potenciómetros analógicos, 56 Área de marcas no volátil, 43 Área de memoria de las entradas (I), 31 Área de memoria de las salidas (Q), 31 Área de memoria local (L), 34 Área de relés de control secuencial (S), 35 Área de temporizadores (T), 32 Área de trabajo, ubicación, módulo de posicionamiento EM 253, 323 Áreas de memoria borrar, 55 breviario, 515 CPU, 80 rangos de operandos, 81 Áreas remanentes, 40 Aritmética de enteros, ejemplo, 155 Aritmética en coma flotante, ejemplo, 155 Armario eléctrico, montaje, 22 Arranque, contadores rápidos, 136 Asignación de pines, puerto de comunicación, 237 Asignar, 85 direcciones, 73 direcciones de estación, 225 valores iniciales, 73 Asignar direcciones al S7-200, Modbus, 369 Asignar directamente, 85 Asignar memoria, asistente de registros de datos, 388 Asistente AS-i, 471 Asistente de control de posición, 147, 283 PTOx_ADV, 280 PTOx_CTRL, 276 PTOx_LDPOS, 279 PTOx_MAN, 278 PTOx_RUN, 277 Asistente de módems, 245 módulo Módem EM 241, 332 Asistente de operaciones HSC, 132 NETR, NETW, 93 Asistente de recetas, 377 asignar la memoria, 379 cargar en CPU, 380 operaciones, 381 terminología, 377 Asistente de registros de datos asignar memoria, 388 cargar el proyecto en la CPU, 389 CPUs S7-200 soportadas, 384 DATx_WRITE, 391 ejemplo de aplicación, 384 Explorador S7-200, 390 resumen breve, 384 terminología, 385 utilización, 385 Asistentes AS-i, 471 control de posición, 283

de módems, 332 Ethernet, 467 HSC, 132 Internet, 470 módems, 245 NETR, NETW, 93 PID, 159 TD 200, 6 Asociar, interrupciones a contadores rápidos, 139 Asociar interrupción, 167 Autohistéresis, 397 Autosintonía, PID, 394 Autosintonía PID advertencias, 399 autohistéresis, 397 conceptos básicos, 394 condiciones de error, 399 desviación, 397 PV fuera de rango, 399 requisitos previos, 397 secuencia, 398

B

Barra de navegación, 64 Barras de herramientas, 64 Bias, lazo PID, 159, 161 Bloque de datos, 63 Bloque de sistema, 63 Bloque de terminales extraer, 23 reinsertar, 23 Borrar evento de interrupción, 167 Borrar primer registro de la tabla, 204 ejemplo, 204 Borrar temporizador de vigilancia, 181 ejemplo, 182 Borrar último registro de la tabla, 204 ejemplo, 205 Breviario, 513 Breviario de operaciones, 517 Bureau Veritas (BV) Maritime Agency, 404 Bus de ampliación, errores de bus (SMW98), 500 Buscar cadena en cadena, 201 Buscar carácter en cadena, 201 Buscar valor en tabla, 207 ejemplo, 209 Búsqueda del RP, 320-324 Byte de comando, módulo de posicionamiento EM 253, 316 Byte de control, ajustar para los contadores rápidos, 137 Byte de estado, contadores rápidos, 139

С

Cable de ampliación, 474 instalación, 474 Cable de programación, 5 Cable multimaestro, 9 Cable multimaestro PPI

configurar, 245 configurar para modo Freeport, 246 módem, 247 módem radio, 248 modo Freeport, 242 RS-232, 242 seleccionar, 224, 238 velocidad de transferencia, 247 módem radio, 248 Cable multimaestro PPI/USB configuración del puerto, 234 seleccionar, 224 Cable multimaestro RS-232/PPI configuración del puerto, 234 configurar para HyperTerminal, 255-499 datos técnicos, 475 interruptores DIP, 477 Cable multimaestro USB/PPI, número de referencia, 475 Cable PPI multimaestro, 5 Cableado, 24, 25 Cables cerrar, 237 configurar Freeport, 246 módem remoto. 245 multimaestro RS-232/PPI, 475 multimaestro USB/PPI, 475 números de referencia, 504 polarizar, 237 red, 235, 236 seleccionar, 224 Cadenas, representación, 36 formato, 35 Calcular requisitos de alimentación, 481-483 tiempo de rotación del 'token' (testigo), 249 Calibración EM 231, 426 EM 235, 426 entradas, 426 Cambiar sentido de los contadores rápidos. 144 valor actual en contador rápido, 145 valor predeterminado en contador rápido, 145 Captura de impulsos, 50, 51 Cargar nuevo valor actual en contador rápido, 145 nuevo valor predeterminado en contador rápido, 145 Cargar en CPU programa, 15, 41 recetas, 41 registros de datos, 41 Cargar en PG, programa, 41 Cargar pila, 87 Cargar relé de control secuencial, 186 Cargas de lámparas, reglas, 26 Cargas inductivas, 26 Cartucho de memoria, 40, 473 códigos de error, 486 descargas electroestáticas, 40

guardar el programa, 42 número de referencia, 504 restablecer el programa, 43 Cartucho de pila, 473 número de referencia, 504 Cartuchos, números de referencia, 504 Cerrar, cable de red, 237 Ciclo, 28 determinar el número, 264 temporizadores, 212 Circuito de protección, 405 Circuitos de seguridad, diseñar, 60 Circuitos de supresión, 26 Circulación de corriente, parámetro de subrutina, 219 Codificar, 125 ejemplo, 125 Códigos de error, 486 errores de programación en el tiempo de ejecución, 487 errores fatales, 486 módulo de posicionamiento EM 253, 309 operación PWMx_RUN, 270 operaciones del módulo de posicionamiento EM 253, 308 operaciones del protocolo USS, 361 operaciones PTO, 280 violación de reglas de compilación, 488 Códigos de país, soportados por el EM 241, 326 Coherencia de búfer, PROFIBUS, 451 Coherencia de bytes, PROFIBUS, 451 Coherencia de datos, PROFIBUS, 451 Coherencia de palabras, PROFIBUS, 451 Cola de espera, rutinas de interrupción, 171 comunicación, 171 interrupciones de E/S, 171 interrupciones temporizadas, 171 Comandos de movimiento, módulo de posicionamiento EM 253, 317 Combinación con O, ejemplo, 177 Combinación con O-exclusiva, ejemplo, 177 Combinación con Y, 176 eiemplo, 177 Combinación mediante O, 176 Combinación mediante O-exclusiva, 176 Combinar primer y segundo valor mediante O, 87 Combinar primer y segundo valor mediante Y, 87 Comparar, tiempo de rotación del 'token' (testigo), 251 Comparar byte, 109 Comparar cadenas, 111 Comparar entero, 109 Comparar palabra doble, 109 Comparar real, 109 Compatibilidad EM 231 RTD, 435 EM 231 Termopar, 435 EM 277 PROFIBUS-DP, 447 módulo de posicionamiento EM 253, 462 módulo Módem EM 241, 459 Compatibilidad electromagnética normas de emisión, 405

S7-200, 405 Comprobación editar en modo RUN, 260 funciones, 260 Comunicación, 224 con accionamientos MicroMaster, 350 conflictos, 252 interfaz, seleccionar, 224 módem, 247-248 módem radio, 248-249 protocolo para esclavos Modbus, 368 protocolos soportados, 228 S7-200, 10 seleccionar protocolo, 228 tiempo en segundo plano, 48 velocidad de transferencia, 247, 248 Comunicación con accionamientos, calcular el tiempo necesario, 351 Comunicación Freeport, 491 Comunicación PPI, cambiar a modo Freeport, 99 Comunicación punto a punto, 231-232 Comunicación, protocolo de, personalizado, 240 Concatenar cadena, 198 Condiciones ambientales funcionamiento, 405 transporte y almacenamiento, 405 Conectar accionamientos MM3, 361 accionamientos MM4, 364 al S7-200, 10 aparatos a la red, 251 cable multimaestro, 9 módem al S7-200, 247 módem radio al S7-200, 248 Conectores módulo Ethernet CP 243-1, 467 módulo Internet CP 243-1 IT, 470 números de referencia. 504 Conexiones, CP 243-2, 472 Configuración crear los planos, 61 EM 231, 427 EM 231 RTD, 441 EM 231 Termopar, 436 EM 235, 428 EM 277 PROFIBUS-DP, 449-450 módulo de posicionamiento EM 253, 307 módulo Ethernet CP 243-1, 467 módulo Internet CP 243-1 IT, 470 tabla de símbolos para Modbus, 369 Configurar accionamientos MM3, 362 accionamientos MM4, 365 áreas remanentes de la memoria, 49 estados de las salidas digitales, 48 función PTO/PWM, 150 HyperTerminal, 255-499 interruptores DIP del módulo RTD, 441-442 interruptores DIP del módulo Termopar, 437 redes, 235 valores de las salidas analógicas, 49 visualización del estado en AWL, 263 visualizar el estado en KOP y FUP, 262

Conflictos en la red, evitar, 252 Constante de cadena, 35 Contactos, ejemplo, 84 Contactos directos, 82 Contactos estándar, 82 Contador ascendente, 129 Contador ascendente/descendente, 129 Contador descendente, 129 Contadores, rápidos, 56 Contadores rápidos, 56 ajustar el byte de control, 137 ajustar los valores actual y predeterminado, 138 área de memoria, direccionamiento, 33 asociar interrupciones, 139 byte de control, 132 byte de estado, 139 cambiar valor actual, 145 cambiar valor predeterminado, 145 cambio de sentido, 144 cronogramas, 134-136 definir modos y entradas, 133 descripción, 132 direccionamiento, 139 inhibir, 145 interrupciones, 133 modos, 134, 516 programar, 132 puesta a 0 y arranque, 136 secuencia de inicialización, 140 seleccionar estado activo, 137 SMB36-SMB65, 495 Contaje máximo de caracteres, 104 Contraseña borrar, 55 definir, 54 funciones de la CPU, 54 olvidada, 55 restringir el acceso, 55 Control de interrupción de caracteres, 104 Control de motores paso a paso, generadores PTO/PWM, 152 Control de posición en lazo abierto, usando motores paso a paso o servomotores, 271 Control en lazo abierto, 268 Control, lógica de, 28 Convenciones editores de programas, 68 programación del S7-200, 69 Convergir cadenas secuenciales eiemplo, 190 operaciones del relé de control secuencial, 189 Convertir entradas del lazo, 162 salidas del lazo en un valor entero escalado, 163 Convertir ASCII en hexadecimal. 116 eiemplo, 119 Convertir BCD en entero, 113 Convertir byte en entero, 113 Convertir entero doble en ASCII, 117 Convertir entero doble en cadena, 120 Convertir entero doble en entero, 113 Convertir entero doble en real, 113 Convertir entero doble en subcadena, 123

Convertir entero en ASCII, 116 ejemplo, 119 Convertir entero en BCD, 113 Convertir entero en byte, 113 Convertir entero en cadena, 120 Convertir entero en entero doble, 113 Convertir real en ASCII, 118 ejemplo, 119 Convertir real en cadena, 120, 123 Convertir subcadena en entero, 120, 123 Convertir subcadena en entero doble, 120, 123 Convertir subcadena en real, 120, 123 Copiar cadena, 198 Copiar segundo valor, 87 Copiar subcadena de cadena, 200 Corriente necesaria, 19 calcular, 483 Corte de alimentación, memoria remanente, 43, 49 Coseno, 157 CP 243-1 (módulo Ethernet), cantidad de enlaces, 229 CP 243-1 IT (módulo Internet), cantidad de enlaces, 229 CP 243-2 AS-I Interface, datos técnicos, 471 CP5411, 504 CP5511, 504 CP5611, 504 CPs Véase también procesadores de comunicaciones números de referencia, 504 CPU 224, programa de ejemplo DP, 456 CPUs áreas de memoria, 80, 515 autodiagnóstico, 29 backup, 2 buscar en una red, 227 cantidad de enlaces, 228 ciclo, 28 corriente necesaria, 19 datos de alimentación, 409 datos de las entradas, 409 datos de las salidas, 410 datos técnicos, 407, 408 desmontar, 22 diagramas de cableado, 412-414 dimensiones, 2 E/S digitales, 2 eliminar errores, 70 funciones. 80 identificador (SMB6), 492 memoria, 2 módulos de ampliación, 2 montar, 22 números de referencia, 407, 503 protección con contraseña. 54 puertos de comunicación, 2 reloj de tiempo real, 2 requisitos de alimentación, 481 simulador de entradas, 479 soporte de módulos inteligentes, 341 tornillos de montaje, 21 velocidad de ejecución, 2

Crear planos de configuración, 61 programa, 10 programas con STEP 7-Micro/WIN, 64 protocolos personalizados, 240 redes, 235 Crear soluciones de automatización, Micro-PLC, 60 Cuadro de diálogo Información CPU, 70

D

Datos guardar y restablecer, 40 recibir, 99, 104 transmitir, 99 Datos de alimentación, CPUs, 409 Datos de las entradas CPUs. 409 módulos de ampliación analógicos, 423 módulos de ampliación digitales, 417 Datos de las salidas CPUs, 410 módulos de ampliación analógicos, 424 módulos de ampliación digitales, 418 Datos técnicos cable multimaestro RS-232/PPI, 475 CPUs, 407, 408 EM 231 RTD, 434 EM 231 Termopar, 434 EM 277 PROFIBUS-DP, 446 módulo CP 243-2 AS-Interface, 471 módulo Ethernet CP 243-1, 466 módulo Internet CP 243-1 IT, 469 módulo Módem EM 241, 458 Datos técnicos generales módulos de ampliación analógicos, 423, 434 módulos de ampliación digitales, 416 DATx_WRITE, subrutina de registro de datos, 391 DECEL_TIME (tiempo de desaceleración), módulo de posicionamiento EM 253, 272 Decodificar, 125 ejemplo, 125 Decrementar, 158 ejemplo, 158 Decrementar contador, ejemplo, 128 Decrementar contador (SIMATIC), 126 Definir, contraseña, 54 Definir meta, 185 Definir modo para contador rápido (HDEF), 131 Desasociar interrupción, 167 Desbordamiento de la cola de espera (SMB4), 491 Desmontar CPUs. 22 módulos de ampliación, 22 Desplazar byte a la derecha, 193 Desplazar byte a la izquierda, 193 Desplazar palabra a la derecha, 193 Desplazar palabra doble a la derecha, 193 Desplazar palabra doble a la izquierda, 193 Desviación, 397 Det Norske Veritas (DNV) Maritime Agency, 404

Detección de BREAK, 102 Detección del carácter final, 103 Detección del carácter inicial, 101 Detectar flanco negativo, 83 Detectar flanco positivo, 83 Devolución de llamadas, módulo Módem EM 241, 330 Diagnóstico autodiagnóstico de la CPU, 29 LED, 52 Diagrama de funciones. Véase Editor FUP Diagramas de cableado CPUs, 412-414 entradas y salidas de las CPUs, 412 módulo de posicionamiento EM 253, 464-465 módulos de ampliación analógicos, 425 módulos de ampliación digitales, 420-422 Dimensiones, CPU, 2 Dirección ajustar la dirección remota, 227 red, 225 Dirección de estación más alta, 249 Dirección remota, ajustar para el S7-200, 227 Direccionamiento acumuladores, 33 área de contadores. 32 área de relés de control secuencial (SCR), 35 áreas de memoria, 31-34 byte:bit, 30 contadores rápidos, 33, 139 directo, 30 E/S, 36 E/S de los módulos de ampliación, 36 E/S integradas, 36 entradas analógicas, 34 imagen del proceso de las entradas, 31 imagen del proceso de las salidas, 31 indirecto (punteros), 37 marcas especiales (SM), 34 memoria de marcas, 31 memoria de temporizadores, 32 memoria de variables, 31 memoria del S7-200, 30 memoria local, 34 salidas analógicas, 35 Direccionamiento indirecto, 37 & y *, 37 modificar punteros, 38 Direccionamiento simbólico. 74 Direcciones asignar, 73 Modbus, 369 simbólicas, 74 Diseñar, circuitos de seguridad, 60 Dispositivos Internet, CP 243-1 IT, 233 Dividir. 154 Dividir cadenas secuenciales ejemplo, 189 operaciones del relé de control secuencial, 189 Dividir enteros con resto (DIV), 156 ejemplo, 156 Duplicar primer valor, 87

E

E/S de los módulos de ampliación, 36 errores, 71 integradas, 36 lectura y escritura, 47 Edición en modo RUN, 48 desactivar, 53 Editar, en modo RUN, 260 Editor AWL descripción, 65 funciones, 65 Editor de bloques de datos asignar direcciones, 73 asignar valores iniciales, 73 Editor de programas, abrir, 11 Editor FUP convenciones, 68 descripción, 66 funciones, 66 Editor KOP convenciones, 68 descripción, 65 funciones, 65 Editores Diagrama de funciones (FUP), 66 Esquema de contactos (KOP), 65 Editores de programas, 64 convenciones, 68 Diagrama de funciones (FUP), 64 Esquema de contactos (KOP), 64 Lista de instrucciones (AWL), 64 seleccionar, 64 EEPROM códigos de error, 486 guardar el área de marcas (M), 43 guardar la memoria de variables (V), 44, 495 Ejecución del programa, errores, 71 Ejecución, códigos de error, operaciones del protocolo USS, 361 Ejecutar lógica de control, 28 operaciones, 29 programa, 15 Eiemplos aritmética de enteros, 155 aritmética en coma flotante, 155 Borrar primer registro de la tabla, 204 Borrar temporizador de vigilancia, 182 Borrar último registro de la tabla, 205 Buscar valor en tabla, 209 calcular requisitos de alimentación, 481 Combinación con O, 177 Combinación con O-exclusiva, 177 Combinación con Y, 177 contadores SIMATIC, 128 convergir cadenas secuenciales, 190 Convertir ASCII en hexadecimal, 119 Convertir entero en ASCII, 119 Convertir real en ASCII, 119 Decrementar, 158 Decrementar contador, 128

dividir cadenas secuenciales, 189 Fin condicionado, 182 FOR/NEXT, 184 Incrementar, 158 Incrementar/decrementar contador, 128 Inicializar memoria, 206 Invertir bytes de una palabra, 197 Leer de la red/Escribir en la red, 96 Llamar a subrutina, 219 modo Freeport, 240 modos de los contadores rápidos, 134 módulo de posicionamiento, 301-305 módulo Módem EM 241, 341 operación Codificar, 125 operación Decodificar, 125 operación DIV, 156 operación MUL, 156 operación Segmento, 115 operaciones con contactos, 84 operaciones con contadores rápidos, 146 operaciones con subrutinas, 221 operaciones de comparación, 109 operaciones de contaje (IEC), 129 operaciones de conversión normalizadas, 114 operaciones de desplazamiento, 194 operaciones de interrupción, 173 operaciones de invertir, 175 operaciones de recepción, 106 operaciones de rotación, 194 operaciones de transferencia, 197 operaciones de transmisión, 106 operaciones del relé de control secuencial, 186 operaciones lógicas de pilas, 88 Poner a 0, 85 Poner a 1, 85 programa para el protocolo USS, 360 protocolo para esclavos Modbus, programar, 374 red con 'token passing' (paso de testigo), 250 Registrar valor en tabla, 203 Registro de desplazamiento, 196 Retorno desde subrutina, 221 rutina de interrupción temporizada, 173 rutinas de interrupción, 61 Saltar a meta. 185 STOP, 182 subrutina, 61 Temporizador como retardo a la conexión, 212 Temporizador como retardo a la conexión con memoria. 214 Temporizador como retardo a la desconexión. 213 temporizadores IEC, 216 temporizadores SIMATIC, 212, 213, 214 Transferir palabras en bloque, 180 transiciones condicionadas, 191 Elaborar, lista de nombres simbólicos, 61 Eliminar errores, 70 códigos de error, 486 fatales, 72 guía, 265 hardware del S7-200, 265 no fatales, 71 EM 231, módulo de entradas analógicas

esquema funcional de entradas, 429 formato de la palabra de datos de entrada, 429 instalación, 431 precisión y repetibilidad, 432 EM 232, módulo de salidas analógicas, formato de la palabra de datos de salida, 430 EM 235, módulo de ampliación de entradas y salidas analógicas, calibración, 426 EM 235, módulo de entradas y salidas analógicas configuración, 428 esquema funcional de entradas, 430 EM 231 RTD compatibilidad con CPUs, 435 configurar, 441 configurar interruptores DIP, 441-442 datos técnicos, 434 indicadores de estado (LEDs), 443 rangos de temperatura y precisión, 444-445 terminales de conexión, 435 EM 231 Termopar compatibilidad con CPUs, 435 configurar, 436 configurar los interruptores DIP, 437 datos técnicos, 434 indicadores de estado (LEDs), 438 nociones básicas, 436 rangos de temperatura y precisión, 439-440 terminales de conexión, 435 EM 231, módulo de entradas analógicas calibración, 426 datos técnicos, 433 EM 232, módulo de salidas analógicas, esquema funcional de salidas, 431 EM 235, módulo de entradas y salidas analógicas datos técnicos, 433 esquema funcional de salidas, 431 formato de la palabra de datos de entrada, 429 formato de la palabra de datos de salida, 430 instalación, 431 precisión y repetibilidad, 432 EM 241, módulo Módem asistente de módems, 332 datos técnicos, 458 devolución de llamadas, 330 enchufe RJ11, 326 enchufe telefónico internacional, 326 errores al ejecutar operaciones, 339 esquema funcional, 458 formato de los mensajes de texto, 346 formato de los mensajes de transferencia de datos con la CPU, 347 funciones, 326 números de teléfono para mensajería, 345 instalación, 459 operación MOD_XFR, 337 operación MODx CTRL, 337 operación MODx MSG, 338 operaciones, 336 programa de ejemplo, 341 protección con contraseña, 329 radiobúsqueda, 328 radiobúsqueda numérica, 328 radiobúsqueda textual, 328

Servicio de mensajería corta (SMS), 328 tabla de configuración, 331 transferencias de datos, 329 EM 253, módulo de posicionamiento ACCEL_TIME, 272 Asistente de control de posición, 283 byte de comando, 316 códigos de error, 308 códigos de error de las operaciones, 308 códigos de error del módulo, 309 comandos de movimiento, 317 configuración, 307 configurar, 283 crear operaciones personalizadas, 319 DECEL_TIME, 272 diagrama de cableado, 464-465 ejemplos, 301-305 entradas y salidas, 281 funciones, 281 informaciones de diagnóstico, 307 marcas especiales (SM), 315 Modos de búsqueda del RP, 320-324 observar y controlar el funcionamiento, 306 operación POSx_CFG, 300 operación POSx_CLR, 299 operación POSx_CTRL, 290 operación POSx_DIS, 298 operación POSx_GOTO, 292 operación POSx_LDOFF, 295 operación POSx_LDPOS, 296 operación POSx_MAN, 291 operación POSx_RSEEK, 294 operación POSx RUN, 293 operación POSx_SRATE, 297 operaciones, 289 panel de control EM 253, 306-308 programa de ejemplo para controlar el módulo, 319 programar, 282 reglas para utilizar operaciones, 289 suprimir movimientos indeseados, 323 tabla de configuración/perfiles, 310 EM 277 PROFIBUS-DP archivo de configuración, 454-455 cantidad de enlaces, 228 compatibilidad con CPUs, 447 configurar, 449-450 datos técnicos, 446 en una red PROFIBUS, 449 esclavo DP. 448 funciones adicionales, 453 indicadores de estado (LEDs), 453 interruptores de direccionamiento, 447 LEDs de estado, 447 marcas especiales, 452 modo de intercambio de datos, 451 opciones de configuración, 450 protocolo DP, 448 EN, 69, 79 Enchufe RJ11 módulo Módem EM 241, 459 módulo Módem EM 241, 326

Enchufe telefónico internacional, módulo Módem EM 241, 326 END, 181 Energía necesaria, tabla de cálculo, 483 Enlaces, MPI, 229 Enlaces lógicos, PPI, 228 ENO, 69, 79 Entero escalado, convertir las salidas del lazo, 163 Entrada de habilitación (EN), 69 Entradas, 28, 29 calibración, 426 condicionadas e incondicionadas, 69 contadores rápidos, 133 CPU, 412 filtración analógica, 50 filtración digital, 50 módulo de posicionamiento EM 253, 281 módulos de ampliación digitales, 417 puesta a 0 y arranque (contadores rápidos), 136 Entradas analógicas (AI) direccionamiento, 34 filtrar, 50 Entradas condicionadas, 69 Entradas del lazo convertir, 162 normalizar. 162 Entradas digitales captura de impulsos, 50 escribir en, 29 filtrar. 50 lectura, 47 Entradas incondicionadas, 69 Entradas, simulador, 479 Errores autosintonía PID, 399 compilación del programa, 71 configuración del módulo Módem EM 241, 331 de compilación. 71 de E/S, 71 de ejecución, 71 de paridad SMB3, 491 de paridad SMB30 y SMB130, 104 durante el tiempo de ejecución, 71 ejecución del protocolo para esclavos Modbus, 373 eliminar. 70 fatales, 72 lazo PID, 165 módulo de posicionamiento EM 253, 308 no fatales. 71 operaciones del módulo Módem EM 241, 339 operaciones Leer de la red y Escribir en la red, 94 SMB1, errores de ejecución, 490 visualizar. 70 visualizar, 486 Esclavo EM 277 PROFIBUS-DP, 448 S7-200, 448 Esclavos, 225 Escribir en la red, 93, 94 códigos de error, 94 ejemplo, 96

Escritura y transferencia directa de bytes, 179 Espacio necesario para el montaje, 18 Especificaciones, Micro-PLC, 60 Esquema de contactos. Véase Editor KOP Esquema funcional, módulo Módem EM 241, 458 Esquema funcional de entradas EM 231, 429 EM 235, 430 Esquema funcional de salidas EM 232, 431 EM 235, 431 Esquema funcional de una entrada digital, 52 Estaciones de operador, definición, 60 Estado al final del ciclo, 262 durante la ejecución del programa, 262 observar el programa, 262 visualizar en AWL, 263 visualizar en KOP y FUP, 262 Estado de E/S (SMB5), 492 Estado de ejecución, 48 Estados de las salidas digitales, configurar, 48 Estructura, programa, 61 Ethernet, 228 TCP/IP, 229 Eventos de interrupción breviario, 514 prioridad, 172 tipos, 168 Eventos de la CPU, historial, 53 Evitar, conflictos en la red, 252 Explorador S7-200, 40, 46 asistente de registros de datos, 390 Exponente natural, 157 Extraer, bloque de terminales, 23

F

Factor de actualización GAP, 249 Fecha, ajustar, 90 Filtrar entradas analógicas, 50 entradas digitales, 50 Fin condicionado, 181 ejemplo, 182 Fin del relé de control secuencial, 186 Formato de dirección de byte, 30 Formato de la palabra de datos de entrada EM 231, 429 EM 235, 429 Formato de la palabra de datos de salida EM 232, 430 EM 235, 430 Formato de los mensajes de texto, módulo Módem EM 241. 346 Formato de los mensajes de transferencia de datos con la CPU, módulo Módem EM 241, 347 Formato de los números de teléfono para mensajería, módulo Módem EM 241, 345 Forzar valores, 263, 264 Freeport cambiar de modo PPI, 99
configurar, cable multimaestro PPI, 246 control de interrupción de caracteres, 104 definición, 170 ejemplo, 240 error de paridad (SMB3), 491 habilitar, 98 operaciones de transmisión y recepción, 98 protocolos personalizados, 240 recepción de caracteres (SMB2), 491 SMB30 y SMB130, 494 Funciones CPU, 80 módulo de posicionamiento EM 253, 281 módulo Módem EM 241, 326 PTO/PWM, registros (SMB66 a SMB85), 498

G

Germanisher Lloyd (GL) Maritime Agency, 404 GSD, archivo de configuración para el EM 277 PROFIBUS-DP, 454–455 Guardar área de marcas (M) en la EEPROM, 43 datos del programa S7-200, 40 memoria de variables (V) en la EEPROM, 44 programa, 14 programa en un cartucho de memoria, 42 valores en EEPROM, 495

Η

Habilitar todos los eventos de interrupción, 167 Hardware, eliminar errores, 265 Historial, eventos de la CPU, 53 HMI (interfaz hombre-máquina), 239 Homologaciones, 404 Hora, ajustar, 90 HSC, 56 Asistente de operaciones, 132 HyperTerminal, configurar el cable multimaestro RS-232/PPI, 255–499

Identificador del módulo de ampliación y registro de errores, 493 Imagen del proceso, 47 Imagen del proceso de las entradas, 29, 31 Imagen del proceso de las salidas, 28, 31 Impulsos rápidos Modulación por ancho de impulsos (PWM), 147 Salida de impulsos (PLS), 147 salidas, 57 Tren de impulsos (PTO), 147 Inactividad, detección, 101 Incrementar, 158 ejemplo, 158 Incrementar contador (SIMATIC), 126 Incrementar la memoria del programa, desactivar la edición en modo RUN, 53

Incrementar punteros, 38 Incrementar/decrementar contador, ejemplo, 128 Incrementar/decrementar contador (SIMATIC), 127 Indicador de siete segmentos, 115 Indicadores de estado (LEDs), EM 277 PROFIBUS-DP, 447, 453 Informaciones de diagnóstico, módulo de posicionamiento EM 253, 307 Inhibir, contadores rápidos, 145 Inhibir todos los eventos de interrupción, 167 Inicializar contadores rápidos, 140 protocolo Modbus, 368 Inicializar memoria, 206 ejemplo, 206 Iniciar, STEP 7-Micro/WIN, 9 Inmunidad electromagnética, normas, 405 Instalación cable de ampliación, 474 EM 231, 431 EM 235, 431 STEP 7-Micro/WIN, 5 Interfaces de operador, número de referencia, 505 Interfaz, seleccionar la red de comunicación, 224 Interrupciones asociar a contadores rápidos, 139 contadores rápidos, 133 de E/S, 170 temporizadas, 170 temporizadas, duración (SMB34, SMB35), 495 Interruptores de direccionamiento, EM 277 PROFIBUS-DP, 447 DIP, cable multimaestro RS-232/PPI, 477 DIP, cable PPI multimaestro, 9 DIP, RTD, 441-442 DIP, Termopar, 437 Interruptores DIP, cable multimaestro PPI, 242 Introducir, operaciones, 12 Invertir byte, 175 Invertir bytes de una palabra, 197 ejemplo, 197 Invertir palabra, 175 Invertir palabra doble, 175

J

Juego de operaciones IEC 1131-3, 67 Juego de operaciones SIMATIC, 67 Juegos de operaciones IEC 1131-3, 67 seleccionar, 67 SIMATIC, 67

L

Lazo de regulación acción positiva/negativa, 164 ajustar el bias, 164 convertir entradas, 162 convertir salidas, 163

modos, 165 Lazo PID, 159 condiciones de error, 165 modo automático, 165 modo manual, 165 Lazos con acción negativa, 164 Lazos con acción positiva, 164 Lectura y transferencia directa de bytes, 179 LED de diagnóstico, 52 LEDs, módulo Módem EM 241, 332 LEDs de estado EM 231 RTD, 443 EM 231 Termopar, 438 EM 277 PROFIBUS-DP, 453 módulo de posicionamiento EM 253, 462 Leer datos de las entradas, 28, 29 Leer de la red, 93, 94 códigos de error, 94 ejemplo, 96 Leer dirección de puerto, 108 Leer reloj de tiempo real, 90 Leer reloj de tiempo real ampliado, 91 Librería del protocolo Modbus, 367 Librería del protocolo USS, controlar accionamientos Micro/WIN. Véase STEP 7-Micro/WIN MicroMaster, 349 Librerías de operaciones, 76 Librerías de operaciones de STEP 7-Micro/WIN 32, 504 Librerías personalizadas, 76 Lista de instrucciones. Véase Editor AWL Lista de instrucciones (AWL), editor de programas, 64 Llamadas, devolución, módulo Módem EM 241, 330 Llamar a subrutina, 218 ejemplo, 219 Lloyds Register of Shipping (LRS) Maritime Agency, 404 Logaritmo natural, 157 Lógica de control, 28 Longitud de cadena, 198

Μ

Maestros, 225 Manual del sistema S7-200, números de referencia, 504 Manuales, números de referencia, 504 Marca de fecha y hora, historial, 53 Marcadores, 260 Marcas especiales, 490-498 breviario, 513 EM 277 PROFIBUS-DP, 452 función PTO/PWM, 150 módulo de posicionamiento EM 253, 315 módulo Módem EM 241, 341 protocolo para esclavos Modbus, 368 MBUS_INIT, 371 MBUS_SLAVE, 373 Memoria acceder, 30 cartucho de, 473 CPU, 2

Invertir bytes de una palabra, 197 operaciones de rotación, 193 operaciones de transferencia, 178 operaciones de transferencia en bloque, 180 Registro de desplazamiento, 195 remanente, 49 Memoria C, 32 Memoria de marcas especiales (SM), 34 Memoria del programa, incrementar, 53 Memoria L, 34 Memoria M, 31 Memoria permanente, 40, 44 copiar de la memoria V, 45 Memoria remanente, 49 Memoria S, 35 Memoria SM, protocolo para esclavos Modbus, 368 Memoria T, 32 Memoria V, 31 asignar direcciones, 73 guardar en la EEPROM, 44 Memoria V, copiar en la memoria permanente, 45 Mensajes, red con 'token passing' (paso de testigo), 250 Micro-PLC, crear soluciones de automatización, 60 MicroMaster, accionamiento conectar, 361 lectura y escritura, 357, 358 MicroMaster, accionamientos comunicación, 350 controlar, 349 MM3, accionamiento conectar, 361 configurar, 362 MM4, accionamiento conectar, 364 configurar, 365 Modbus RTU, protocolo asignar direcciones, 328 módulo Módem EM 241, 327 Módem cable multimaestro PPI, 247 remoto, cable multimaestro PPI, 245 Módem radio cable multimaestro PPI, 248 modo PPI, 248 modo PPI/Freeport, 248 Modificar, punteros, 38 Modo automático, lazo PID, 165 Modo de intercambio de datos, EM 277 PROFIBUS-DP, 451 Modo de operación, perfil de movimiento, 273 Modo Freeport, RS-232, 242 Modo manual, lazo PID, 165 Modo PPI, módem radio, 248 Modo PPI/Freeport, módem radio, 248 Modo RUN, 46 editar el programa, 260 Modo STOP, 15, 46 Modos contadores rápidos, 133 lazo PID, 165

Modos de búsqueda del RP, EM 253, módulo de posicionamiento, 320-324 Modos de operación de la CPU bits de estado, 490 cambiar, 46 Modos de operación, CPU, protocolo Freeport, 240 Modulación por ancho de impulsos (PWM), 57, 147, 269 asistente de control de posición, 147 configurar con marcas especiales, 150 configurar la salida PWM, 269 control de motores paso a paso, 152 descripción, 149 métodos de actualización, 150 tiempo de ciclo, 149 valores de la tabla de perfiles, 152 Módulo AS-Interface CP 243-2, número de referencia, 503 Módulo CP 243-2 AS-Interface funciones, 471 número de referencia, 471 Módulo de posicionamiento ACCEL_TIME, 272 Asistente de control de posición, 283 códigos de error de las operaciones, 308 códigos de error del módulo, 309 comandos de movimiento, 317 compatibilidad con CPUs, 463 configurar, 283, 307 configurar perfiles de movimiento, 273 crear operaciones personalizadas, 319 DECEL_TIME, 272 entradas y salidas, 281 funciones, 281 informaciones de diagnóstico, 307 marcas especiales (SM), 315 modos de búsqueda del RP, 320-324 observar y controlar el funcionamiento, 306 operación POSx CFG, 300 operación POSx_CLR, 299 operación POSx_CTRL, 290 operación POSx_DIS, 298 operación POSx_GOTO, 292 operación POSx_LDOFF, 295 operación POSx LDPOS, 296 operación POSx_MAN, 291 operación POSx_RSEEK, 294 operación POSx_RUN, 293 operación POSx_SRATE, 297 operaciones, 289 panel de control EM 253, 306-308 programa de ejemplo para controlar el módulo, 319 programar, 282 reglas para utilizar operaciones, 289 suprimir movimientos indeseados, 323 tabla de configuración/perfiles, 310 Módulo Ethernet CP 243-1 Asistente, 467 conectores, 467 configuración, 467 datos técnicos, 466 funciones, 467

número de referencia, 466, 503 procesadores de comunicaciones, 467 Módulo Internet CP 243-1 IT Asistente Internet, 470 conectores, 470 configuración, 470 datos técnicos, 469 funciones, 469 número de referencia, 469, 503 procesadores de comunicaciones, 469 Módulo Módem, 458 Asistente de módems, 332 devolución de llamadas, 330 enchufe RJ11, 326 enchufe telefónico internacional, 326 errores al ejecutar operaciones, 339 formato de los mensajes de texto, 346 formato de los mensajes de transferencia de datos con la CPU, 347 funciones, 326 LEDs de estado, 332 mensajes SMS, 328 números de teléfono para mensajería, 345 operación MODx_CTRL, 337 operación MODx_MSG, 338 operación MODx_XFR, 337 operaciones, 336 programa de ejemplo, 341 protección con contraseña, 329 radiobúsqueda, 328 radiobúsqueda numérica, 328 radiobúsqueda textual, 328 servicio de mensajería corta (SMS), 328 tabla de configuración, 331 transferencias de datos, 329 Módulo Módem EM 241 compatibilidad con CPUs, 459 conexión con STEP 7-Micro/WIN. 327 direcciones Modbus, 328 LEDs de estado, 332 marcas especiales (SM), 341 países soportados, 326 protocolo Modbus RTU, 327 tabla de configuración, 343 Módulos analógicos, 4 EM 231 (entradas analógicas), 427 Módulos AS-interface, números de referencia de los manuales, 504 Módulos de ampliación, 4 analógicos datos de las entradas, 423 datos de las salidas, 424 datos técnicos generales, 423, 434 diagramas de cableado, 425 números de referencia, 423, 434 corriente necesaria, 19 desmontar, 22 digitales datos de las entradas, 417 datos de las salidas, 418 datos técnicos generales, 416 diagramas de cableado, 420-422 números de referencia, 416

dimensiones. 21 direccionamiento de E/S, 36 identificador y registro de errores, 493 montar, 22 números de referencia, 503 requisitos de alimentación, 481 Módulos de ampliación analógicos EM 231 RTD, 434 EM 231 Termopar, 434 EM 232 de salidas analógicas, 431 EM 235 de entradas y salidas analógicas, 428 Módulos de ampliación digitales, direccionamiento, 36 Módulos digitales, 4 Módulos inteligentes, 4 CPUs compatibles, 341 estado (SMB200 a SMB549), 502 MODx_CTRL, módulo Módem EM 241, 337 MODx_MSG, módulo Módem EM 241, 338 MODx_XFR, módulo Módem EM 241, 337 Montaje alimentación, 19 CPU, 21 dimensiones, 21 en un armario eléctrico, 22 en un raíl DIN. 22 equipos de alta tensión, 18 equipos que generan calor, 18 espacio necesario, 18, 21 interferencias, 18 módulos de ampliación, 21 raíl DIN. 22 reglas, 18 requisitos, 21 S7-200, 20 Motores paso a paso, control de posición en lazo abierto, 271 Movimientos indeseados, seleccionar el área de trabajo, 323 Multiplicar, 154 Multiplicar enteros a enteros dobles (MUL), 156 ejemplo, 156

Ν

NETR, NETW, Asistentes, 93 **NEXT, 183** ejemplo, 184 Nippon Kaiji Kyokai (NK) Maritime Agency, 404 Nombres simbólicos, elaborar, 61 Normalizar, entradas del lazo, 162 Normas, nacionales e internacionales, 404 NOT. 82 Números de referencia, 503-946 cables multimaestro PPI. 475 CPUs, 407 módulo CP 243-2 AS-Interface, 471 módulos de ampliación analógicos, 423, 434 módulos de ampliación digitales, 416 simulador de entradas, 479 Números reales, 30, 35 Números, representación, 30, 35, 36

0

Observar, 15 estado del programa, 262 variables del proceso, 75 variables en tablas de estado, 263 varios ciclos, 264 OP3, OP7, OP17, números de referencia, 505 Operación nula, 85 Operación PWMx_RUN, códigos de error, 270 Operación Segmento, 115 ejemplo, 115 Operación USS4_INIT, 353 Operación USS4_RPM_x, 357, 358 Operación USS4_WPM_x, 357, 358 Operaciones Activar contador rápido (HSC), 131 Ajustar dirección de puerto, 108 Ajustar reloj de tiempo real, 90 Ajustar reloj de tiempo real ampliado, 91 Asignar, 85 Asignar directamente, 85 Asociar interrupción, 167 Borrar evento de interrupción, 167 Borrar primer registro de la tabla, 204 Borrar temporizador de vigilancia, 181 Borrar último registro de la tabla, 204 Buscar cadena en cadena, 201 Buscar carácter en cadena, 201 Buscar valor en tabla, 207 Cargar pila, 87 Cargar relé de control secuencial, 186 Codificar, 125 Combinación con Y, 176 Combinación mediante O, 176 Combinación mediante O-exclusiva, 176 Combinar primer y segundo valor mediante O, 87 Combinar primer y segundo valor mediante Y, 87 comparación, 69 Concatenar cadena, 198 contactos directos, 82 contactos estándar, 82 Contador ascendente, 129 Contador ascendente/descendente, 129 Contador descendente, 129 Convertir ASCII en hexadecimal, 116 Convertir BCD en entero, 113 Convertir byte en entero, 113 Convertir entero doble en ASCII, 117 Convertir entero doble en cadena, 120, 123 Convertir entero doble en entero, 113 Convertir entero doble en real, 113 Convertir entero en ASCII, 116 Convertir entero en BCD, 113 Convertir entero en byte, 113 Convertir entero en cadena, 120 Convertir entero en entero doble, 113 Convertir hexadecimal en ASCII, 116 Convertir real en ASCII, 118 Convertir real en cadena, 120, 123 Convertir subcadena en entero, 120, 123 Convertir subcadena en entero doble, 120, 123

Convertir subcadena en real, 120, 123 Copiar cadena, 198 Copiar segundo valor, 87 Copiar subcadena de cadena, 200 Coseno, 157 crear para el módulo de posicionamiento, 319 Decodificar, 125 Decrementar, 158 Decrementar contador (SIMATIC), 126 Definir meta, 185 Definir modo para contador rápido (HDEF), 131 Desasociar interrupción, 167 Desplazar byte a la derecha, 193 Desplazar byte a la izquierda, 193 Desplazar palabra a la derecha, 193 Desplazar palabra a la izquierda, 193 Desplazar palabra doble a la derecha, 193 Desplazar palabra doble a la izquierda, 193 Dividir, 154 Dividir enteros con resto (DIV), 156 Duplicar primer valor, 87 ejecutar, 29 EM 253, módulo de posicionamiento, 289 END, 181 Escribir en la red, 93 Escritura y transferencia directa de bytes, 179 Exponente natural, 157 Fin condicionado, 181 Fin condicionado del relé de control secuencial, 186 Fin del relé de control secuencial, 186 FOR. 183 Habilitar todos los eventos de interrupción, 167 impulsos rápidos (PLS), 147 Incrementar, 158 Incrementar contador (SIMATIC), 126 Incrementar/decrementar contador (SIMATIC), 127 Inhibir todos los eventos de interrupción, 167 Inicializar memoria, 206 interrupción, 167-173 introducir, 12 Invertir byte, 175 Invertir bytes de una palabra, 197 Invertir palabra, 175 Invertir palabra doble, 175 Lectura y transferencia directa de bytes, 179 Leer de la red, 93 Leer dirección de puerto, 108 Leer reloi de tiempo real. 90 Leer reloj de tiempo real ampliado, 91 librerías. 76 Llamar a subrutina, 218 Logaritmo natural, 157 lógicas con bits, 82 Longitud de cadena, 198 MBUS INIT, 371 MBUS_SLAVE, 373 Modbus, 370 Modulación por ancho de impulsos (PWM), 147 módulo Módem EM 241, 336 MODx_CTRL, 337 MODx_MSG, 338

MODx_XFR, 337 Multiplicar, 154 Multiplicar enteros a enteros dobles (MUL), 156 NEXT, 183 NOT, 82 Operación nula, 85 Poner a 0, 85 Poner a 0 directamente, 85 Poner a 1 directamente, 85 Posicionar dominante biestable, 89 POSx_CFG, 300 POSx_CLR, 299 POSx_CTRL, 290 POSx DIS, 298 POSx_GOTO, 292 POSx_LDOFF, 295 POSx_LDPOS, 296 POSx_MAN, 291 POSx_RSEEK, 294 POSx_RUN, 293 POSx_SRATE, 297 protocolo para esclavos Modbus, 370 protocolo USS, 352 PTOx_ADV, 280 PTOx_CTRL, 276 PTOx_LDPOS, 279 PTOx_MAN, 278 PTOx_RUN, 277 PWMx_RUN, 270 Raíz cuadrada, 157 Rearmar dominante biestable, 89 Recibir mensaje, 98 Redondear a entero doble, 114 Registrar valor en tabla, 203 Registro de desplazamiento, 195 Regulación PID, 159 reloj de tiempo real, 90 Restar, 154 Retorno condicionado desde rutina de interrupción, 167 Retorno condicionado desde subrutina, 218 Retorno desde rutina de interrupción, 167 Retorno desde subrutina, 218 Rotar byte a la derecha. 193 Rotar byte a la izquierda, 193 Rotar palabra a la derecha, 193 Rotar palabra a la izquierda, 193 Rotar palabra doble a la derecha, 193 Rotar palabra doble a la izquierda, 193 Sacar primer valor, 87 Salida de impulsos (PLS), 147 Saltar a meta, 185 Segmento, 115 Seno, 157 set. 85 sin salidas, 69 STOP, 181 Sumar, 154 tabla, 204-209 Tangente, 157 Temporizador como retardo a la conexión (TON), 210

Temporizador como retardo a la conexión con memoria (TONR), 210 Temporizador como retardo a la desconexión (TOF), 210 Temporizador con retardo al conectar (TON) (IEC), 215 Temporizador con retardo al desconectar (TOF) (IEC), 215 Temporizador por impulsos (TP) (IEC), 215 Transferir byte, 178 Transferir bytes en bloque, 180 Transferir palabra, 178 Transferir palabra doble, 178 Transferir palabras dobles en bloque, 180 Transferir palabras en bloque, 180 Transferir real, 178 Transición del relé de control secuencial, 186 transición negativa, 82 transición positiva, 82 Transmitir mensaje, 98 Tren de impulsos (PTO), 147 Truncar, 114 Y-ENO, 87 Operaciones aritméticas Decrementar, 158 Dividir. 154 Dividir enteros con resto (DIV), 156 Incrementar, 158 Multiplicar, 154 Multiplicar enteros a enteros dobles (MUL), 156 Restar, 154 Sumar, 154 **Operaciones AWL** breviario, 517 tiempos de ejecución, 507 Operaciones booleanas bobinas, 85 contactos. 82 pila lógica, 87 Posicionar y rearmar dominante biestable, 89 Operaciones con bobinas Asignar, 85 Asignar directamente, 85 Operación nula. 85 Poner a 0, 85 Poner a 0 directamente, 85 Poner a 1 directamente, 85 set 85 Operaciones con cadenas Buscar cadena en cadena. 201 Buscar carácter en cadena, 201 Concatenar cadena, 198 Copiar cadena, 198 Copiar subcadena de cadena, 200 Longitud de cadena, 198 Operaciones con contactos, 82 Operaciones con subrutinas ejemplo, 221 Llamar a subrutina, 218 Retorno condicionado desde subrutina, 218 Operaciones de búsqueda, 207 Operaciones de comparación, 69 Comparar byte, 109

Comparar cadenas, 111 Comparar entero, 109 Comparar palabra doble, 109 Comparar real, 109 ejemplo, 109 Operaciones de comunicación Ajustar dirección de puerto, 108 Escribir en la red, 93 Leer de la red, 93 Leer dirección de puerto, 108 Recibir mensaje, 98 Transmitir mensaje, 98 Operaciones de contaje Activar contador rápido (HSC), 131 Definir modo para contador rápido (HDEF), 131 IEC Contador ascendente, 129 Contador ascendente/descendente, 129 Contador descendente, 129 SIMATIC Decrementar contador, 126 Incrementar contador, 126 Incrementar/decrementar contador, 127 Operaciones de contaje (IEC) Contador ascendente, 129 Contador ascendente/descendente, 129 Contador descendente, 129 ejemplo, 129 Operaciones de contaje (SIMATIC), ejemplos, 128 Operaciones de control del programa Borrar temporizador de vigilancia, 181 control básico del programa, 181 Fin condicionado, 181 FOR/NEXT, 183 operaciones de salto, 185 relé de control secuencial (SCR), 186 STOP, 181 Operaciones de conversión **ASCII**, 116 cadenas, 120, 123 Codificar, 125 Convertir ASCII en hexadecimal, 116 Convertir hexadecimal en ASCII, 116 Decodificar, 125 ejemplo, 114 normalizadas, 112 Redondear a entero doble, 114 Segmento, 115 Truncar, 114 Operaciones de conversión ASCII. 116 Operaciones de conversión normalizadas, 112 Operaciones de desplazamiento ejemplo, 194 tipos, 193 Operaciones de interrupción Asociar interrupción, 167 Borrar evento de interrupción, 167 Desasociar interrupción, 167 ejemplo, 173 Habilitar todos los eventos de interrupción, 167 Inhibir todos los eventos de interrupción, 167 Retorno condicionado desde rutina de interrupción, 167

Operaciones de invertir, ejemplo, 175 Operaciones de reloj Ajustar reloj de tiempo real, 90 Ajustar reloj de tiempo real ampliado, 91 Leer reloj de tiempo real, 90 Leer reloj de tiempo real ampliado, 91 Operaciones de rotación, 193 ejemplo, 194 tipos, 193 Operaciones de salto Definir meta, 185 Saltar a meta, 185 Operaciones de tabla Borrar primer registro de la tabla, 204 Borrar último registro de la tabla, 204 Buscar valor en tabla, 207 Inicializar memoria, 206 Registrar valor en tabla, 203 Operaciones de temporización IEC Temporizador con retardo al conectar (TON), 215 Temporizador con retardo al desconectar (TOF), 215 Temporizador por impulsos (TP), 215 interrupciones, 171 SIMATIC Temporizador como retardo a la conexión (TON), 210 Temporizador como retardo a la conexión con memoria (TONR), 210 Temporizador como retardo a la desconexión (TOF), 210 Operaciones de temporización (IEC), 215 ejemplo, 216 Operaciones de temporización (SIMATIC), 210 ejemplo, 212, 213, 214 Operaciones de transferencia, ejemplo, 197 Operaciones de transferencia en bloque, ejemplo, 180 Operaciones de transición, 82 Operaciones del protocolo, reglas de utilización, 352 Operaciones del protocolo USS códigos de error, 361 programa de ejemplo, 360 USS4_DRV_CTRL, 354 **USS4 INIT, 353** USS4_RPM_x y USS4_WPM_x, 357, 358 Operaciones del relé de control secuencial Cargar relé de control secuencial, 186 convergir cadenas secuenciales, 189 dividir cadenas secuenciales, 189 ejemplo, 186 Fin condicionado del relé de control secuencial, 186 Fin del relé de control secuencial, 186 restricciones, 186 Transición del relé de control secuencial, 186 Operaciones del reloj de tiempo real, 90 **Operaciones FOR/NEXT** ejemplo, 184 FOR, 183 **NEXT, 183**

Operaciones lógicas Combinación con Y, O y O-exclusiva, 176 Invertir byte, 175 Operaciones lógicas con bits contactos, 82 operaciones con bobinas, 85 operaciones de pilas, 87 Posicionar y rearmar dominante biestable, 89 Rearmar dominante biestable, 89 Operaciones lógicas de pilas Cargar pila, 87 Combinar primer y segundo valor mediante O, 87 Combinar primer y segundo valor mediante Y, 87 Copiar segundo valor, 87 Duplicar primer valor, 87 ejemplo, 88 Sacar primer valor, 87 Y-ENO, 87 Operaciones numéricas Coseno, 157 Exponente natural, 157 Logaritmo natural, 157 Raíz cuadrada, 157 Seno, 157 Tangente, 157 Operaciones PID, Regulación PID, 159 Operaciones PTO, códigos de error, 280 Optimizar, rendimiento de la red, 249 Orden, de eventos de interrupción, 172

Ρ

Panel de control de sintonía PID, 400 Panel de control EM 253, 306-308 Panel táctil TP070. 6 número de referencia del manual, 504 números de referencia, 505 Paneles de operador panel táctil TP070, 6 TD 200 (visualizador de textos), 6 Parámetros en subrutinas, 219 tipos para subrutinas, 219 Pasos, crear para el perfil de movimiento, 274 Perfil de movimiento crear pasos, 274 definir, 273 módulo de posicionamiento. 273 Peticiones de comunicación, procesar, 29 PID, tabla del lazo, ampliada, 394 Pines del conector, asignación para el puerto de comunicación, 237 Pipelining, impulsos PTO, 148 Planos de configuración, 61 Plantillas para el panel frontal, TD 200 C, número de referencia, 505 Polarizar, cable de red, 237 Poner a 0, 85 ejemplo, 85 Poner a 0 directamente, 85 Poner a 1, 85

ejemplo, 85 Poner a 1 directamente, 85 Posicionar dominante biestable, 89 POSx_CFG, 300 POSx_CLR, 299 POSx_CTRL, 290 POSx_DIS, 298 POSx_GOTO, 292 POSx_LDOFF, 295 POSx_LDPOS, 296 POSx_MAN, 291 POSx_RSEEK, 294 POSx_RUN, 293 POSx_SRATE, 297 Potenciómetros, SMB28 y SMB29, 494 Potenciómetros analógicos, ajustar, 56 PPI, red monomaestro, 230 Prioridad eventos de interrupción, 172 rutinas de interrupción, 171 Procesador de comunicaciones CP 243-2 Asistente, 471 conexiones, 472 funcionamiento, 472 funciones, 472 Procesadores de comunicaciones CP 243-2 AS-Interface, 471 módulo Ethernet CP 243-1, 467 módulo Internet CP 243-1 IT, 469 números de referencia, 504 seleccionar, 238 soportados por STEP 7 Micro/WIN, 239 Procesar comunicaciones complejas, 252 peticiones de comunicación, 29 PROFIBUS, maestros y esclavos, 225 PROFIBUS-DP coherencia de datos. 451 comunicación estándar, 448 módulo EM 277, 449 programa de ejemplo, 456 red, 232 Programa cargar en CPU, 15, 41 cargar en PG, 41 crear. 10 crear con STEP 7-Micro/WIN, 64 determinar un número de ciclos, 264 editar en modo RUN, 260 eiecutar. 15 elementos básicos, 61 entradas analógicas, 29 errores de compilación, 71 errores de ejecución, 71 estructura. 61 funciones de comprobación, 260 guardar, 14, 40-44 observar. 15 observar el estado, 262 subrutinas, 62 tabla de estado, 75 Programa de ejemplo, 10 controlar el módulo de posicionamiento, 319 Programa principal, compartir datos con rutinas de interrupción, 169 Programación en el tiempo de ejecución, códigos de error, 487 Programar contadores rápidos, 132 módulo de posicionamiento EM 253, 282 Protección con contraseña, módulo Módem EM 241, 329 Protocolo de comunicación interfaz multipunto (MPI), 229, 251 interfaz punto a punto (PPI), 228, 251 personalizado, 240 PROFIBUS, 229, 251 seleccionar, 228 TCP/IP, 229 Protocolo Modbus RTU, 370 funciones soportadas por el módulo Módem, 327 Protocolo MPI, 229, 251 Protocolo para esclavos Modbus asignar direcciones al S7-200, 369 códigos de error de ejecución, 373 configurar la tabla de símbolos, 369 direcciones, 369 inicialización, 368 marcas especiales, 368 MBUS_INIT, 371 MBUS_SLAVE, 373 operaciones, 370 operaciones soportadas, 370 programa de ejemplo, 374 recursos utilizados, 368 tabla CRC, 368 tiempo de ejecución, 368 Protocolo PPI, 228, 251 red compleja, 231 red monomaestro, 230 red multimaestro, 230 Protocolo PROFIBUS, 229, 251 Protocolo USS, requisitos, 350 Protocolos PROFIBUS-DP, 448 soportados por STEP 7-Micro/WIN, 239 Protocolos personalizados, modo Freeport, 240 Prueba de aislamiento a hipervoltajes, 405 PTO_CTRL, 276 PTO0, PTO1, tabla de definición de perfiles (SMB166 a SMB185), 501 PTOx_CTRL, 276 PTOx_LDPOS, 279 PTOx MAN, 278 PTOx_RUN, 277 Puerto, configurar, cables multimaestro PPI, 234 Puerto de comunicación asignación de pines del conector, 237 interrupciones, 170 modo Freeport, 240 Puesta a 0, contadores rápidos, 136 Puesta a tierra, 24, 25 Punteros, direccionamiento indirecto, 37 PV fuera de rango, autosintonía PID, 399 PWMx_RUN, 270 Modulación por ancho de impulsos, 270

R

Radiobúsqueda, módulo Módem, 328 Radiobúsqueda numérica, módulo Módem EM 241, 328 Radiobúsqueda textual, módulo Módem EM 241, 328 Raíl DIN, 20 dimensiones, 21 montaje en, 22 Raíz cuadrada, 157 Rango de bytes y enteros, 30 Rangos, lazo PID, 164 Rangos de operandos, 81 Rangos de temperatura EM 231 RTD, 444-445 EM 231 Termopar, 439-440 RCPx_READ, operaciones con recetas, 381 Rearmar dominante biestable, 89 Rearrangue, tras un error fatal, 72 Recetas, cargar en la CPU y en la PG, 41 Recibir datos, 104 Recibir mensaje, 98 condición final, 101 condición inicial, 101 contaje máximo de caracteres, 104 detección de BREAK, 102 detección de inactividad, 101 detección del carácter final, 103 detección del carácter inicial, 101 ejemplo, 106 errores de paridad, 104 modo Freeport, 98 recibir datos, 99 SMB86 a SMB94, SMB186 a SMB194, 499 temporizador de mensajes, 104 temporizador entre caracteres, 103 terminación por el programa de usuario, 104 Recuperar, contraseña olvidada, 55 Red aislamiento, 235 buscar la CPU, 227 cable, 235, 236 cable multimaestro PPI. 238 calcular distancias, 235 cerrar el cable, 237 compleja, 252 componentes, 235-238 con 'token passing' (paso de testigo), ejemplo, 250 configurar, 235 configurar la comunicación, 224-447 dirección de estación más alta, 249 direcciones, 225 direcciones de aparatos, 228 ejemplos de configuración, 230, 231, 232 esclavos, 225 Ethernet, CP 243-1, 233 factor de actualización GAP, 249 interfaz hombre-máquina (HMI), 239 maestros, 225 módem, 247 módem radio, 248

MPI, más de 187,5 kbit/s, 232 MPI, menos de 187,5 kbit/s, 231 multimaestro PPI, 230 optimizar el rendimiento, 249 polarizar el cable, 237 PPI compleja, 231 PPI monomaestro, 230 procesadores de comunicaciones, 238 PROFIBUS, 225 PROFIBUS-DP, asignación de pines, 237 PROFIBUS-DP, datos técnicos del cable, 235 PROFIBUS-DP, repetidores, 236 PROFIBUS-DP, S7-315-2 y EM 277, 232 PROFIBUS-DP, STEP 7-Micro/WIN y HMI, 232 puerto de comunicación, 237 reglas de configuración, 235 repetidores, 236 tiempo de rotación del 'token' (testigo), 249 velocidad de transferencia, 235 Redondear a entero doble, 114 Registrar valor en tabla, 203 ejemplo, 203 Registro de desplazamiento, 195 ejemplo, 196 Registros de control del modo Freeport (SMB30 y SMB130), 494 Registros HSC0, HSC1, HSC2 (SMB36 a SMB65), 495 Registros HSC3, HSC4 y HSC5 (SMB131 a SMB165), 500 Reglas aislamiento, 24 cableado, 24 cargas de lámparas, 26 cargas inductivas, 26 circuitos de supresión, 26 configuración de redes, 235 crear soluciones de automatización con un Micro-PLC, 60 entornos con vibraciones fuertes, 22 modificar punteros para el direccionamiento indirecto, 38 montaje, 18 montaje vertical, 22 operaciones del módulo de posicionamiento EM 253, 289 para la instalación con corriente alterna, 25 para la instalación con corriente continua, 25 puesta a tierra. 24 puesta a tierra y cableado, 25 rutinas de interrupción, 63, 169 subrutinas, 62 Regulación, seleccionar el tipo, 162 Regulación PID acción negativa, 164 acción positiva, 164 ajustar el bias, 164 alarmas, 165 Asistente, 159 condiciones de error. 165 convertir entradas del lazo. 162 convertir salidas del lazo en un valor entero escalado, 163

descripción, 160 modos, 165 normalizar entradas del lazo, 162 operaciones PID, 159-170 rangos, 164 tabla de lazo, 166 tipos de regulación, 162 variables, 164 Reinsertar, bloque de terminales, 23 Relés, 26 vida útil, 405 Relés y salidas c.c., 26 Reloj bits de estado, 490 cartucho, 473 de tiempo real (TOD), 90 Rendimiento, optimizar la red, 249 Repetidores números de referencia, 504 red, 236 Requisitos, protocolo para esclavos Modbus, 368 Requisitos de alimentación calcular, 481 CPU, 481 ejemplo, 482 módulos de ampliación, 481 Requisitos del sistema, 4 Resolución, temporizadores, 211, 212 Respaldar datos, 40-43 rangos, 49 Restablecer datos, tras conectar la alimentación, 44 Restablecer el programa, desde el cartucho de memoria, 43 Restar, 154 Restricción de acceso, 54 Resumen breve, control en lazo abierto, 268 Retorno condicionado desde rutina de interrupción, 167 Retorno desde subrutina, 218 condicionada, 218 ejemplo, 221 Rotar byte a la derecha, 193 Rotar byte a la izquierda, 193 Rotar palabra a la derecha, 193 Rotar palabra a la izquierda, 193 Rotar palabra doble a la derecha, 193 Rotar palabra doble a la izquierda, 193 RP, modos de búsqueda, 320 RS-232 cable multimaestro PPI, 242 modo Freeport, 242 RS-485, 236 RTD (EM 231), 441 **RUN**, 15 Rutina de interrupción temporizada, ejemplo, 173 Rutinas de interrupción, 29, 47 cola de espera, 171 compartir datos con el programa principal, 169 descripción, 169 E/S, 170 ejemplo, 61 flancos positivos y negativos, 170 llamar a subrutinas, 170

prioridad, 171 puerto de comunicación, 170 reglas, 63, 169 soporte del sistema, 169 temporizadas, 170 tipos soportados por el S7-200, 170

S

S7-200 acceder a los datos, 30 actuando de esclavo, 225 acumuladores, 33 alimentación, 8 área de contadores (C), 32 área de la memoria de variables (V), 31 área de marcas (M), 31 área de marcas especiales (SM), 34 área de memoria de las entradas (I), 31 área de memoria de las salidas (Q), 31 área de memoria local (L), 34 área de relés de control secuencial (S), 35 área de temporizadores (T), 32 áreas de memoria, 80 captura de impulsos, 51 cargar en PG, 41 cargar programas, 41 ciclo, 28, 47 códigos de error, 486 como esclavo, 448 compatibilidad electromagnética, 405 componentes del sistema, 2 condiciones ambientales, 405 conectar a STEP 7-Micro/WIN, 10 contadores rápidos, 33 convenciones de programación, 69 CPU, 2 datos técnicos, 405 diagramas de cableado, 412-414 dimensiones, 2 dirección de estación, 226-228 direccionamiento, 30 eiecutar la lógica de control. 28 ejemplos de redes, 230, 231, 232, 233 eliminar errores, 70, 265 eliminar errores de hardware, 265 entradas analógicas (AI), 34 funciones especiales, 47 guardar datos, 40 imagen del proceso, 47 imagen del proceso de las entradas (I), 31 imagen del proceso de las salidas (Q), 31 leer y escribir datos, 28 memoria, 30 memoria C. 32 memoria de marcas especiales (SM), 34 memoria M, 31 memoria remanente, 49 memoria S, 35 memoria T, 32 memoria L, 34 memoria V, 31

módem, 247 módem radio, 248 modo RUN, 15, 46 modo STOP, 15, 46 módulos de ampliación, 4 montaje, 20 protección con contraseña, 54 reacción a errores fatales, 486 reglas de cableado, 25 reglas de montaje, 18 reglas de puesta a tierra, 25 RS-232, 242 rutinas de interrupción, 169 rutinas de interrupción soportadas, 170 salidas analógicas (AQ), 35 tabla de estado, 263 valores de constante, 36 velocidades de transferencia, 225, 226-228 S7-300, ejemplos de redes, 231 S7-400, ejemplos de redes, 231 Sacar primer valor, 87 Salida de habilitación (ENO), 69 Salida de impulsos (PLS), 147 Salida de impulsos rápidos funcionamiento, 147 SMB66-SMB85, 498 Salida de modulación por ancho de impulsos, PWMx_RUN, 270 Salida PTO, 274 Salida PWM, configurar, 269 Salidas, 28 CPU, 412 módulo de posicionamiento EM 253, 281 módulos de ampliación digitales, 419 operaciones sin salidas, 69 Salidas analógicas, configurar los valores, 49 Salidas analógicas (AQ), direccionamiento, 35 Salidas de corriente alterna v relés. 26 Salidas de impulsos rápidos, 57 Salidas del lazo, convertir en un valor entero escalado, 163 Salidas digitales, configurar los estados, 48 Salidas y relés c.c., 26 Saltar a meta. 185 ejemplo, 185 Seguridad, contraseñas, 54 Seguridad marítima, 404 Seleccionar cable multimaestro PPI. 238 editor de programas. 64 juegos de operaciones, 67 modo de operación del S7-200, 46 procesadores de comunicaciones, 238 protocolo de comunicación, 228 Selector de modos. 46 Seno. 157 Sentido, cambiar en los contadores rápidos, 144 Servicio de mensajería corta, módulo Módem EM 241, 328 Servomotores, control de posición en lazo abierto, 271 SIMATIC, operaciones de contaje

Incrementar contador, 126 Incrementar/decrementar contador, 127 Simulador de entradas, 479 Simuladores, números de referencia, 505 SMB0: bits de estado, 490 SMB1: bits de estado, 490 SMB130: registros de control del modo Freeport, 494 SMB131 a SMB165: registros HSC3, HSC4 y HSC5, 500 SMB166 a SMB185: tabla de definición de perfiles PTO0 y PTO1, 501 SMB186 a SMB194: control de recepción de mensajes, 499 SMB2: recepción de caracteres en modo Freeport, 491 SMB200 a SMB549: estado de los módulos inteligentes, 502 SMB28 y SMB29, potenciómetros analógicos, 56 SMB28, SMB29: potenciómetros, 494 SMB3: error de paridad en modo Freeport, 491 SMB30 y SMB130: registros de control del modo Freeport, 494 SMB31 y SMW32: control de escritura en EEPROM, 495 SMB34 y SMB35: duración de las interrupciones temporizadas, 495 SMB36 a SMB65: registros HSC0, HSC1, HSC2, 495 SMB4: desbordamiento de la cola de espera, 491 SMB5: estado de E/S. 492 SMB6: identificador de la CPU, 492 SMB66 a SMB85: registros PTO/PWM, 498 SMB7: reservado, 492 SMB8 a SMB21: identificador del módulo de ampliación y registro de errores, 493 SMB86 a SMB94, SMB186 a SMB194: control de recepción de mensajes, 499 SMS, módulo Módem, 328 SMW22 a SMW26: tiempos de ciclo, 494 SMW98: errores en el bus de ampliación, 500 Software de programación, números de referencia, 504 Software, comprobar, 259 Soluciones de automatización, crear con un Micro-PLC, 60 Soporte del sistema, rutinas de interrupción, 169 STEP 7-Micro/WIN abrir. 64 actuando de maestro, 225 ajustes de comunicación, 10 cable multimaestro PPI, 239 conectar al S7-200, 10 conexión con el EM 241, 327 crear programas, 64 dirección de estación, 226-228 editores de programas, 64 ejemplos de redes, 230-233 herramientas de comprobación, 259 iniciar. 9 instalación, 5

Decrementar contador, 126

juegos de operaciones IEC 1131-3, 67 seleccionar, 67 SIMATIC, 67 números de referencia, 504 paquete de programación, 4 procesador de comunicaciones, 239 requisitos del sistema, 4 velocidad de transferencia, 226-228 STOP, 181 ejemplo, 182 Subrutinas anidado, 218 circulación de corriente (parámetro), 219 con parámetros, 219 ejemplo, 61 llamar desde rutinas de interrupción, 170 reglas, 62 tipos de datos, 219 tipos de parámetros, 219 Sumar, 154 Supresión de ruidos, filtro de entradas, 50 Supresión de sobretensiones, 26 Supresión por diodos, 26

T

Tabla CRC, protocolo para esclavos Modbus, 368 Tabla de configuración, módulo Módem EM 241, 331.343 Tabla de configuración/perfiles, módulo de posicionamiento EM 253, 310 Tabla de estado, 75 forzar valores, 264 observar valores, 263 Tabla de perfiles, módulo de posicionamiento EM 253, 310 Tabla de referencias cruzadas, 260 Tabla de símbolos, 74 configurar para Modbus, 369 direccionamiento, 74 Tabla de variables globales, 74 Tabla de variables locales, 64, 75 Tabla del lazo, 166 PID, 394 Tangente, 157 TC/IP, protocolo de comunicación, 229 TCP/IP, protocolo, 229 TD 200, Asistente, 6 TD 200 (visualizador de textos), 6 Teleservicio, 327 Temporizador como retardo a la conexión (TON), 210 ejemplo, 212 Temporizador como retardo a la conexión con memoria (TONR), 210 ejemplo, 214 Temporizador como retardo a la desconexión (TOF), 210 ejemplo, 213 Temporizador con retardo al conectar (TON) (IEC), 215

Temporizador con retardo al desconectar (TOF) (IEC), 215 Temporizador de mensajes, 104 Temporizador entre caracteres, 103 Temporizador por impulsos (TP) (IEC), 215 Temporizadores, resolución, 211, 212 Terminación por el programa de usuario, 104 Terminal no inteligente, configurar el cable multimaestro RS-232/PPI, 255-499 Terminales de conexión CPU 222 AC/DC/relé, 414 CPU 222 DC/DC/DC, 414 CPU 224 AC/DC/relé, 414 CPU 224 DC/DC/DC, 414 CPU 226 AC/DC/relé, 415 CPU 226 DC/DC/DC, 415 CPU 222 AC/DC/relé, 412, 413 CPU 222 DC/DC/DC, 412, 413 CPU 224 AC/DC/relé, 413 CPU 224 DC/DC/DC, 413 EM 221 8 E digitales x 24 V c.a., 421 EM 221 8 E digitales x 24 V c.c., 421 EM 221 8 E digitales x AC, 421 EM 221 8 entradas digitales x 24 V c.c., 421 EM 222 8 S digitales x 24 V c.c., 421 EM 222 8 S digitales x relé, 421 EM 223 4 E x 24 V c.c./4 S x 24 V c.c., 420 EM 223 4 E/4 S digitales x 24 V c.c./relé, 421 EM 223 4 E/4 S x 24 V c.c./relé, 420 EM 223 4 E x 24 V c.c./4 S x 24 V c.c., 420 EM 231 AI 4 x 12 bits, 425 EM 232 AQ 2 x 12 bits, 425 EM 235 AI 4/AQ 1 x 12 bits, 425 EM 223 16 DI/16 DO x 24 V c.c., 422 EM 223 16 DI/16 DO x 24 V c.c./relé, 422 EM 223 8 DI/8 DO x 24 V c.c., 422 EM 223 8 DI/8 DO x 24 V c.c./relé, 422 EM 231 RTD, 435 EM 231 Termopar, 435 Término integral, algoritmo PID, 161 Término proporcional, algoritmo PID, 161 Termopar (EM 231) configurar, 436 indicadores de estado (LEDs), 438 nociones básicas, 436 rangos de temperatura, 439-440 Tiempo de ciclo (función PTO), 147 Tiempo de ejecución, errores, 71 Tiempo de rotación del 'token' (testigo), 249 comparar, 251 Tiempos de ciclo: SMW22 a SMW26, 494 Tiempos de ejecución, operaciones AWL, 507 Tipo de regulación, seleccionar, 162 Tipos de datos, parámetros de subrutinas, 219 TOD (reloj de tiempo real), 90 TP-Designer for TP070, versión 1.0, 504 Transferencias de datos, módulo Módem EM 241, 329 Transferir byte, 178 Transferir bytes en bloque, 180 Transferir palabra, 178 Transferir palabra doble, 178 Transferir palabras dobles en bloque, 180

Transferir palabras en bloque, 180 Transferir real, 178 Transición del relé de control secuencial, 186 Transición negativa, 82 Transición positiva, 82 Transiciones condicionadas, ejemplo, 191 Transistor c.c., proteger, 26 Transmitir mensaje, 98 ejemplo, 106 modo Freeport, 98 transmitir datos, 99 Tren de impulsos PTOx_ADV, 280 PTOx_CTRL, 276 PTOx_LDPOS, 279 PTOx_MAN, 278 PTOx_RUN, 277 Tren de impulsos (PTO), 57, 147 Asistente de control de posición, 147 configurar con marcas especiales, 150 control de motores paso a paso, 152 descripción, 148 pipelining monosegmento, 148 pipelining multisegmento, 149 tiempo de ciclo, 148 valores de la tabla de perfiles, 152 Truncar, 114

U

USS4_DRV_CTRL, 354

V

Valor actual ajustar para los contadores rápidos, 138 cambiar en contador rápido, 145 Valor en coma flotante, 163 Valor predeterminado ajustar para los contadores rápidos, 138 cambiar en contador rápido, 145 Valores, forzar, 264 Valores de constante, 36 Valores de la tabla de perfiles, generadores PTO/PWM, 152 Valores de las salidas analógicas, configurar, 49 Valores en coma flotante, 35 Valores iniciales, asignar, 73 Variables direccionamiento simbólico, 74 lazo PID, 164 observar, 75 observar en tablas de estado, 263 Variables intercaladas, en mensajes de texto y SMS, 329 Velocidad de transferencia ajustar, 225 Interruptores DIP, cable multimaestro PPI, 242 interruptores DIP, cable multimaestro PPI, 227, 239, 247, 248 óptima, 249 red, 235 Velocidades de transferencia, interruptores, cable multimaestro, 9 Velocidades máxima y de arranque/paro, asistente de control de posición, 271 Vida útil de relés, 405 Violación de reglas de compilación, 488 Visualizador de textos TD 200 número de referencia, 505 número de referencia del manual, 504 Visualizador de textos TD 200C, número de referencia, 505 Visualizadores de textos números de referencia, 505 plantillas para el panel frontal (TD 200C), 505 Visualizar elementos del programa, 64 errores, 70 estado del programa, 262

Y-ENO, 87

Sres.

SIEMENS ENERGY & AUTOMATION INC ATTN: TECHNICAL COMMUNICATIONS ONE INTERNET PLAZA PO BOX 4991 JOHNSON CITY TN USA 37602-4991

Remitente:

Nombre:	 	 	 	 		
Cargo:	 	 	 	 		
Empresa:	 	 	 	 		
Calle:	 	 	 	 		
CP y población:	 	 	 	 	_	
País:	 	 	 	 		
Teléfono:	 	 	 	 	_	

Indique el ramo de la industria al que pertenece:

- Industria del automóvil
- Industria química
- Industria eléctrica
- Industria alimentaria
- □ Control e instrumentación
- Industria mecánica

X

Industria petroquímica

- Industria farmacéutica
- Industria del plástico
- Industria papelera
- Industria textil
- □ Transportes
- Otros ______

Observaciones/sugerencias

Sus observaciones y sugerencias nos permiten mejorar la calidad y utilidad de nuestra documentación. Por ello le rogamos que rellene el presente formulario y lo envíe a Siemens.

Responda por favor a las siguientes preguntas dando una puntuación comprendida entre 1 = muy bien y 5 = muy mal

- 1. ¿Corresponde el contenido del manual a sus exigencias?
- 2. ¿Resulta fácil localizar las informaciones requeridas?
- 3. ¿Es comprensible el texto?
- 4. ¿Corresponde el nivel de los detalles técnicos a sus exigencias?
- 5. ¿Qué opina de la calidad de las ilustraciones y tablas?

En las líneas siguientes puede exponer los problemas concretos que se le hayan planteado al manejar el manual:

-	_	_	-	—	_	_	_	_	_	_	—	_	-	—	—	_	—	_	_	_	_	_	_	_	_	-	-	-	—	—	_	_	-	-	_	_	-	—	_
_	-	-	_	_	-	-	-	-	-	_	_	_	_	_	_	_	_	_	_	-	_	-	-	-	_	-	-	-	-	_	-	-	-	-	_	_	-	_	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	—	_	_	_	_	_	—	—	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	—	_	—	—	_	_	_	_	_	_	_	_	_	—
_	-	-	-	_	-	-	-	-	-	_	_	_	_	_	_	_	_	_	-	-	-	-	-	-	_	-	-	-	_	_	-	-	-	-	_	_	-	_	-
_	-	-	_	_	_	-	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	_	_
_	-	-	_	_	_	-	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	-	_	_	_	_	_	-	_	_
_	-	_	_	_	_	-	-	_	_	_	_	-	_	_	_	_	_	-	-	-	_	_	-	_	_	_	-	-	—	_	-	-	—	—	_	_	-	_	_
-	-	-	-	_	-	-	-	-	-	_	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	_	-	-	-	-	-	_	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	_	-	-	-	-	-	_	_	-	-	-	-	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	_	-	-	-	-	-	_	_	-	-	-	-	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_	-	-	_	_	_	-	-	-	-	_	_	_	_	_	_	_	_	_	-	_	_	-	_	_	_	_	-	-	_	_	-	_	_	_	_	_	-	_	-
_	-	-	_	_	_	-	-	-	-	_	_	_	_	_	_	_	_	_	-	_	_	-	_	_	_	_	-	-	_	_	-	_	_	_	_	_	-	_	_
-	-	-	_	_	-	-	-	-	-	-	_	-	-	-	-	_	_	_	-	_	_	-	-	-	_	-	_	-	—	_	-	-	—	—	-	—	-	_	-
-	-	-	_	_	-	-	-	-	-	-	_	-	-	-	-	_	_	_	-	_	_	-	-	_	_	-	_	-	—	_	-	-	—	—	-	—	-	_	-
-	-	-	_	_	_	-	-	-	-	-	_	-	-	-	-	_	_	_	-	_	_	-	-	-	_	-	_	-	—	_	-	-	—	—	-	—	-	_	-
_	-	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_	-	-	-	_	_	_	_	_	-	-	_	_	_	-	-	_	_	_	_	_	_	_
_	—	—	_	_	—	—	—	—	—	—	_	-	_	-	-	_	_	_	-	_	_	—	—	—	_	—	_	—	—	_	—	_	—	—	—	—	-	_	—
_	_	—	_	_	—	_	_	—	—	—	_	—	—	—	—	_	_	—	_	—	_	—	—	_	_	_	_	—	—	—	_	—	—	—	—	—	—	_	—

Áreas de memoria y funciones del S7-200

Descripción		CPU 221	CPU 222	CPU 224	CPU 224XP	CPU 226			
Tamaño del programa	a de								
con edición en modo sin edición en modo	RUN RUN	4096 bytes 4096 bytes	4096 bytes 4096 bytes	8192 bytes 12288 bytes	12288 bytes 16384 bytes	16384 bytes 24576 bytes			
Tamaño de los datos usuario	de	2048 bytes	2048 bytes	8192 bytes	10240 bytes	10240 bytes			
Imagen del proceso d entradas	le las	10.0 a 115.7							
Imagen del proceso d salidas	le las	Q0.0 a Q15.7							
Entradas analógicas (sólo lectura)		AIW0 a AIW30	AIW0 a AIW30	AIW0 a AIW62	AIW0 a AIW62	AIW0 a AIW62			
Salidas analógicas (sólo escritura)		AQW0 a AQW30	AQW0 a AQW30	AQW0 a AQW62	AQW0 a AQW62	AQW0 a AQW62			
Memoria de variables	; (V)	VB0 a VB2047	VB0 a VB2047	VB0 a VB8191	VB0 a VB10239	VB0 a VB10239			
Memoria local (L) ¹		LB0 a LB63							
Área de marcas (M)		M0.0 a M31.7							
Marcas especiales (S	SM)	SM0.0 a SM179.7	SM0.0 a SM299.7	SM0.0 a SM549.7	SM0.0 a SM549.7	SM0.0 a SM549.7			
Sólo lectura		SM0.0 a SM29.7							
Temporizadores		256 (T0 a T255)							
Retardo a la conexiór con memoria	າ 1 ms	T0, T64							
	10 ms	T1 a T4 y T65 a T68							
	100 ms	T5 a T31 y T69 a T95							
Retardo a la conexiór	n/	T 00 T 00							
desconexion	1 ms	132, 196	132, 196	132, 196	132, 196	132, 196			
	10 ms	T97 a T100							
	100 ms	T37 a T63 y T101 a T255							
Contadores		C0 a C255							
Contadores rápidos		HC0 a HC5							
Relés de control secu (S)	iencial	S0.0 a S31.7							
Acumuladores		AC0 a AC3							
Saltos a metas		0 a 255							
Llamadas a subrutina	IS	0 a 63	0 a 63	0 a 63	0 a 63	0 a 127			
Rutinas de interrupció	ón	0 a 127							
Detectar flanco positivo/negativo		256	256	256	256	256			
Lazos PID		0 a 7	0a7	0 a 7	0 a 7	0 a 7			
Puertos		Puerto 0	Puerto 0	Puerto 0	Puerto 0, puerto 1	Puerto 0, puerto 1			

¹ STEP 7-Micro/WIN (versión 3.0 o posterior) reserva LB60 a LB63.

AWL	Página	AWL	Página	AWL	Página	AWL	Página	AW	/L	Página
=	85	AW > =	109	IBCD	112	MOVB	178	RLV	N	193
+D	154	AW <>	109	INCB	158	MOVD	178	RO	UND	112
-D	154	BCDI	112	INCD	158	MOVR	178	RR	В	193
* D	154	BIR	179	INCW	158	MOVW	178	RR	D	193
/ D	154	BITIM	210	INVB	175	MUL	156	RR	W	193
+1	154	BIW	179	INVD	175	NEXT	183	RTA	Ą	116
-1	154	BMB	180	INVW	175	NETR	93	RTS	S	120
=	85	BMD	180	ITA	116	NETW	93	S		85
* I	154	BMW	180	ITB	112	NOT	82	SC	AT	198
/1	154	BTI	112	ITD	112	0	82	SC	PY	198
+R	154	CALL	218	ITS	120	OB =	109	SCI	RE	186
-R	154	CEVNT	167	JMP	185	OB > =	109	SC	RT	186
*R	154	CFND	201	LBL	185	OB >	109	SEG	G	112
/R	154	CITIM	210	LD	82	OB <	109	SFI	ND	201
A	82	COS	157	LDB <=	109	OB < =	109	SH	RB	195
AB < =	109	CRET	218	LDB =	109	OB <>	109	SI		85
AB =	109	CRETI	167	LDB >=	109	OD <	109	SIN	1	157
AB >	109	CSCRE	186	LDB >	109	OD < =	109	SLE	З	193
AB<	109	CTD	126	LDB <	109	OD =	109	SLE	D	193
AB > =	109	CTU	126	LDB <>	109	OD >	109	SLE	EN	198
AB <>	109	CTUD	126	LDD >=	109	OD > =	109	SLV	Ν	193
AD <	109	DECB	158	LDD <	109	OD <>	109	SPA	Ą	108
AD < =	109	DECD	158	LDD <=	109	OI	82	SQ	RT	157
AD =	109	DECO	125	LDD =	109	OLD	87	SR	В	193
AD >	109	DECW	158	LDD >	109	ON	82	SRI	D	193
AD > =	109	DISI	167	LDD <>	109	ONI	82	SR	W	193
AD <>	109	DIV	192	LDI	82	OR=	109	SS	CPY	200
AENO	87	DLED	1	LDN	82	OR <	109	ST	D	123
AI	82	DTA	116	LDNI	82	OR<=	109	STI		123
ALD	87	DTCH	167	LDR=	109	OR >	109	STO	OP	181
AN	82	DTI	112	LDR <	109	OR >=	109	STR	R	123
ANDB	176	DTR	112	LDR<=	109	OR <>	109	SW	/AP	197
ANDD	176	DTS	120	LDR >	109	ORB	176	TAN	Ν	157
ANDW	176	ED	82	LDR>=	109	ORD	176	TO	DR	90
ANI	82	ENCO	125	LDR <>	109	ORW	176	TO	DRX	90
AR=	109	FIN	181	LDS	87	OS=	111	TO	DW	90
AR <	109	ENI	167	LDS=	111	0S<>	111	TO	DWX	90
AR<=	109	EU	82	LDS<>	111	OW <	109	TO	F	210
AR >	109	EXP	157	LDW <=	109	OW < =	109	TO	N	210
AR>=	109	FIFO	204	LDW <	109	OW =	109	TO	NR	210
AR <>	109	FILL	206	LDW =	109	OW >	109	TRI	UNC	112
AS=	111	FND <	207	LDW >	109	OW > =	109	WD)R	181
AS<>	111	FND <>	207	LDW >=	109	OW <>	109	XM	Т	98
ATCH	167	FND =	207	LDW <>	109	PID	159	XO	RB	176
ATH	116	FND >	207	LIFO	204	PLS	147	XO	RD	176
ATT	203	FOR	183	LN	157	R	85	XO	RW	176
AW <	109	GPA	108	LPP	87	RCV	98			
AW < =	109	HDEF	131	LPS	87	RI	85			
AW=	109	HSC	131	LRD	87	RLB	193			
AW >	109	HTA	116	LSCR	186	RLD	193			